SlideShare a Scribd company logo
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 1
Lecture 3
Intelligent Energy Systems:
Control and Monitoring
Basics
Dimitry Gorinevsky
Seminar Course 392N ● Spring2011
Traditional Grid
• Worlds Largest Machine!
– 3300 utilities
– 15,000 generators, 14,000
TX substations
– 211,000 mi of HV lines
(>230kV)
• A variety of interacting
control systems
ee392n - Spring 2011
Stanford University
2
2
Intelligent Energy Systems
Smart Energy Grid
3
Conventional Electric Grid
Generation
Transmission
Distribution
Load
Intelligent Energy Network
Load IPS
Source IPS
energy
subnet
Intelligent
Power Switch
Conventional Internet
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems
Business Logic
Intelligent Energy Applications
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 4
Database
Presentation Layer
Computer
Tablet Smart
phone
Internet
Communications
Energy Application
Application Logic
(Intelligent Functions)
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 5
Control Function
• Control function in a systems perspective
Physical system
Measurement
System
Sensors
Control
Logic
Control
Handles
Actuators
Plant
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 6
Analysis of Control Function
• Control analysis perspective
• Goal: verification of control logic
– Simulation of the closed-loop behavior
– Theoretical analysis
Control
Logic
System
Model
Control Handle
Model
Measurement
Model
Key Control Methods
• Control Methods
– Design patterns
– Analysis templates
• P (proportional) control
• I (integral) control
• Switching control
• Optimization
• Cascaded control design
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 7
Generation Frequency Control
• Example
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 8
Controller
Turbine /Generator
sensor measurements
control command
Load
disturbance
Generation Frequency Control
• Simplified classic grid frequency control model
– Dynamics and Control of Electric Power Systems, G. Andersson, ETH Zurich, 2010
http://www.eeh.ee.ethz.ch/en/eeh/education/courses/viewcourse/227-0528-00l.html
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 9
e
m P
P
I 




 
Swing equation:
d
u
x 


load
e P
P 


d
I
P
u
I
P
x
e
m










/
/


P-control
• P (proportional) feedback control
• Closed –loop dynamics
• Steady state error
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 10
d
u
x 


x
k
u P


d
x
k
x p 



)
1
(
1
0
t
k
p
t
k p
p
e
d
k
e
x
x





p
s
s k
d
x /

frequency droop
0 2 4
0
0.2
0.4
0.6
0.8
1
x(t)
Step response
frequency
droop
x+0
u
AGC Control Example
• AGC = Automated Generation Control
• AGC frequency control
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 11
Load
disturbance
AGC
generation command
frequency measurement
AGC Frequency Control
• Frequency control model
– x is frequency error
– cl is frequency droop for load l
– u is the generation command
• Control logic
– I (integral) feedback control
• This is simplified analysis
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 12
,
l
c
u
g
x 



x
k
u I



ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 13
P and I control
• P control of an integrator
• I control of a gain system. The same feedback loop
d
bu
x 


x
k
u P


g
-kI 
cl
x
x
k
u I



,
l
c
u
g
x 



-kp
b

d
x
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 14
outer loop
Cascade (Nested) Loops
• Inner loop has faster time scale than outer loop
• In the outer loop time scale, consider the inner loop as
a gain system that follows its setpoint input
inner loop
-
inner loop
setpoint
output Plant
Inner Loop
Control
Outer Loop
Control
-
outer loop
setpoint
(command)
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 15
Switching (On-Off) Control
• State machine model
– Hides the continuous-time dynamics
– Continuous-time conditions for switching
• Simulation analysis
– Stateflow by Mathworks
off on
70

x
71

x
69

x
passive
cooling
furnace
heating
setpoint
Optimization-based Control
• Is used in many energy applications, e.g., EMS
• Typically, LP or QP problem is solved
– Embedded logic: at each step get new data and compute
new solution
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 16
Optimization Problem
Formulation
Embedded Optimizer
Solver
Measured
Data
Control
Variables
Plant
Sensors Actuators
Cascade (Hierarchical) Control
• Hierarchical decomposition
– Cascade loop design
– Time scale separation
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 17
Hierarchical Control Examples
• Frequency control
– I (AGC)  P (Generator)
• ADR – Automated Demand Response
– Optimization  Switching
• Energy flow control in EMS
– Optimization  PI
• Building control:
– PI  Switching
– Optimization
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 18
Power Generation Time Scales
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 19
Power Supply
Scheduling
• Power generation and distribution
• Energy supply side
Time (s)
1/10 10 1000
1 100
http://www.eeh.ee.ethz.ch/en/eeh/education/courses/viewcourse/227-0528-00l.html
Power Demand Time Scales
• Power consumption
– DR, Homes, Buildings, Plants
• Demand side
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 20
Demand Response
Home Thermostat
Building HVAC
Enterprise Demand
Scheduling
Time (s)
100 1,000 10,000
Research Topics: Control
• Potential topics for the term paper.
• Distribution system control and optimization
– Voltage and frequency stability
– Distributed control for Distributed Generation
– Distribution Management System: energy optimization, DR
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 21
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 22
Monitoring & Decision Support
Physical system
Monitoring
& Decision
Support
Physical
system
Measurement
System
Sensors
Data
Presentation
• Open-loop functions
- Data presentation to a user
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 23
Monitoring Goals
• Situational awareness
– Anomaly detection
– State estimation
• Health management
– Fault isolation
– Condition based maintenances
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 24
Condition Based Maintenance
• CBM+ Initiative
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 25
SPC: Shewhart Control Chart
• W.Shewhart, Bell Labs, 1924
• Statistical Process Control (SPC)
• UCL = mean + 3·
• LCL = mean - 3·
Walter Shewhart
(1891-1967)
sample
3 6 9 12
12 15
mean
quality
variable
Lower
Control
Limit
Upper
Control
Limit
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 26
Multivariable SPC
• Two correlated univariate processes
y1(t) and y2(t)
cov(y1,y2) = Q, Q-1= LTL
• Uncorrelated linear combinations
z(t) = L·[y(t)-]
• Declare fault (anomaly) if
    2
2
1
2
~ 

 

 
y
Q
y
z
T







2
1
y
y
y







2
1



    2
1
c
y
Q
y
T


 


ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 27
Multivariate SPC - Hotelling's T2
• Empirical parameter estimates
 
 















y
t
y
t
y
n
Q
X
E
t
y
n
T
n
t
T
n
t
cov
)
)
(
)(
)
(
(
1
ˆ
)
(
1
ˆ
1
1
• Hotelling's T2 statistics is
• T2 can be trended as a univariate SPC variable
   

 

 
)
(
ˆ
)
( 1
2
t
y
Q
t
y
T
T
Harold Hotelling
(1895-1973)
Advanced Monitoring Methods
• Estimation is dual to control
– SPC is a counterpart of switching control
• Predictive estimation – forecasting, prognostics
– Feedback update of estimates (P feedback  EWMA)
• Cascaded design
– Hierarchy of monitoring loops at different time scales
• Optimization-based methods
– Optimal estimation
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 28
Research Topics: Monitoring
• Potential topics for the term paper.
• Asset monitoring
– Transformers
• Electric power circuit state monitoring
– Using phasor measurements
– Next chart
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 29
Optimization Problem
Measurements:
• Currents
• Voltages
• Breakers, relays
State estimate
• Fault isolation
Electric
Power System
model
Electric Power Circuit Monitoring
v
Df
Cx
y
w
Bf
Ax






0
ee392n - Spring 2011
Stanford University
30
Intelligent Energy Systems
ACC, 2009
End of Lecture 3
ee392n - Spring 2011
Stanford University
Intelligent Energy Systems 31

More Related Content

PDF
Srm ps eee-pg2013-14
PPTX
lecture_1__2-introduction to Control Systems.pptx
PDF
Control system introduction for different application
PPTX
control system, open and closed loop engineering
PPTX
Csl2 16 j15
PPTX
Introduction: Systems and Control-Feedback and Control System
PPTX
Csl10 9 f15
PPTX
Cst3
Srm ps eee-pg2013-14
lecture_1__2-introduction to Control Systems.pptx
Control system introduction for different application
control system, open and closed loop engineering
Csl2 16 j15
Introduction: Systems and Control-Feedback and Control System
Csl10 9 f15
Cst3

Similar to EE392n_Lecture3apps.ppt (20)

PPTX
Presentation1
PPTX
PE-3032_Lecture_01.pptx
PDF
Control Systems and laplace transform systems on control.pdf
PPTX
Use of the Genetic Algorithm-Based Fuzzy Logic.pptx
PPTX
Csl10 9 f15 extra
PPT
402753845-Linear Control-Systems-I-ppt.ppt
PDF
EE362-Ch2.pdf - Feedback and Control Systems
PDF
IIT_Tirupati_Chemical_Engineering_Practice
PPTX
4.-PEL.pptx
PPT
3271829.ppt
PPTX
EE-371 Lecture 02 introductionsssssssss.pptx
PPTX
Calmet testing energy-measurement-equipment
PPT
PDF
Mechatronics-Introduction to Mechatronics System
PDF
Intro_PowerElectronics.pdf
PDF
Design and implementation of active power filter for harmonic elimination and...
PPT
Artificial Intelligence Applications For Building Energy Management Applicati...
PDF
TE30-Electricity-Meter-Tester-and-Power-Quality-Analyzer-Presentation-EN.pdf
PDF
ch1 introduction to mechatronics.pdf
PDF
Chemical_Engineering_Practice_IIT_Ropar.pdf
Presentation1
PE-3032_Lecture_01.pptx
Control Systems and laplace transform systems on control.pdf
Use of the Genetic Algorithm-Based Fuzzy Logic.pptx
Csl10 9 f15 extra
402753845-Linear Control-Systems-I-ppt.ppt
EE362-Ch2.pdf - Feedback and Control Systems
IIT_Tirupati_Chemical_Engineering_Practice
4.-PEL.pptx
3271829.ppt
EE-371 Lecture 02 introductionsssssssss.pptx
Calmet testing energy-measurement-equipment
Mechatronics-Introduction to Mechatronics System
Intro_PowerElectronics.pdf
Design and implementation of active power filter for harmonic elimination and...
Artificial Intelligence Applications For Building Energy Management Applicati...
TE30-Electricity-Meter-Tester-and-Power-Quality-Analyzer-Presentation-EN.pdf
ch1 introduction to mechatronics.pdf
Chemical_Engineering_Practice_IIT_Ropar.pdf
Ad

More from jpradha86 (20)

PPTX
14 File Handling in C_c_programinng.pptx
PPT
270_2_C Functions_Pepper_in C_programming.ppt
PDF
4_Decision Making and Branching in C Program.pdf
PDF
02 - Data Types and Expressions using C.pdf
PDF
VHDL_functions and procedures_programming
PDF
Week-11-powerpoint-all-about-Australia.pdf
PDF
Combinational logic-style1_CMOS for VLSI
PPT
MOSFET IV characteristics and its operations
PPT
VLSI-mosfet-construction engineering ECE
PPT
Vlsibasic.ppt fundamental for engineering
PPT
MATH 5.6.20 (1).ppt
PPTX
the-vhsic-.pptx
PPTX
lec16-bari.pptx
PPTX
lecture_1_introduction__review_of_classical_control.pptx
PPT
SS7G1 - Africa Geography.ppt
PPTX
NEW-II.pptx
PPTX
NEW-II.pptx
PPTX
CS4700-LS_v6.pptx
PPT
BeyondClassicalSearch.ppt
PPTX
Ethnic and Religious Groups Student.pptx
14 File Handling in C_c_programinng.pptx
270_2_C Functions_Pepper_in C_programming.ppt
4_Decision Making and Branching in C Program.pdf
02 - Data Types and Expressions using C.pdf
VHDL_functions and procedures_programming
Week-11-powerpoint-all-about-Australia.pdf
Combinational logic-style1_CMOS for VLSI
MOSFET IV characteristics and its operations
VLSI-mosfet-construction engineering ECE
Vlsibasic.ppt fundamental for engineering
MATH 5.6.20 (1).ppt
the-vhsic-.pptx
lec16-bari.pptx
lecture_1_introduction__review_of_classical_control.pptx
SS7G1 - Africa Geography.ppt
NEW-II.pptx
NEW-II.pptx
CS4700-LS_v6.pptx
BeyondClassicalSearch.ppt
Ethnic and Religious Groups Student.pptx
Ad

Recently uploaded (20)

PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
UNIT 4 Total Quality Management .pptx
PDF
PPT on Performance Review to get promotions
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
additive manufacturing of ss316l using mig welding
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
Digital Logic Computer Design lecture notes
PPTX
Strings in CPP - Strings in C++ are sequences of characters used to store and...
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
Geodesy 1.pptx...............................................
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
Sustainable Sites - Green Building Construction
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
Model Code of Practice - Construction Work - 21102022 .pdf
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
UNIT 4 Total Quality Management .pptx
PPT on Performance Review to get promotions
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
additive manufacturing of ss316l using mig welding
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Digital Logic Computer Design lecture notes
Strings in CPP - Strings in C++ are sequences of characters used to store and...
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Geodesy 1.pptx...............................................
CYBER-CRIMES AND SECURITY A guide to understanding
Sustainable Sites - Green Building Construction
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx

EE392n_Lecture3apps.ppt

  • 1. ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky Seminar Course 392N ● Spring2011
  • 2. Traditional Grid • Worlds Largest Machine! – 3300 utilities – 15,000 generators, 14,000 TX substations – 211,000 mi of HV lines (>230kV) • A variety of interacting control systems ee392n - Spring 2011 Stanford University 2 2 Intelligent Energy Systems
  • 3. Smart Energy Grid 3 Conventional Electric Grid Generation Transmission Distribution Load Intelligent Energy Network Load IPS Source IPS energy subnet Intelligent Power Switch Conventional Internet ee392n - Spring 2011 Stanford University Intelligent Energy Systems
  • 4. Business Logic Intelligent Energy Applications ee392n - Spring 2011 Stanford University Intelligent Energy Systems 4 Database Presentation Layer Computer Tablet Smart phone Internet Communications Energy Application Application Logic (Intelligent Functions)
  • 5. ee392n - Spring 2011 Stanford University Intelligent Energy Systems 5 Control Function • Control function in a systems perspective Physical system Measurement System Sensors Control Logic Control Handles Actuators Plant
  • 6. ee392n - Spring 2011 Stanford University Intelligent Energy Systems 6 Analysis of Control Function • Control analysis perspective • Goal: verification of control logic – Simulation of the closed-loop behavior – Theoretical analysis Control Logic System Model Control Handle Model Measurement Model
  • 7. Key Control Methods • Control Methods – Design patterns – Analysis templates • P (proportional) control • I (integral) control • Switching control • Optimization • Cascaded control design ee392n - Spring 2011 Stanford University Intelligent Energy Systems 7
  • 8. Generation Frequency Control • Example ee392n - Spring 2011 Stanford University Intelligent Energy Systems 8 Controller Turbine /Generator sensor measurements control command Load disturbance
  • 9. Generation Frequency Control • Simplified classic grid frequency control model – Dynamics and Control of Electric Power Systems, G. Andersson, ETH Zurich, 2010 http://www.eeh.ee.ethz.ch/en/eeh/education/courses/viewcourse/227-0528-00l.html ee392n - Spring 2011 Stanford University Intelligent Energy Systems 9 e m P P I        Swing equation: d u x    load e P P    d I P u I P x e m           / /  
  • 10. P-control • P (proportional) feedback control • Closed –loop dynamics • Steady state error ee392n - Spring 2011 Stanford University Intelligent Energy Systems 10 d u x    x k u P   d x k x p     ) 1 ( 1 0 t k p t k p p e d k e x x      p s s k d x /  frequency droop 0 2 4 0 0.2 0.4 0.6 0.8 1 x(t) Step response frequency droop x+0 u
  • 11. AGC Control Example • AGC = Automated Generation Control • AGC frequency control ee392n - Spring 2011 Stanford University Intelligent Energy Systems 11 Load disturbance AGC generation command frequency measurement
  • 12. AGC Frequency Control • Frequency control model – x is frequency error – cl is frequency droop for load l – u is the generation command • Control logic – I (integral) feedback control • This is simplified analysis ee392n - Spring 2011 Stanford University Intelligent Energy Systems 12 , l c u g x     x k u I   
  • 13. ee392n - Spring 2011 Stanford University Intelligent Energy Systems 13 P and I control • P control of an integrator • I control of a gain system. The same feedback loop d bu x    x k u P   g -kI  cl x x k u I    , l c u g x     -kp b  d x
  • 14. ee392n - Spring 2011 Stanford University Intelligent Energy Systems 14 outer loop Cascade (Nested) Loops • Inner loop has faster time scale than outer loop • In the outer loop time scale, consider the inner loop as a gain system that follows its setpoint input inner loop - inner loop setpoint output Plant Inner Loop Control Outer Loop Control - outer loop setpoint (command)
  • 15. ee392n - Spring 2011 Stanford University Intelligent Energy Systems 15 Switching (On-Off) Control • State machine model – Hides the continuous-time dynamics – Continuous-time conditions for switching • Simulation analysis – Stateflow by Mathworks off on 70  x 71  x 69  x passive cooling furnace heating setpoint
  • 16. Optimization-based Control • Is used in many energy applications, e.g., EMS • Typically, LP or QP problem is solved – Embedded logic: at each step get new data and compute new solution ee392n - Spring 2011 Stanford University Intelligent Energy Systems 16 Optimization Problem Formulation Embedded Optimizer Solver Measured Data Control Variables Plant Sensors Actuators
  • 17. Cascade (Hierarchical) Control • Hierarchical decomposition – Cascade loop design – Time scale separation ee392n - Spring 2011 Stanford University Intelligent Energy Systems 17
  • 18. Hierarchical Control Examples • Frequency control – I (AGC)  P (Generator) • ADR – Automated Demand Response – Optimization  Switching • Energy flow control in EMS – Optimization  PI • Building control: – PI  Switching – Optimization ee392n - Spring 2011 Stanford University Intelligent Energy Systems 18
  • 19. Power Generation Time Scales ee392n - Spring 2011 Stanford University Intelligent Energy Systems 19 Power Supply Scheduling • Power generation and distribution • Energy supply side Time (s) 1/10 10 1000 1 100 http://www.eeh.ee.ethz.ch/en/eeh/education/courses/viewcourse/227-0528-00l.html
  • 20. Power Demand Time Scales • Power consumption – DR, Homes, Buildings, Plants • Demand side ee392n - Spring 2011 Stanford University Intelligent Energy Systems 20 Demand Response Home Thermostat Building HVAC Enterprise Demand Scheduling Time (s) 100 1,000 10,000
  • 21. Research Topics: Control • Potential topics for the term paper. • Distribution system control and optimization – Voltage and frequency stability – Distributed control for Distributed Generation – Distribution Management System: energy optimization, DR ee392n - Spring 2011 Stanford University Intelligent Energy Systems 21
  • 22. ee392n - Spring 2011 Stanford University Intelligent Energy Systems 22 Monitoring & Decision Support Physical system Monitoring & Decision Support Physical system Measurement System Sensors Data Presentation • Open-loop functions - Data presentation to a user
  • 23. ee392n - Spring 2011 Stanford University Intelligent Energy Systems 23 Monitoring Goals • Situational awareness – Anomaly detection – State estimation • Health management – Fault isolation – Condition based maintenances
  • 24. ee392n - Spring 2011 Stanford University Intelligent Energy Systems 24 Condition Based Maintenance • CBM+ Initiative
  • 25. ee392n - Spring 2011 Stanford University Intelligent Energy Systems 25 SPC: Shewhart Control Chart • W.Shewhart, Bell Labs, 1924 • Statistical Process Control (SPC) • UCL = mean + 3· • LCL = mean - 3· Walter Shewhart (1891-1967) sample 3 6 9 12 12 15 mean quality variable Lower Control Limit Upper Control Limit
  • 26. ee392n - Spring 2011 Stanford University Intelligent Energy Systems 26 Multivariable SPC • Two correlated univariate processes y1(t) and y2(t) cov(y1,y2) = Q, Q-1= LTL • Uncorrelated linear combinations z(t) = L·[y(t)-] • Declare fault (anomaly) if     2 2 1 2 ~        y Q y z T        2 1 y y y        2 1        2 1 c y Q y T      
  • 27. ee392n - Spring 2011 Stanford University Intelligent Energy Systems 27 Multivariate SPC - Hotelling's T2 • Empirical parameter estimates                    y t y t y n Q X E t y n T n t T n t cov ) ) ( )( ) ( ( 1 ˆ ) ( 1 ˆ 1 1 • Hotelling's T2 statistics is • T2 can be trended as a univariate SPC variable           ) ( ˆ ) ( 1 2 t y Q t y T T Harold Hotelling (1895-1973)
  • 28. Advanced Monitoring Methods • Estimation is dual to control – SPC is a counterpart of switching control • Predictive estimation – forecasting, prognostics – Feedback update of estimates (P feedback  EWMA) • Cascaded design – Hierarchy of monitoring loops at different time scales • Optimization-based methods – Optimal estimation ee392n - Spring 2011 Stanford University Intelligent Energy Systems 28
  • 29. Research Topics: Monitoring • Potential topics for the term paper. • Asset monitoring – Transformers • Electric power circuit state monitoring – Using phasor measurements – Next chart ee392n - Spring 2011 Stanford University Intelligent Energy Systems 29
  • 30. Optimization Problem Measurements: • Currents • Voltages • Breakers, relays State estimate • Fault isolation Electric Power System model Electric Power Circuit Monitoring v Df Cx y w Bf Ax       0 ee392n - Spring 2011 Stanford University 30 Intelligent Energy Systems ACC, 2009
  • 31. End of Lecture 3 ee392n - Spring 2011 Stanford University Intelligent Energy Systems 31