The document examines the efficiency of different types of artificial neural networks (ANNs) in the design of trusses. It analyzes generalized regression, radial basis function, and linear layer neural networks using the MATLAB neural network tool. Various truss models are analyzed using the ANNs and STAAD Pro software. The ANNs are trained and tested for interpolation and extrapolation to calculate percentage errors. Parameters like spread constants, number of trainings, number of input/output variables are varied to study their effect on the ANN performance and efficiency. The study aims to determine the most suitable ANN type for truss design based on the percentage error results.