SlideShare a Scribd company logo
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –
6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 2, February (2014), pp. 01-07, © IAEME
1
EFFECT OF NANO SiO2 ON SOME MECHANICAL PROPERTIES OF
BIODEGRADABLE POLYLACTIC ACID
Nadia Abbas Ali1
, Ikram Atta AL-Ajaj1
, Farah Tariq Mohammed Noori1
1
Baghdad University, college science, physics Department
ABSTRACT
Effect of nano SiO2(13.69nm)with different weight percentage (1, 3, 5wt %)on some
mechanical properties of polylactic acid (PLA) is investigated .PLA film with thickness 100µm was
prepared by solution casting method .Chemical and crystal structure of PLA and its composites with
5% nano SiO2 are characterized by FTIR and X-ray diffraction techniques . Mechanical properties
(tensile strength and young modulus) of PLA and its composites are reported .Enhancement in above
mechanical properties are observed (35%for tensile strength and 25%for young modulus). The main
goal of this work is to study the influence of addition of different silica nanoparticles on the
mechanical properties of neat PLA in order to enhance its for brittleness to ductile stage.
Key Word: Biodegradable, Polylactic Acid, nano SiO2, Mechanical Properties.
1-INTRODUCTION
Natural polymers that are biodegradable and biocompatible has become increasingly
important. This is due to their amazing characteristics: natural abundance, low costs and wide range
of applications [1]. These polymers are being widely used in the biomedical area, including wound
dressing, drug delivery system and tissue engineering scaffolds . Polylactic acid (PLA) is prominent
among the polymers that are biodegradable and biocompatible due to versatility of its applications
and relatively low cost of production at industrial scale. PLA, is a linear aliphatic thermoplastic
polyester, produced from renewable resources, has several attractive properties such as
biocompatibility, high strength, and thermo plasticity. It has been used in medical applications, such
as surgical sutures, implants, tissue culture, and controlled drug delivery. Though PLA is
biodegradable and has been useful in various biomedical applications, the high stiffness and
brittleness at ambient temperatures associated with PLA must be improved to allow for more
applications [2,3]
INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING
AND TECHNOLOGY (IJMET)
ISSN 0976 – 6340 (Print)
ISSN 0976 – 6359 (Online)
Volume 5, Issue 2, February (2014), pp. 01-07
© IAEME: www.iaeme.com/ijmet.asp
Journal Impact Factor (2013): 5.7731 (Calculated by GISI)
www.jifactor.com
IJMET
© I A E M E
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976
6340(Print), ISSN 0976 – 6359(Online)
The applications of nanomaterial
food packaging technology. It also could provide an antimicrobial mechanism by introducing nano
bulletin active packaging. The most popular purpose of this nano
reinforcement in composite polymer in fact, many studies on nano
Nano-reinforcement that's been studied
2- EXPERIMENTAL WORK
1. Materials
Polylactic acid (PLA) (ESUN™ A
Industrial Company. Ltd (Shenzhen, China .
particle size (13.69 nm)is shown in Fig(1)
Fig(1) Granuality normal distribution chart for nano SiO
2. Preparation of PLA film and PLA
Neat PLA film is prepared by weight 2gm of PLA in 20 ml of chloroform
composites with different weight percentage
casting method in chloroform. Silica was added in chloroform and stirr
min. Nanoparticles were dispersed in the solvent using ultrasonic bath. Then PLA was added to
solvent/silica mixture and stirred with magnetic bar for 4 h hours at 40°C. After dissolving in
chloroform, PLA/silica nanocomposites were poured into glass Petri dishes (10 cm diameter) and
vacuum dried for 2h and, additionally, 24 hours for total evaporation of solvent at room
The films were peeled off with thickness
3. (FT-IR) TEST
FT-IR was performed using a Perkin Elmer 1600 Infrared spectrometer. FT
samples were recorded by using Nicolet’s AVATAR 360 at 32 scans with a resolution of 4 cm
within the wave number range of 4000 to
4. X-ray Diffraction TEST
X-ray Diffraction patterns were measured in
using target Cu Kα ( λ= 1.54A° ) with secondary monochromator (Karlsruhe, Germany)
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976
6359(Online), Volume 5, Issue 2, February (2014), pp. 01-
2
of nanomaterial are broad; some of them were used as nano
food packaging technology. It also could provide an antimicrobial mechanism by introducing nano
bulletin active packaging. The most popular purpose of this nano material is widely used as nano
mposite polymer in fact, many studies on nano reinforcement were reported.
reinforcement that's been studied is such as clay and silicates [4].
Polylactic acid (PLA) (ESUN™ A-1001) [density = 1.25 g/cm3
was supplied by Bright China
Industrial Company. Ltd (Shenzhen, China .NanoSiO2 supplied by Sima-aldrch
s shown in Fig(1)measured by (SPM) of nano SiO2 .
Granuality normal distribution chart for nano SiO2 particl
film and PLA/ nano SiO2 composites film.
prepared by weight 2gm of PLA in 20 ml of chloroform
percentage of nanosilica (1,3,5wt %) were prepared by solution
casting method in chloroform. Silica was added in chloroform and stirring in ultrasonic bath for 10
min. Nanoparticles were dispersed in the solvent using ultrasonic bath. Then PLA was added to
ed with magnetic bar for 4 h hours at 40°C. After dissolving in
chloroform, PLA/silica nanocomposites were poured into glass Petri dishes (10 cm diameter) and
vacuum dried for 2h and, additionally, 24 hours for total evaporation of solvent at room
thickness around 100µm.
IR was performed using a Perkin Elmer 1600 Infrared spectrometer. FT-IR spectra of the
samples were recorded by using Nicolet’s AVATAR 360 at 32 scans with a resolution of 4 cm
within the wave number range of 4000 to 400 cm-1.
patterns were measured in a Brüker Advance instrument, at 40 KV, 40 mA
with secondary monochromator (Karlsruhe, Germany)
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –
-07, © IAEME
of them were used as nano-sensor in smart
food packaging technology. It also could provide an antimicrobial mechanism by introducing nano-
material is widely used as nano
reinforcement were reported.
supplied by Bright China
aldrch Company with
particles
prepared by weight 2gm of PLA in 20 ml of chloroform, PLA films
%) were prepared by solution
in ultrasonic bath for 10
min. Nanoparticles were dispersed in the solvent using ultrasonic bath. Then PLA was added to
ed with magnetic bar for 4 h hours at 40°C. After dissolving in
chloroform, PLA/silica nanocomposites were poured into glass Petri dishes (10 cm diameter) and
vacuum dried for 2h and, additionally, 24 hours for total evaporation of solvent at room temperature.
IR spectra of the
samples were recorded by using Nicolet’s AVATAR 360 at 32 scans with a resolution of 4 cm-1 and
a Brüker Advance instrument, at 40 KV, 40 mA
with secondary monochromator (Karlsruhe, Germany).
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976
6340(Print), ISSN 0976 – 6359(Online)
5. Tensile Properties
Mechanical test was performed
strength at the point of breakage for each sample. Tensile
at room temperature, according to the ASTM D
composites(1,3,5wt% ) respectively
and the results were taken as an average of five tests
both ends of the test specimen of the film.
determined according to the following equation
Where: F: force exerted on an object under tension,
L: length of the object changes
Fig(2) : samples of
3. RESULTS AND DISCUSSION
1. (FT-IR) characterization
FT-IR is a well-known and widely used method to investigate the intermolecular
and phase behavior between the polymers. In this study, the interaction between PLA
investigated by FT-IR spectroscopy and is shown in Figure
in (Fig 3(a)) clearly show the characteristic absorpt
2946- 2999 cm-1 and 1757cm-1due to O
stretching vibration and C=O stretching vibration
FTIR of PLA film reported by Cardoso, J. J. F.
bonds of PLA and SiO2 appear that mean good distribution of nano SiO2
that bond appear and no different in pure PLA
a
a
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976
6359(Online), Volume 5, Issue 2, February (2014), pp. 01-
3
performed using the Instron 4400 Universal Tester to measure the tensile
strength at the point of breakage for each sample. Tensile specimens cut were used
at room temperature, according to the ASTM D-882 as shown in Fig 2a pure PLA , b, c, and d
. A fixed crosshead rate of 10 mm/min was utilized in all cases
and the results were taken as an average of five tests. Two metallic grips were attached for griping
both ends of the test specimen of the film. Tensile strength (σs), Young’s modulus
according to the following equation:
σs =F /(A)……… 1
E =F L0/A L…………2
: force exerted on an object under tension, L0: original length, A: cross section area,
samples of PLA and its composites (1,3,5%) nano SiO2
3. RESULTS AND DISCUSSION
known and widely used method to investigate the intermolecular
and phase behavior between the polymers. In this study, the interaction between PLA
IR spectroscopy and is shown in Figure( 3) . FTIR spectrum of neat PLA
the characteristic absorption bands in the region of 3500
1due to O-H bending and stretching vibration, C
stretching vibration and C=O stretching vibration respectively, which agree well with the prepared
Cardoso, J. J. F.et. al., [5]. Fig3b is appear of PLA/5%SiO
appear that mean good distribution of nano SiO2 in composites film
that bond appear and no different in pure PLA .
b c d
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –
-07, © IAEME
using the Instron 4400 Universal Tester to measure the tensile
used were carried out
a pure PLA , b, c, and d its
. A fixed crosshead rate of 10 mm/min was utilized in all cases
Two metallic grips were attached for griping
Young’s modulus (E) was
cross section area,
known and widely used method to investigate the intermolecular interaction
and phase behavior between the polymers. In this study, the interaction between PLA/SiO2 was
. FTIR spectrum of neat PLA shown
in the region of 3500- 3600 cm-1,
H bending and stretching vibration, C-H asymmetric
respectively, which agree well with the prepared
of PLA/5%SiO2 which
in composites film because
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –
6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 2, February (2014), pp. 01-07, © IAEME
4
a
b
Fig(3):FTIR of a :PLA pure, b : PLA /5%SiO2
2.X-ray Diffraction
X-ray diffrction pattern of polylactic acid shows two peaks located at 2θ= 16°.5 and 19°
with sharp peak for first peak indicating high crystalline structure which agree well with results
reported by Batteazzone et.al [6] as reported of PLA finds that pattern of PLA is characterized by a
broad band with maximum at 2θ = 16.6º, 19.1° . The XRD pattern of composites (PLA/5%SiO2 )
exhibits broad diffraction peak at 2θ = 22ºdue to addition nano SiO2 for silica which agree well with
results reported by A.N. Mohammed et al and find this peak centered at a 2θ = 23◦[7].
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976
6340(Print), ISSN 0976 – 6359(Online)
Fig(4):X-RAY diffraction patterns of
3-Mechanical peoperties
Tensile test provides an indication of the
modulus in eq.2 of the films and find both tensile strength and young modulus increased when add
nano SiO2 which appear in Fig (5) .
biomedical applications. High brittleness
for more applications [8].
Table 1 shows the values of tensile strength of
films using nanosilica enhanced about 35%
properties of prepared nanocomposites were improved by addition of 5 wt.% of silica comparison to
neat PLA matrix, this result agree with ref.[8]
dispersion,the mechanical properties of PLA
and modulus of the composites were enhanced by incorporation of nanoparticles. The silica
nanoparticles were uniformly distributed in the PLA matrix for filler content
whereas some aggregates were detected with further increasing filler
properties of the nano-composites improved because of their degree of dispersion and polymer filler
interaction.
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976
6359(Online), Volume 5, Issue 2, February (2014), pp. 01-
5
a
b
diffraction patterns of a :PLA pure, b :PLA /5%SiO
provides an indication of the tensile strength calculated in eq.1
and find both tensile strength and young modulus increased when add
which appear in Fig (5) .PLA is a biodegradable polymer that has been useful in various
High brittleness that are characteristic of PLA must be improved to allow
Table 1 shows the values of tensile strength of pure PLA film prepared and
enhanced about 35% and young modulus enhanced about 25%
properties of prepared nanocomposites were improved by addition of 5 wt.% of silica comparison to
agree with ref.[8] is probably due to achievement of good
the mechanical properties of PLA-silica by melt blending found that the tensile strength
and modulus of the composites were enhanced by incorporation of nanoparticles. The silica
nanoparticles were uniformly distributed in the PLA matrix for filler contents below 5 %·w/w,
whereas some aggregates were detected with further increasing filler concentration .The
composites improved because of their degree of dispersion and polymer filler
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –
-07, © IAEME
2θ
2θ
SiO2
calculated in eq.1 and young
and find both tensile strength and young modulus increased when add
that has been useful in various
that are characteristic of PLA must be improved to allow
prepared and its composites
and young modulus enhanced about 25% . Mechanical
properties of prepared nanocomposites were improved by addition of 5 wt.% of silica comparison to
ue to achievement of good
silica by melt blending found that the tensile strength
and modulus of the composites were enhanced by incorporation of nanoparticles. The silica
s below 5 %·w/w,
concentration .The mechanical
composites improved because of their degree of dispersion and polymer filler
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –
6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 2, February (2014), pp. 01-07, © IAEME
6
Fig(5):Stress-Strain of PLA and its composites PLA/5%SiO2
Table (1) Mechanical properties of PLA and its composites films
CONCLUSIONS
1- PLAfilm was successfully prepared by casting method.
2- Maximum enhancement in 35%of tensile strength and 25% in young modulus of PLA as
observed by adding 5%nano SiO2, due to their good dispersion in PLA matrix. Obtained results
could be further used for future research in the field of PLA/silica nanocomposites, as
important materials due to their good and satisfying mechanical properties for food packaging
application.
REFERENCE
1- P. Qu, Y. Goa, G. F. Wu, and L. P. Zhang, (2010) “Nanocomposite of poly(lactid acid)
reinforced with cellulose nanofibrils”, J .BioResources , vol. 5(3), 1811-1823.
2- B.K. Chen, T.Y. Wu, Y.M. Chang , A. F. Chen ,(2013)” Ductile polylactic acid prepared
with ionic liquids” ,J.Chemical Engineering ,vol. 5 , 215–216.
3- B.H. Li, M.C. Yang,(2006)” Improvement of thermal and mechanical properties of
poly(L-lactic acid) with 4,4-methylene diphenyl diisocyanate”, J. Polym. Adv. Technol.
Vol.17, 439-443.
4- H.S. Mohd , S. Eraricar , I.M. Ida , N.H. Siti ,(2012) “ Cellouse nanofiber isolation and
its fabracication into bio-polymer review “ International Conference on Agricultural and
Food Engineering for Life (Cafei2012) 26-28.
Sample Tensile
strength(MPa)
Young modulus
(GPa)
PLA 29 2.3
PLA/1%SiO2 32 2.5
PLA/3%SiO2 36 2.9
PLA/5%SiO2 43 3.1
0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
0.0 2.0 4.0 6.0 8.0 10.0
StressMPa
Strain %
PLA/nano5%SiO2
PLA/nano3%SiO2
PLA/nano1%SiO2
PLA
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –
6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 2, February (2014), pp. 01-07, © IAEME
7
5- J.J.F. Cardoso, Y..C. Queirós, K.J.A. Machado, J.M. Costa, F.E. ucas, (2013)”
SYNTHESIS, CHARACTERIZATION, AND IN VITRO DEGRADATION OF
POLY(LACTIC ACID) UNDER PETROLEUM PRODUCTION CONDITIONS”
BRAZILIAN JOURNAL OF PETROLEUM AND GAS v. 7 n. 2 , 057-069
6- D. Battegazzore, S. Bocchini, A. Frache,(2011)” Crystallization kinetics of poly(lactic
acid)-talc composites” eXPRESS Polymer Letters Vol.5(10),849-85 8.
7- A.N. MOHAMMAD, S. MOHSEN, (2013) “Multi-component reaction on free nano-SiO2
catalyst: Excellent reactivity combined with facile catalyst recovery and recyclability” J.
Chem. Sci. Vol. 125(3) , 537-544.
8- R.M. Izan , A.S. Robert , K. Ing ,(2011) ” Melting Behaviour and Dynamic Mechanical
Properties of Poly(lactic acid)-Hemp-Nanosilica Composites”, Asian Transactions on
Basic and Applied Sciences) ,Vol.3 Issue 2 ,556-561.
9- G .Sanches, R.A.Lopez , J. M. Lagaron ,(2010) “Natural micro and nanobiocomposites
with enchaced and novel functionalities for food biopackaging applications”, J.Trends in
Food Science & Technology,vol. 21, 528-536 .
10- S.Shankar, Dr.H.K.Shivanand and Santhosh Kumar.S, “Experimental Evaluation of
Flexural Properties of Polymer Matrix Composites”, International Journal of Mechanical
Engineering & Technology (IJMET), Volume 3, Issue 3, 2012, pp. 504 - 510, ISSN Print:
0976 – 6340, ISSN Online: 0976 – 6359.
11- Siddhant Datta, B.M. Nagabhushana and R. Harikrishna, “A New Nano-Ceria Reinforced
Epoxy Polymer Composite with Improved Mechanical Properties”, International Journal
of Advanced Research in Engineering & Technology (IJARET), Volume 3, Issue 2, 2012,
pp. 248 - 256, ISSN Print: 0976-6480, ISSN Online: 0976-6499.

More Related Content

PDF
30120140502001
PDF
30120140502001
PDF
The effect of ZnO Nanoparticles filler on the Attenuation of ZNO/PCL Nanocomp...
PDF
Synthesis and Structural Characterization of Cu Substituted Ni-Zn Nano-Ferrit...
PDF
Free Vibration Analysis of Polyproplyne- Nanoclay Composite Beam with Crack
PDF
Experimental Study of Electrospun TiO2 Nanofibers
PDF
Preliminary study of poly (tetrahydrofurturyl acrylate) thin film as a potent...
PDF
Natural ageing of stabilized and unustabilized ldpe films used as greenhouses...
30120140502001
30120140502001
The effect of ZnO Nanoparticles filler on the Attenuation of ZNO/PCL Nanocomp...
Synthesis and Structural Characterization of Cu Substituted Ni-Zn Nano-Ferrit...
Free Vibration Analysis of Polyproplyne- Nanoclay Composite Beam with Crack
Experimental Study of Electrospun TiO2 Nanofibers
Preliminary study of poly (tetrahydrofurturyl acrylate) thin film as a potent...
Natural ageing of stabilized and unustabilized ldpe films used as greenhouses...

What's hot (20)

PDF
PDF
IRJET- Mechanical Analysis of Nano MMT Clay based Polymer Composites
PDF
Outline Thesis
PDF
Atomization of reduced graphene oxide ultra thin film for transparent electro...
PDF
Analysis of polymers_atr_ftir_an
PDF
Poster bayat tork mina
PDF
Synthesis and Characterization of ZnO and Ammonium Doped ZnO Nanoparticles by...
PDF
Paper id 21201475
PDF
Nanocrystalline graphite humidity sensors for wearable breath monitoring appl...
PPTX
X Ray Diffraction
PDF
IRJET- Mechanical Characterization of Zinc Coated Mild Steel Plate using L27 ...
PDF
Ultrasonic Studies on Molecular Interaction in Ternary Liquid Mixtures of N-N...
PPT
Development of tribological PVD coatings
PDF
IRJET- Plant Latex Mediated Solution Combustion Synthesis of Mg1-XZNXAl2O4 Na...
PDF
ICALEO-2009-Habib Abou Saleh-ET
PDF
Michael Ward poster final
PDF
The new leaed (ii) ion selective electrode on free plasticizer film of pthfa ...
PDF
Porosity and the Magnetic Properties of Aluminium Doped Nickel Ferrite
PDF
Electrical response of a columnar liquid crystal applied in a diode structure.
PDF
PREPARATION AND EVALUATION OF WOOL KERATIN BASED CHITOSAN NANOFIBERS FOR AIR ...
IRJET- Mechanical Analysis of Nano MMT Clay based Polymer Composites
Outline Thesis
Atomization of reduced graphene oxide ultra thin film for transparent electro...
Analysis of polymers_atr_ftir_an
Poster bayat tork mina
Synthesis and Characterization of ZnO and Ammonium Doped ZnO Nanoparticles by...
Paper id 21201475
Nanocrystalline graphite humidity sensors for wearable breath monitoring appl...
X Ray Diffraction
IRJET- Mechanical Characterization of Zinc Coated Mild Steel Plate using L27 ...
Ultrasonic Studies on Molecular Interaction in Ternary Liquid Mixtures of N-N...
Development of tribological PVD coatings
IRJET- Plant Latex Mediated Solution Combustion Synthesis of Mg1-XZNXAl2O4 Na...
ICALEO-2009-Habib Abou Saleh-ET
Michael Ward poster final
The new leaed (ii) ion selective electrode on free plasticizer film of pthfa ...
Porosity and the Magnetic Properties of Aluminium Doped Nickel Ferrite
Electrical response of a columnar liquid crystal applied in a diode structure.
PREPARATION AND EVALUATION OF WOOL KERATIN BASED CHITOSAN NANOFIBERS FOR AIR ...
Ad

Similar to EFFECT OF NANO SiO2 ON SOME MECHANICAL PROPERTIES OF BIODEGRADABLE POLYLACTIC ACID (20)

PDF
Ultrasonic testing of glass fiber reinforced polypropylene composites
PDF
Theoretical and experimental spectroscopic analysis by FTIR in the effect of ...
PDF
Theoretical and experimental spectroscopic analysis by FTIR in the effect of ...
PDF
Gamma radiation induced transformational change in ir spectrum of ebha nemati...
PDF
GAMMA RADIATION-INDUCED TRANSFORMATIONAL CHANGE IN IR SPECTRUM OF EBHA NEMATI...
PDF
Fabrication of New Nanocomposites (PMMA-SPO-PS-TiC) and Studying Their Struct...
PDF
Synthesis, Characterization and Electrical Conductivity Study of Conductive P...
PDF
Fracture Toughness Characterization
PDF
Pushkar N Patil
PDF
Influence of Thickness on Electrical and Structural Properties of Zinc Oxide ...
PDF
Ijaret 06 07_005
PDF
ANALYSIS OF MICROSTRUCTURE OF FUMED SILICA REINFORCED POLYESTER COMPOSITES
PDF
EFFECT OF ULTRAVIOLET RADIATION ON STRUCTURAL PROPERTIES OF NANOWIRES
PDF
International Refereed Journal of Engineering and Science (IRJES)
PDF
F071113745 (1)
PDF
Depth profiling and morphological characterization of AlN thin films deposite...
PDF
Electrospn 21 macagnano-full
PDF
4th paper
PDF
Effect of Synthesis Conditions on Yttrium Iron Garnet (YIG) Nanocrystalline P...
PDF
Transparent and Conducting TiO2 : Nb Thin Films Prepared by Spray Pyrolysis T...
Ultrasonic testing of glass fiber reinforced polypropylene composites
Theoretical and experimental spectroscopic analysis by FTIR in the effect of ...
Theoretical and experimental spectroscopic analysis by FTIR in the effect of ...
Gamma radiation induced transformational change in ir spectrum of ebha nemati...
GAMMA RADIATION-INDUCED TRANSFORMATIONAL CHANGE IN IR SPECTRUM OF EBHA NEMATI...
Fabrication of New Nanocomposites (PMMA-SPO-PS-TiC) and Studying Their Struct...
Synthesis, Characterization and Electrical Conductivity Study of Conductive P...
Fracture Toughness Characterization
Pushkar N Patil
Influence of Thickness on Electrical and Structural Properties of Zinc Oxide ...
Ijaret 06 07_005
ANALYSIS OF MICROSTRUCTURE OF FUMED SILICA REINFORCED POLYESTER COMPOSITES
EFFECT OF ULTRAVIOLET RADIATION ON STRUCTURAL PROPERTIES OF NANOWIRES
International Refereed Journal of Engineering and Science (IRJES)
F071113745 (1)
Depth profiling and morphological characterization of AlN thin films deposite...
Electrospn 21 macagnano-full
4th paper
Effect of Synthesis Conditions on Yttrium Iron Garnet (YIG) Nanocrystalline P...
Transparent and Conducting TiO2 : Nb Thin Films Prepared by Spray Pyrolysis T...
Ad

More from IAEME Publication (20)

PDF
IAEME_Publication_Call_for_Paper_September_2022.pdf
PDF
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
PDF
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
PDF
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
PDF
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
PDF
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
PDF
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
PDF
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
PDF
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
PDF
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
PDF
GANDHI ON NON-VIOLENT POLICE
PDF
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
PDF
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
PDF
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
PDF
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
PDF
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
PDF
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
PDF
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
PDF
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
PDF
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
IAEME_Publication_Call_for_Paper_September_2022.pdf
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
GANDHI ON NON-VIOLENT POLICE
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT

Recently uploaded (20)

PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPTX
Geodesy 1.pptx...............................................
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
Lecture Notes Electrical Wiring System Components
PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
PPTX
UNIT 4 Total Quality Management .pptx
PPT
introduction to datamining and warehousing
PPTX
Current and future trends in Computer Vision.pptx
PPTX
web development for engineering and engineering
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PDF
composite construction of structures.pdf
PPTX
Sustainable Sites - Green Building Construction
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
Geodesy 1.pptx...............................................
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Lecture Notes Electrical Wiring System Components
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
UNIT 4 Total Quality Management .pptx
introduction to datamining and warehousing
Current and future trends in Computer Vision.pptx
web development for engineering and engineering
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Foundation to blockchain - A guide to Blockchain Tech
composite construction of structures.pdf
Sustainable Sites - Green Building Construction
CYBER-CRIMES AND SECURITY A guide to understanding
R24 SURVEYING LAB MANUAL for civil enggi
Model Code of Practice - Construction Work - 21102022 .pdf

EFFECT OF NANO SiO2 ON SOME MECHANICAL PROPERTIES OF BIODEGRADABLE POLYLACTIC ACID

  • 1. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 2, February (2014), pp. 01-07, © IAEME 1 EFFECT OF NANO SiO2 ON SOME MECHANICAL PROPERTIES OF BIODEGRADABLE POLYLACTIC ACID Nadia Abbas Ali1 , Ikram Atta AL-Ajaj1 , Farah Tariq Mohammed Noori1 1 Baghdad University, college science, physics Department ABSTRACT Effect of nano SiO2(13.69nm)with different weight percentage (1, 3, 5wt %)on some mechanical properties of polylactic acid (PLA) is investigated .PLA film with thickness 100µm was prepared by solution casting method .Chemical and crystal structure of PLA and its composites with 5% nano SiO2 are characterized by FTIR and X-ray diffraction techniques . Mechanical properties (tensile strength and young modulus) of PLA and its composites are reported .Enhancement in above mechanical properties are observed (35%for tensile strength and 25%for young modulus). The main goal of this work is to study the influence of addition of different silica nanoparticles on the mechanical properties of neat PLA in order to enhance its for brittleness to ductile stage. Key Word: Biodegradable, Polylactic Acid, nano SiO2, Mechanical Properties. 1-INTRODUCTION Natural polymers that are biodegradable and biocompatible has become increasingly important. This is due to their amazing characteristics: natural abundance, low costs and wide range of applications [1]. These polymers are being widely used in the biomedical area, including wound dressing, drug delivery system and tissue engineering scaffolds . Polylactic acid (PLA) is prominent among the polymers that are biodegradable and biocompatible due to versatility of its applications and relatively low cost of production at industrial scale. PLA, is a linear aliphatic thermoplastic polyester, produced from renewable resources, has several attractive properties such as biocompatibility, high strength, and thermo plasticity. It has been used in medical applications, such as surgical sutures, implants, tissue culture, and controlled drug delivery. Though PLA is biodegradable and has been useful in various biomedical applications, the high stiffness and brittleness at ambient temperatures associated with PLA must be improved to allow for more applications [2,3] INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) ISSN 0976 – 6340 (Print) ISSN 0976 – 6359 (Online) Volume 5, Issue 2, February (2014), pp. 01-07 © IAEME: www.iaeme.com/ijmet.asp Journal Impact Factor (2013): 5.7731 (Calculated by GISI) www.jifactor.com IJMET © I A E M E
  • 2. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 – 6359(Online) The applications of nanomaterial food packaging technology. It also could provide an antimicrobial mechanism by introducing nano bulletin active packaging. The most popular purpose of this nano reinforcement in composite polymer in fact, many studies on nano Nano-reinforcement that's been studied 2- EXPERIMENTAL WORK 1. Materials Polylactic acid (PLA) (ESUN™ A Industrial Company. Ltd (Shenzhen, China . particle size (13.69 nm)is shown in Fig(1) Fig(1) Granuality normal distribution chart for nano SiO 2. Preparation of PLA film and PLA Neat PLA film is prepared by weight 2gm of PLA in 20 ml of chloroform composites with different weight percentage casting method in chloroform. Silica was added in chloroform and stirr min. Nanoparticles were dispersed in the solvent using ultrasonic bath. Then PLA was added to solvent/silica mixture and stirred with magnetic bar for 4 h hours at 40°C. After dissolving in chloroform, PLA/silica nanocomposites were poured into glass Petri dishes (10 cm diameter) and vacuum dried for 2h and, additionally, 24 hours for total evaporation of solvent at room The films were peeled off with thickness 3. (FT-IR) TEST FT-IR was performed using a Perkin Elmer 1600 Infrared spectrometer. FT samples were recorded by using Nicolet’s AVATAR 360 at 32 scans with a resolution of 4 cm within the wave number range of 4000 to 4. X-ray Diffraction TEST X-ray Diffraction patterns were measured in using target Cu Kα ( λ= 1.54A° ) with secondary monochromator (Karlsruhe, Germany) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6359(Online), Volume 5, Issue 2, February (2014), pp. 01- 2 of nanomaterial are broad; some of them were used as nano food packaging technology. It also could provide an antimicrobial mechanism by introducing nano bulletin active packaging. The most popular purpose of this nano material is widely used as nano mposite polymer in fact, many studies on nano reinforcement were reported. reinforcement that's been studied is such as clay and silicates [4]. Polylactic acid (PLA) (ESUN™ A-1001) [density = 1.25 g/cm3 was supplied by Bright China Industrial Company. Ltd (Shenzhen, China .NanoSiO2 supplied by Sima-aldrch s shown in Fig(1)measured by (SPM) of nano SiO2 . Granuality normal distribution chart for nano SiO2 particl film and PLA/ nano SiO2 composites film. prepared by weight 2gm of PLA in 20 ml of chloroform percentage of nanosilica (1,3,5wt %) were prepared by solution casting method in chloroform. Silica was added in chloroform and stirring in ultrasonic bath for 10 min. Nanoparticles were dispersed in the solvent using ultrasonic bath. Then PLA was added to ed with magnetic bar for 4 h hours at 40°C. After dissolving in chloroform, PLA/silica nanocomposites were poured into glass Petri dishes (10 cm diameter) and vacuum dried for 2h and, additionally, 24 hours for total evaporation of solvent at room thickness around 100µm. IR was performed using a Perkin Elmer 1600 Infrared spectrometer. FT-IR spectra of the samples were recorded by using Nicolet’s AVATAR 360 at 32 scans with a resolution of 4 cm within the wave number range of 4000 to 400 cm-1. patterns were measured in a Brüker Advance instrument, at 40 KV, 40 mA with secondary monochromator (Karlsruhe, Germany) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – -07, © IAEME of them were used as nano-sensor in smart food packaging technology. It also could provide an antimicrobial mechanism by introducing nano- material is widely used as nano reinforcement were reported. supplied by Bright China aldrch Company with particles prepared by weight 2gm of PLA in 20 ml of chloroform, PLA films %) were prepared by solution in ultrasonic bath for 10 min. Nanoparticles were dispersed in the solvent using ultrasonic bath. Then PLA was added to ed with magnetic bar for 4 h hours at 40°C. After dissolving in chloroform, PLA/silica nanocomposites were poured into glass Petri dishes (10 cm diameter) and vacuum dried for 2h and, additionally, 24 hours for total evaporation of solvent at room temperature. IR spectra of the samples were recorded by using Nicolet’s AVATAR 360 at 32 scans with a resolution of 4 cm-1 and a Brüker Advance instrument, at 40 KV, 40 mA with secondary monochromator (Karlsruhe, Germany).
  • 3. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 – 6359(Online) 5. Tensile Properties Mechanical test was performed strength at the point of breakage for each sample. Tensile at room temperature, according to the ASTM D composites(1,3,5wt% ) respectively and the results were taken as an average of five tests both ends of the test specimen of the film. determined according to the following equation Where: F: force exerted on an object under tension, L: length of the object changes Fig(2) : samples of 3. RESULTS AND DISCUSSION 1. (FT-IR) characterization FT-IR is a well-known and widely used method to investigate the intermolecular and phase behavior between the polymers. In this study, the interaction between PLA investigated by FT-IR spectroscopy and is shown in Figure in (Fig 3(a)) clearly show the characteristic absorpt 2946- 2999 cm-1 and 1757cm-1due to O stretching vibration and C=O stretching vibration FTIR of PLA film reported by Cardoso, J. J. F. bonds of PLA and SiO2 appear that mean good distribution of nano SiO2 that bond appear and no different in pure PLA a a International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6359(Online), Volume 5, Issue 2, February (2014), pp. 01- 3 performed using the Instron 4400 Universal Tester to measure the tensile strength at the point of breakage for each sample. Tensile specimens cut were used at room temperature, according to the ASTM D-882 as shown in Fig 2a pure PLA , b, c, and d . A fixed crosshead rate of 10 mm/min was utilized in all cases and the results were taken as an average of five tests. Two metallic grips were attached for griping both ends of the test specimen of the film. Tensile strength (σs), Young’s modulus according to the following equation: σs =F /(A)……… 1 E =F L0/A L…………2 : force exerted on an object under tension, L0: original length, A: cross section area, samples of PLA and its composites (1,3,5%) nano SiO2 3. RESULTS AND DISCUSSION known and widely used method to investigate the intermolecular and phase behavior between the polymers. In this study, the interaction between PLA IR spectroscopy and is shown in Figure( 3) . FTIR spectrum of neat PLA the characteristic absorption bands in the region of 3500 1due to O-H bending and stretching vibration, C stretching vibration and C=O stretching vibration respectively, which agree well with the prepared Cardoso, J. J. F.et. al., [5]. Fig3b is appear of PLA/5%SiO appear that mean good distribution of nano SiO2 in composites film that bond appear and no different in pure PLA . b c d International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – -07, © IAEME using the Instron 4400 Universal Tester to measure the tensile used were carried out a pure PLA , b, c, and d its . A fixed crosshead rate of 10 mm/min was utilized in all cases Two metallic grips were attached for griping Young’s modulus (E) was cross section area, known and widely used method to investigate the intermolecular interaction and phase behavior between the polymers. In this study, the interaction between PLA/SiO2 was . FTIR spectrum of neat PLA shown in the region of 3500- 3600 cm-1, H bending and stretching vibration, C-H asymmetric respectively, which agree well with the prepared of PLA/5%SiO2 which in composites film because
  • 4. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 2, February (2014), pp. 01-07, © IAEME 4 a b Fig(3):FTIR of a :PLA pure, b : PLA /5%SiO2 2.X-ray Diffraction X-ray diffrction pattern of polylactic acid shows two peaks located at 2θ= 16°.5 and 19° with sharp peak for first peak indicating high crystalline structure which agree well with results reported by Batteazzone et.al [6] as reported of PLA finds that pattern of PLA is characterized by a broad band with maximum at 2θ = 16.6º, 19.1° . The XRD pattern of composites (PLA/5%SiO2 ) exhibits broad diffraction peak at 2θ = 22ºdue to addition nano SiO2 for silica which agree well with results reported by A.N. Mohammed et al and find this peak centered at a 2θ = 23◦[7].
  • 5. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 – 6359(Online) Fig(4):X-RAY diffraction patterns of 3-Mechanical peoperties Tensile test provides an indication of the modulus in eq.2 of the films and find both tensile strength and young modulus increased when add nano SiO2 which appear in Fig (5) . biomedical applications. High brittleness for more applications [8]. Table 1 shows the values of tensile strength of films using nanosilica enhanced about 35% properties of prepared nanocomposites were improved by addition of 5 wt.% of silica comparison to neat PLA matrix, this result agree with ref.[8] dispersion,the mechanical properties of PLA and modulus of the composites were enhanced by incorporation of nanoparticles. The silica nanoparticles were uniformly distributed in the PLA matrix for filler content whereas some aggregates were detected with further increasing filler properties of the nano-composites improved because of their degree of dispersion and polymer filler interaction. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6359(Online), Volume 5, Issue 2, February (2014), pp. 01- 5 a b diffraction patterns of a :PLA pure, b :PLA /5%SiO provides an indication of the tensile strength calculated in eq.1 and find both tensile strength and young modulus increased when add which appear in Fig (5) .PLA is a biodegradable polymer that has been useful in various High brittleness that are characteristic of PLA must be improved to allow Table 1 shows the values of tensile strength of pure PLA film prepared and enhanced about 35% and young modulus enhanced about 25% properties of prepared nanocomposites were improved by addition of 5 wt.% of silica comparison to agree with ref.[8] is probably due to achievement of good the mechanical properties of PLA-silica by melt blending found that the tensile strength and modulus of the composites were enhanced by incorporation of nanoparticles. The silica nanoparticles were uniformly distributed in the PLA matrix for filler contents below 5 %·w/w, whereas some aggregates were detected with further increasing filler concentration .The composites improved because of their degree of dispersion and polymer filler International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – -07, © IAEME 2θ 2θ SiO2 calculated in eq.1 and young and find both tensile strength and young modulus increased when add that has been useful in various that are characteristic of PLA must be improved to allow prepared and its composites and young modulus enhanced about 25% . Mechanical properties of prepared nanocomposites were improved by addition of 5 wt.% of silica comparison to ue to achievement of good silica by melt blending found that the tensile strength and modulus of the composites were enhanced by incorporation of nanoparticles. The silica s below 5 %·w/w, concentration .The mechanical composites improved because of their degree of dispersion and polymer filler
  • 6. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 2, February (2014), pp. 01-07, © IAEME 6 Fig(5):Stress-Strain of PLA and its composites PLA/5%SiO2 Table (1) Mechanical properties of PLA and its composites films CONCLUSIONS 1- PLAfilm was successfully prepared by casting method. 2- Maximum enhancement in 35%of tensile strength and 25% in young modulus of PLA as observed by adding 5%nano SiO2, due to their good dispersion in PLA matrix. Obtained results could be further used for future research in the field of PLA/silica nanocomposites, as important materials due to their good and satisfying mechanical properties for food packaging application. REFERENCE 1- P. Qu, Y. Goa, G. F. Wu, and L. P. Zhang, (2010) “Nanocomposite of poly(lactid acid) reinforced with cellulose nanofibrils”, J .BioResources , vol. 5(3), 1811-1823. 2- B.K. Chen, T.Y. Wu, Y.M. Chang , A. F. Chen ,(2013)” Ductile polylactic acid prepared with ionic liquids” ,J.Chemical Engineering ,vol. 5 , 215–216. 3- B.H. Li, M.C. Yang,(2006)” Improvement of thermal and mechanical properties of poly(L-lactic acid) with 4,4-methylene diphenyl diisocyanate”, J. Polym. Adv. Technol. Vol.17, 439-443. 4- H.S. Mohd , S. Eraricar , I.M. Ida , N.H. Siti ,(2012) “ Cellouse nanofiber isolation and its fabracication into bio-polymer review “ International Conference on Agricultural and Food Engineering for Life (Cafei2012) 26-28. Sample Tensile strength(MPa) Young modulus (GPa) PLA 29 2.3 PLA/1%SiO2 32 2.5 PLA/3%SiO2 36 2.9 PLA/5%SiO2 43 3.1 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 0.0 2.0 4.0 6.0 8.0 10.0 StressMPa Strain % PLA/nano5%SiO2 PLA/nano3%SiO2 PLA/nano1%SiO2 PLA
  • 7. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 2, February (2014), pp. 01-07, © IAEME 7 5- J.J.F. Cardoso, Y..C. Queirós, K.J.A. Machado, J.M. Costa, F.E. ucas, (2013)” SYNTHESIS, CHARACTERIZATION, AND IN VITRO DEGRADATION OF POLY(LACTIC ACID) UNDER PETROLEUM PRODUCTION CONDITIONS” BRAZILIAN JOURNAL OF PETROLEUM AND GAS v. 7 n. 2 , 057-069 6- D. Battegazzore, S. Bocchini, A. Frache,(2011)” Crystallization kinetics of poly(lactic acid)-talc composites” eXPRESS Polymer Letters Vol.5(10),849-85 8. 7- A.N. MOHAMMAD, S. MOHSEN, (2013) “Multi-component reaction on free nano-SiO2 catalyst: Excellent reactivity combined with facile catalyst recovery and recyclability” J. Chem. Sci. Vol. 125(3) , 537-544. 8- R.M. Izan , A.S. Robert , K. Ing ,(2011) ” Melting Behaviour and Dynamic Mechanical Properties of Poly(lactic acid)-Hemp-Nanosilica Composites”, Asian Transactions on Basic and Applied Sciences) ,Vol.3 Issue 2 ,556-561. 9- G .Sanches, R.A.Lopez , J. M. Lagaron ,(2010) “Natural micro and nanobiocomposites with enchaced and novel functionalities for food biopackaging applications”, J.Trends in Food Science & Technology,vol. 21, 528-536 . 10- S.Shankar, Dr.H.K.Shivanand and Santhosh Kumar.S, “Experimental Evaluation of Flexural Properties of Polymer Matrix Composites”, International Journal of Mechanical Engineering & Technology (IJMET), Volume 3, Issue 3, 2012, pp. 504 - 510, ISSN Print: 0976 – 6340, ISSN Online: 0976 – 6359. 11- Siddhant Datta, B.M. Nagabhushana and R. Harikrishna, “A New Nano-Ceria Reinforced Epoxy Polymer Composite with Improved Mechanical Properties”, International Journal of Advanced Research in Engineering & Technology (IJARET), Volume 3, Issue 2, 2012, pp. 248 - 256, ISSN Print: 0976-6480, ISSN Online: 0976-6499.