SlideShare a Scribd company logo
1 
Battershell, Minder, Wachtveitl 
  1
Magnetic Actuator modeling in 2­D Ansoft Maxwell 
Jon Battershell, Spencer Minder., and Zachary Wachtveitl 
Abstract​— ​Our project was to model the Magnetic Actuator described in section 6.5 of Senturia’s ​Microsystem Design[1]​. We                                   
modeled the system in Ansoft Maxwell to allow us to perform a force analysis of the magnetic field on the armature. The first                                             
experiment conducted was to apply 1 A of current to the coil around the core of the actuator and examine the forces acting on the                                                 
armature over a total displacement of 10µm. After the initial experiment, two different spring constants were chosen to be                                     
hypothetically modeled in the system. With these spring constants, we examined the amount of current and force required to move the                                         
armature over the same total displacement of 10µm. In addition, the B fields and B vector lines within the system were examined at                                             
different points along the armatures path through the gap. After we tested and verified our model, we produced graphical analysis of                                         
our results and compared the experimental results versus the theoretical equations from the textbook.  
 
Index Terms​— Ansoft Maxwell, Magnetic Actuator, Magnetic Flux Density, MEMS  
 
I. I​NTRODUCTION 
T 
HE principles behind energy conserving transducers in MEMS can be used in many different applications. The uses range from                                     
piezoresistive sensors to electrostatic and magnetostatic actuators. These types of transducers can be useful in wireless                               
technology, automotive and biomedical fields as well. For our purposes, we chose to model a magnetic actuator. We chose this                                       
type of actuator because we had already worked with electrostatic actuators and wanted to try a different energy domain. After                                       
modeling the magnetic actuator, we wanted to compare the differences from electro­mechanical to magneto­mechanical designs. 
We chose to model the system Ansoft Maxwell 2­D MEMS software package. This type of software is great for modeling                                       
electrostatic or magnetostatic components of MEMS type devices that are relatively simple. It provides an easy user interface,                                   
quick set­up and small learning curve. The downfalls are that it is relatively limited in the types of solvers that can be used.                                             
Only one type of domain can be analyzed at a time such as electrical, in the form of electrostatics, or magnetic, in the form of                                                 
magnetostatics. A more robust MEMS software could provide a multi­physics based solution using a magneto­mechanical                             
solver. This would allow for modeling the entire magnetic actuator system. However, these sophisticated software packages                               
have a much steeper learning curve and were not feasible in the time allowed. Two experiments were conducted using Maxwell.                                       
The first experiment was to look at the forces applied to the armature as it traversed the gap. The second experiment used two                                             
different assumed spring constants and looked at the current required to move the armature through the gap. Both experiments                                     
assumed the armature started at the same initial displacement and travelled the same total displacement. 
The main focus of this paper is to compare the experimental results of these modeled experiments in Ansoft Maxwell to                                       
the theoretical results derived in section 6.5 of the textbook ​Microsystem Design​[1].  
 
II. MODEL DEFINITION AND DESCRIPTION 
 
The magnetic behavior of the magnetic actuator was modeled in Ansoft Maxwell 2D. The model was designed as a flat                                       
structure in the x­y plane since the actuator isn’t axisymmetric. It was designed using a micrometer scale as this actuator was                                         
intended to be in a MEMS device. The model consists of the three necessary magnetic components of a magnetic actuator: the                                         
core, the coil, and the armature, see Figure 1. The core is the blue rectangular shape shown in Figure 1. The core is designed to                                                 
have a gap for the armature to pass freely through. The gap is designed to be slightly larger than the width of the armature. To be                                                   
a magnetic actuator the core must be able to support the formation of a magnetic field within itself. Therefore, the core must be                                             
use a material with a relatively large permeability.  For this design, iron was the chosen material. 
1
 
2 
Battershell, Minder, Wachtveitl 
 
Figure 1: Ansoft Maxwell Magnetic Actuator Model. 
The armature is the purple rectangular shape in Figure 1.  The armature was designed to have an arbitrary length but the width 
was defined by the size of the gap in the core.  The width of the armature needed to be slightly smaller than the gap in the core, 
see Figure 2 and Table 1 for width and gap dimensions.  Similar to the core, the armature must be a permeable material so again 
iron was chosen.  The coil consists of the red and green rectangles shown in Figure 1.  The red portion of the coil model is 
defined to carry current in one direction (positive current) while the green portion is defined to carry a current in the opposite 
direction (negative current).  The coil’s dimensions were arbitrarily chosen for this design but it represents only a single turn of 
wire around the core.  The coil needed to be a material with good electrical conductivity copper was a natural choice to use in 
this model.  Since this is intended to be a magnetic actuator, the position or displacement of the armature would change 
depending on the force applied by the magnetic actuator and the mechanical stiffness of the spring, the spring isn’t included in 
this model.  So when creating this model the armature was placed at an arbitrary position or displacement as shown in Figure 1. 
When using the model for simulations, the armature must manually be moved to different positions to represent different 
displacements; this process is illustrated in section IV. 
III. THEORETICAL SOLUTION 
To obtain the theoretical values for the system we took the equation from Senturia’s ​Microsystem Design​ 6.68[1] 
 
(1) 
This provides the force applied on the armature through the magnetomotive force.  For the system to be in equilibrium at a 
point, the force from the coil must be equal to the force applied by the spring.  If we assume that we are operating at a point 
where the system is at equilibrium, then the equation below describes the forces acting on the armature. 
 
    (2) 
 
This equation can be rewritten to solve for the current required to produce a displacement (x) for a given spring constant (k). 
Our simulation has a single turn coil (n=1).  Therefore,  .  The resulting equation defines a positive current as one whichFMM = I  
creates a force that pulls the armature in. 
 
3 
Battershell, Minder, Wachtveitl 
(3) 
The required current is based on the physical characteristics of the simulated system.  Figure 2 and Table 1 below describe the 
system as implemented. 
 
 
Figure 2: Actuator Model Physical Dimensions 
We defined full actuation as displacement of 8μm for our system based on our analysis of the range where the simulation and 
calculated results are similar.  Solving the equation yielded a necessary current of 24mA to fully actuate a system with a 100 N/m 
spring. 
The two values of k produce different responses with respect to current.  Solving for displacement produces the following 
equation. 
 
(4) 
 
 
Plotting this equation over a range of current values shows the difference in the response of the systems caused by the spring 
constant. The graph below shows displacement vs current for the two values of k.   
 
4 
Battershell, Minder, Wachtveitl 
 
Figure 3: Displacement for Two Spring Constants 
The lower value of k results in more movement in the armature for a given current.  This or an even lower spring constant 
would be advantageous in an application where power efficiency is the primary objective.   
The higher value of k requires more current to reach full actuation.  However, this has the benefit of allowing more precise 
control over the movement of the actuator.  Changing the current by 1mA in this case results in a much smaller movement in the 
actuator than the k=100 N/m case.  If the primary objective is to move the system to precise positions, a high spring constant 
would be preferred. 
This apparent tradeoff between accuracy and efficiency can be approached using the TIPS methods.  Abstracting the two 
factors when using the lower spring constant, the accuracy of measurement is improved (28) but the energy spent moving the 
object gets worse (19).  The suggested approaches are 3, 6, or 32.  TIPS principle #3 is the principle of local quality.  Applying 
this principle suggests that perhaps a device could be created that utilizes the best of both spring constants.  If the spring with the 
higher constant could be detached, it would allow the system to move more easily until it reached the range near the target 
position.  If then the spring could be reattached, it would give finer control over the actuator without requiring as much energy to 
move the system. 
 
IV. MODEL SIMULATION RESULTS 
The next step after computing theoretical results was to simulate the model.  Simulating the model required a current to be 
defined for the coil.  To begin simulations, a current of 1A was assigned to the red rectangle of the coil and a current of ­1A was 
assigned to the green rectangle of the coil.  The goal of this initial simulation was to examine the consistency of the force over 
the actuator’s range of motion.  To properly simulate the magnetic actuator, the armature must be located at some displacement. 
This means the direction of displacement and the location of zero displacement must be defined in the model.  For this design, 
the displacement is occurring along the x axis with increasing displacement being in the –x direction, see Figure 2.  The location 
of x = 0 was defined as the left edge of the armature being located 2µm from the opening of the gap in the core.  The armature 
was initially placed at a displacement of 5µm as shown in Figure 1.  When simulated with a current a 1A and a displacement of 
5µm, Maxwell computed the net force applied to the armature as 1.37194 N.  This computed force was very close to the 
theoretical force of 1.372 N calculated using the equations described in section III.   
The force applied by the magnetic actuator on the armature is supposed to be independent of displacement and therefore 
constant.  To see how constant the force was over armature displacement the simulation was performed 11 times at 
displacements from x = 0µm to x = 10µm, this means the armature was moved 1µm between each simulation.  Again, 1A of 
current was used.   
 
5 
Battershell, Minder, Wachtveitl 
 
Figure 4: Plot of Force vs. Displacement 
From the graph shown in Figure 4, it is clear the force computed with Maxwell isn’t constant across displacement of the 
armature.  However, once the left edge of the armature hits the right edge of the gap in the core (displacement of 2µm) the force 
dramatically increases and remains fairly constant over displacement until 9µm.  This result actually makes sense given the 
armature will change the magnetic flux density as it enters the gap and continues to proceed through the gap.  This is because the 
armature itself is a magnetically permeable material.  This effect of the armature is what actually causes the force from actuator 
to change slightly as the displacement of the armature changes.  Figure 5 through Figure 8 illustrate the armature’s effect on the 
magnetic flux density. 
To show how the magnetic flux density changes as the armature approaches the gap and moves through gap, the simulation 
was performed four times, each with a different armature displacement.  The results of these four simulations are shown in 
Figure 5 through Figure 8.  The current applied to the coil in each simulation was the current computed to achieve the desired 
displacement.  This current value was computed assuming there was a force applied by a spring with a stiffness of k = 100.  This 
is the force the actuator must overcome to move the armature into the gap. 
Figure 5 shows magnetic flux density with the armature displaced to 1µm and an applied current of 20.1mA. 
 
Figure 5: Magnitude of Magnetic Flux (with Vectors), k = 100, Armature Displaced 1µm 
Figure 6 shows magnetic flux density with the armature displaced to 4µm and an applied current of 17mA. 
 
6 
Battershell, Minder, Wachtveitl 
 
Figure 6: Magnitude of Magnetic Flux (with Vectors), k = 100, Armature Displaced 4µm 
Figure 7 shows magnetic flux density with the armature displaced to 8µm and an applied current of 24.7mA. 
 
 
 
 
Figure 7: Magnitude of Magnetic Flux (with Vectors), k = 100, Armature Displaced 8µm 
Figure 8 shows magnetic flux density with the armature displaced to 10µm and an applied current of 39.3mA. 
 
 
7 
Battershell, Minder, Wachtveitl 
Figure 8: Magnitude of Magnetic Flux (with Vectors), k = 100, Armature Displaced 10µm 
V. THEORETICAL VS SIMULATED RESULTS 
Our next objective was to analyze the simulated behavior of the system and compare it to the behavior modeled in the formula. 
Figure 9 below plots the calculated and simulated results overlaid.   
 
 
Figure 9: Simulated and Calculated Response 
In the middle of its displacement range, the simulation closely follows the predicted behavior.  As the system reaches the limits 
of its displacement, the simulation diverges from the model.  This aligns with our analysis of the displacement range where the 
force remaining basically constant for a given current.  The equations assume that the force is constant irrespective of position, 
so this correlation is expected. 
VI. CONCLUSION 
The theoretical values calculated did indeed matchup with the experimental results found in Maxwell. An interesting thing to                                   
be noted is the force on the armature as it traverses the gap of the core. In theory the magnetic force on the armature throughout                                                 
the gap should be constant, but in our experimental results we saw a slight variation in force as the armature traveled farther into                                             
the gap. We believe this to be because the armature itself is a magnetic material and as it reaches the gap it starts to have some                                                   
effect on the shape of the B­field in the system thus changing the magnetic force on the armature. One of our theories is that this                                                 
effect depends on the width of the core relative to the size of the gap. If the gap was made smaller relative to the core width, we                                                     
expect the force to be more constant over the range of actuation by limiting the fringing effects. We also found that the                                           
analytical model requires that the armature be inside but not completely through the gap in the core. Outside of these conditions,                                         
the mathematical model diverges from simulations. 
For future extensions of the project, the magnetic actuator could be modeled in a more complex MEMS software such as                                       
CoventorWare. The spring could be modeled by itself and any nonlinearities in the spring could be incorporated into the                                     
magnetic simulations. Alternatively, we could physically model the spring and actuator and run a magneto­mechanical solver.                               
We could then set the spring constants to 100 and 1000 and see if the Maxwell results agree.   
VII. REFERENCES 
[1] Senturia, S.D,2000, ​Microsystem Design​, Springer,New York, NY, 139­142 
 

More Related Content

PDF
IRJET - Modelling and Analysis of Permanent Magnet Synchronous Generator for ...
PDF
Zero point energy conversion for selfsustained generation
PDF
Hybrid approach to maximum peak power
PPTX
Analysis of Simple Maglev System using Simulink
PDF
Desmas(2014)-Preliminary Study on Magnetic Levitation Modeling Using PID Control
PDF
Iaetsd searl effect
PDF
Ijecet 06 09_003
PDF
Construction of MT for use in Single Molecule Experiments
IRJET - Modelling and Analysis of Permanent Magnet Synchronous Generator for ...
Zero point energy conversion for selfsustained generation
Hybrid approach to maximum peak power
Analysis of Simple Maglev System using Simulink
Desmas(2014)-Preliminary Study on Magnetic Levitation Modeling Using PID Control
Iaetsd searl effect
Ijecet 06 09_003
Construction of MT for use in Single Molecule Experiments

What's hot (18)

PDF
A Study of Shading Effect on Photovoltaic Modules with Proposed P&O Checking ...
PDF
IRJET- Maximum Power Point Tracking of PV System by Particle Swarm Optimi...
PDF
my paper published
PPT
Accelerometers 2015
PDF
Optimal extraction of photovoltaic energy using fuzzy logic control for maxim...
PPTX
Sigma Xi Slides
PDF
A Review Paper on Converting Wind Energy to Electrical Energy using Wind-Belt...
PDF
1 s2.0-s1364032115000970-main
PDF
Simulation and hardware implementation of change in
PDF
Power Estimation for Wearable Piezoelectric Energy Harvester
PDF
Qiu2004 curved-bistable
PDF
Modelling of fuzzy logic controller for variablestep
PDF
Production of Electrical Energy by Vertical Axis Maglev Windmill
PDF
Investigation of Anomalous Thrust from a Partially Loaded Resonant Cavity
PDF
Investigation of Anomalous Thrust and Proposal for Future Experimentation
PDF
IRJET- Simulation, Design and Implementation of Magnetic Field Gradient Coils...
PDF
Boechler nicholas[1]
PDF
Maximum power point tracking techniques a review
A Study of Shading Effect on Photovoltaic Modules with Proposed P&O Checking ...
IRJET- Maximum Power Point Tracking of PV System by Particle Swarm Optimi...
my paper published
Accelerometers 2015
Optimal extraction of photovoltaic energy using fuzzy logic control for maxim...
Sigma Xi Slides
A Review Paper on Converting Wind Energy to Electrical Energy using Wind-Belt...
1 s2.0-s1364032115000970-main
Simulation and hardware implementation of change in
Power Estimation for Wearable Piezoelectric Energy Harvester
Qiu2004 curved-bistable
Modelling of fuzzy logic controller for variablestep
Production of Electrical Energy by Vertical Axis Maglev Windmill
Investigation of Anomalous Thrust from a Partially Loaded Resonant Cavity
Investigation of Anomalous Thrust and Proposal for Future Experimentation
IRJET- Simulation, Design and Implementation of Magnetic Field Gradient Coils...
Boechler nicholas[1]
Maximum power point tracking techniques a review
Ad

Viewers also liked (9)

PDF
Grimaldo Salvage
PDF
Finding a Significant Other Can be Good for Your Teeth, Science Says
PDF
Digital_Logic_FinalProj
PDF
Grimaldo_et_al_2004
PDF
6 Tips to Create Killer Insurance Marketing Strategies for Your Website
PDF
PowerElectronics_FinalDesign
PDF
Electric_Drives_FinalProj
PDF
Delta Smelt Tagging
PDF
ETHIOPIAN STYLE DECORATIVE DESIGNS”: A NEW TECHNICAL GUIDE BOOK FOR ARTISAN
Grimaldo Salvage
Finding a Significant Other Can be Good for Your Teeth, Science Says
Digital_Logic_FinalProj
Grimaldo_et_al_2004
6 Tips to Create Killer Insurance Marketing Strategies for Your Website
PowerElectronics_FinalDesign
Electric_Drives_FinalProj
Delta Smelt Tagging
ETHIOPIAN STYLE DECORATIVE DESIGNS”: A NEW TECHNICAL GUIDE BOOK FOR ARTISAN
Ad

Similar to EE_503_FinalProject_Combined_finaler.docx (20)

PDF
Optial Magnetormetry, Malcolm Jardine - Summer Placement Report 2015
PDF
Sensors 17-01312
PDF
Research Issues in MEMS Resonators
PDF
Design, Electrostatic and Eigen Frequency Analysis of Fixed– Fixed Beam MEMS ...
PDF
Design, Electrostatic and Eigen Frequency Analysis of Fixed–Fixed Beam MEMS R...
PDF
Features measurement analysis of pull-in voltage for embedded MEMS
PDF
Micro-nanosystems for electrical metrology and precision instrumentation
PDF
D43052327
PDF
Ab wireless-power-transfer
ODP
An Introduction to Capacitive MEMS accelerometer
PDF
COUPLED FIELD ANALYSIS OF PIEZOELECTRIC CANTILEVER BEAM
PDF
On the Vibration Characteristicsof Electrostatically Actuated Micro\nanoReson...
DOCX
Mems pressure sensor project report
PPTX
Presentation of Kavya Ullal in ICMCC20151033-webinar
PDF
JMET10024-20130913-164650-8480-35113
PDF
Resonance frequency analysis of laser optical fiber based on microcantilever
PPTX
Mems accelerometer designing and fabrication
PDF
SENSITIVITY ANALYSIS OF NANO-NEWTON CMOS-MEMS CAPACITIVE FORCE SENSOR FOR BIO...
PDF
Annals 2011-3-71
Optial Magnetormetry, Malcolm Jardine - Summer Placement Report 2015
Sensors 17-01312
Research Issues in MEMS Resonators
Design, Electrostatic and Eigen Frequency Analysis of Fixed– Fixed Beam MEMS ...
Design, Electrostatic and Eigen Frequency Analysis of Fixed–Fixed Beam MEMS R...
Features measurement analysis of pull-in voltage for embedded MEMS
Micro-nanosystems for electrical metrology and precision instrumentation
D43052327
Ab wireless-power-transfer
An Introduction to Capacitive MEMS accelerometer
COUPLED FIELD ANALYSIS OF PIEZOELECTRIC CANTILEVER BEAM
On the Vibration Characteristicsof Electrostatically Actuated Micro\nanoReson...
Mems pressure sensor project report
Presentation of Kavya Ullal in ICMCC20151033-webinar
JMET10024-20130913-164650-8480-35113
Resonance frequency analysis of laser optical fiber based on microcantilever
Mems accelerometer designing and fabrication
SENSITIVITY ANALYSIS OF NANO-NEWTON CMOS-MEMS CAPACITIVE FORCE SENSOR FOR BIO...
Annals 2011-3-71

EE_503_FinalProject_Combined_finaler.docx