SlideShare a Scribd company logo
Electromagnetism
Contents
• Review of Maxwell’s equations and Lorentz Force Law
• Motion of a charged particle under constant Electromagnetic fields
• Relativistic transformations of fields
• Electromagnetic energy conservation
• Electromagnetic waves
– Waves in vacuo
– Waves in conducting medium
• Waves in a uniform conducting guide
– Simple example TE01 mode
– Propagation constant, cut-off frequency
– Group velocity, phase velocity
– Illustrations
2
Reading
• J.D. Jackson: Classical Electrodynamics
• H.D. Young and R.A. Freedman: University Physics (with
Modern Physics)
• P.C. Clemmow: Electromagnetic Theory
• Feynmann Lectures on Physics
• W.K.H. Panofsky and M.N. Phillips: Classical Electricity
and Magnetism
• G.L. Pollack and D.R. Stump: Electromagnetism
3
Basic Equations from Vector Calculus
 






































y
F
x
F
x
F
z
F
z
F
y
F
F
z
F
y
F
x
F
F
F
F
F
F
1
2
3
1
2
3
3
2
1
3
2
1
,
,
:
curl
:
divergence
,
,
,
vector
a
For



 
















z
φ
y
φ
x
φ
φ
x,y,z,t
φ
,
,
:
gradient
,
function
scalar
a
For
4
Gradient is normal to surfaces
=constant
Basic Vector Calculus
F
F
F
F
G
F
F
G
G
F










2
)
(
)
(
0
,
0
)
(































5
  




S C
r
d
F
S
d
F




dS
n
S
d



Oriented
boundary C
n

Stokes’ Theorem Divergence or Gauss’
Theorem

 



S
V
S
d
F
dV
F



Closed surface S, volume V,
outward pointing normal
What is Electromagnetism?
• The study of Maxwell’s equations, devised in 1863 to represent
the relationships between electric and magnetic fields in the
presence of electric charges and currents, whether steady or
rapidly fluctuating, in a vacuum or in matter.
• The equations represent one of the most elegant and concise
way to describe the fundamentals of electricity and magnetism.
They pull together in a consistent way earlier results known from
the work of Gauss, Faraday, Ampère, Biot, Savart and others.
• Remarkably, Maxwell’s equations are perfectly consistent with
the transformations of special relativity.
Maxwell’s Equations
Relate Electric and Magnetic fields generated by charge
and current distributions.
1
,
,
In vacuum 2
0
0
0
0 

 c
H
B
E
D 







t
D
j
H
t
B
E
B
D

























0

E = electric field
D = electric displacement
H = magnetic field
B = magnetic flux density
= charge density
j = current density
0 (permeability of free space) = 4 10-7
0 (permittivity of free space) = 8.854 10-12
c (speed of light) = 2.99792458 108 m/s
Maxwell’s 1st Equation
0
0
0
1




 Q
dV
S
d
E
dV
E
E
V
S
V









 






0
2
0
3
0
4
4



q
r
dS
q
S
d
E
r
r
q
E
sphere
sphere










0




 E

8
Equivalent to Gauss’ Flux Theorem:
The flux of electric field out of a closed region is proportional to
the total electric charge Q enclosed within the surface.
A point charge q generates an electric field
Area integral gives a measure of the net charge
enclosed; divergence of the electric field gives the density
of the sources.
Gauss’ law for magnetism:
The net magnetic flux out of any closed
surface is zero. Surround a magnetic
dipole with a closed surface. The magnetic
flux directed inward towards the south pole
will equal the flux outward from the north
pole.
If there were a magnetic monopole source,
this would give a non-zero integral.
Maxwell’s 2nd Equation
0


 B

 




 0
0 S
d
B
B



Gauss’ law for magnetism is then a statement that
There are no magnetic monopoles
Equivalent to Faraday’s Law of Induction:
(for a fixed circuit C)
The electromotive force round a
circuit is proportional to the rate of
change of flux of magnetic
field, through the circuit.
Maxwell’s 3rd Equation
t
B
E








dt
d
S
d
B
dt
d
l
d
E
S
d
t
B
S
d
E
C S
S
S
















 









 
 l
d
E



 

 S
d
B


N S
Faraday’s Law is the basis for electric
generators. It also forms the basis for
inductors and transformers.
Maxwell’s 4th Equation
j
B


0




t
E
c
j
B









2
0
1

I
S
d
j
S
d
B
l
d
B
C S S
   






 0
0 







Originates from Ampère’s (Circuital) Law :
Satisfied by the field for a steady line current (Biot-Savart Law,
1820):
r
I
B
r
r
l
d
I
B





2
4
0
3
0


 
current
line
straight
a
For



Ampère
Biot
Need for Displacement
Current
• Faraday: vary B-field, generate E-field
• Maxwell: varying E-field should then produce a B-field, but not covered by Ampère’s
Law.
12
Surface 1 Surface 2
Closed loop
Current I
 Apply Ampère to surface 1 (flat disk): line integral
of B = 0I
 Applied to surface 2, line integral is zero since no
current penetrates the deformed surface.
 In capacitor, , so
 Displacement current density is
t
E
jd





0

dt
dE
A
dt
dQ
I 0



A
ε
Q
E
0

  t
E
j
j
j
B d













0
0
0
0 



Consistency with Charge
Conservation
0

















 


t
j
dV
t
dV
j
dV
dt
d
S
d
j







Charge conservation:
Total current flowing out of a region
equals the rate of decrease of charge
within the volume.
13
From Maxwell’s equations:
Take divergence of (modified) Ampère’s
equation
 
t
j
t
j
E
t
c
j
B













































0
0
1
0
0
0
0
2
0
Charge conservation is implicit in Maxwell’s Equations
Maxwell’s
Equations in Vacuum
2
0
0
0
0
1
,
,
c
H
B
E
D 

 







In vacuum
Source-free equations:
Source equations
14
Equivalent integral forms
(useful for simple geometries)
0
0









t
B
E
B



j
t
E
c
B
E




0
2
0
1


















 
















S
d
E
dt
d
c
S
d
j
l
d
B
dt
d
S
d
B
dt
d
l
d
E
S
d
B
dV
S
d
E














2
0
0
1
0
1



Example: Calculate E from B






0
0
0
0
sin
r
r
r
r
t
B
Bz


 


 dS
B
dt
d
l
d
E



t
r
B
E
t
B
r
t
B
r
dt
d
rE
r
r










cos
2
1
cos
sin
2
0
0
2
0
2
0








t
r
B
r
E
t
B
r
t
B
r
dt
d
rE
r
r










cos
2
cos
sin
2
0
2
0
0
2
0
0
2
0
0








Also from
t
B
E








dt
E
c
j
B


 



 2
0
1
 then gives current density necessary
to sustain the fields
r
z
Lorentz Force Law
• Supplement to Maxwell’s equations, gives force on a charged particle
moving in an electromagnetic field:
• For continuous distributions, have a force density
• Relativistic equation of motion
– 4-vector form:
– 3-vector component:
 
B
v
E
q
f





















 


dt
p
d
dt
dE
c
f
c
f
v
d
dP
F




,
1
, 


16
B
j
E
fd






 
   
B
v
E
q
f
v
m
dt
d 









0
Motion of charged particles in constant
magnetic fields
       
B
v
q
v
m
dt
d
B
v
E
q
f
v
m
dt
d 













 
 0
0
17
1. Dot product with v:
 
     
constant
is
constant
is
0
So
1
But
0
2
2
2
0
v
dt
d
dt
d
v
dt
d
v
c
v
γ
B
v
v
m
q
v
dt
d
v






























No acceleration
with a magnetic
field
 
  constant
,
0
0
//
0









v
v
B
dt
d
B
v
B
m
q
v
dt
d
B








2. Dot product with B:
Motion in constant magnetic field
 






0
0
0
2
0
frequency
angular
at
radius
with
motion
circular
m
m
m
qB
v
ω
qB
v
m
ρ
B
v
m
q
v
B
v
m
q
dt
v
d
















Constant magnetic field gives
uniform spiral about B with
constant energy.
rigidity
Magnetic
0
q
p
q
v
m
B 



Motion in constant Electric Field
Solution of   E
m
q
v
dt
d 

0


c
m
qE
t
m
qE
0
2
0
for
2
1


19
Constant E-field gives uniform acceleration in straight line
      E
q
v
m
dt
d
B
v
E
q
f
v
m
dt
d 











 
 0
0
2
0
2
2
0
1
1 



















 t
m
qE
c
v
t
m
qE
v 



is




















 1
1
2
0
2
0
c
m
qEt
qE
c
m
x
v
dt
dx


qEx
Energy gain is
Potentials
• Magnetic vector potential:
• Electric scalar potential:
• Lorentz Gauge:
A
B
A
B











 that
such
0


 



 A
A
f(t)


,
20
0
1
2






A
t
c


 
t
A
E
t
A
E
t
A
E
t
A
A
t
t
B
E























































 so
,
with
0
Use freedom to set
Electromagnetic 4-Vectors
21
Α
,
1
,
1
0
1
4
2


























A
c
t
c
A
t
c




Lorentz
Gauge
4-gradient 4 4-potential A
Current
4-vector 







0
0
0 where
)
,
(
)
,
( 





j
c
v
c
V
J
v
j




Continuity
equation
  0
,
,
1
4 


















 j
t
j
c
t
c
J

 

Charge-current
transformations
  










 2
,
c
j
v
v
j
j x
x
x 




Example: Electromagnetic Field of a Single Particle
• Charged particle moving along x-axis of Frame F
• P has
• In F, fields are only electrostatic (B=0), given by
t
c
vx
t
t
t
v
b
r
x
b
vt
x p
p
P 
 















 2
2
2
2
'
,
'
'
so
),
,
0
,
'
(
'


3
3
3
'
'
,
0
'
,
'
'
'
'
'
'
r
qb
E
E
r
qvt
E
x
r
q
E z
y
x
P 







Origins coincide
at t=t=0
Observer P
z
b
charge q
x
Frame F v Frame F’
z’
x’
t
v
x
t
v
x
x P
P
P








 so
)
(
0 
Electromagnetic Energy
• Rate of doing work on unit volume of a system is
• Substitute for j from Maxwell’s equations and re-arrange into the form
 
H
B
D
E
t
S
H
E
S
t
D
E
t
B
H
S
t
D
E
E
H
H
E
E
t
D
H
E
j










































































2
1
where
23
  E
j
E
v
B
j
E
v
f
v d






















 

Poynting vector
24
   
H
E
D
E
H
B
t
E
j


























2
1
  
 





 S
d
H
E
dV
H
B
D
E
dt
d
dt
dW 






2
1
electric +
magnetic energy
densities of the
fields
Poynting vector
gives flux of e/m
energy across
boundaries
Integrated over a volume, have energy conservation law: rate of
doing work on system equals rate of increase of stored
electromagnetic energy+ rate of energy flow across boundary.
Review of Waves
• 1D wave equation is with general
solution
• Simple plane wave:
2
2
2
2
2
1
t
u
v
x
u





)
(
)
(
)
,
( x
vt
g
x
vt
f
t
x
u 



   
x
k
t
x
k
t




 
 sin
:
3D
sin
:
1D
k



2

Wavelength is
Frequency is



2

Superposition of plane waves. While
shape is relatively undistorted, pulse
travels with the group velocity
Phase and group velocities
k
t
x
v
x
k
t
p










 0
 





dk
e
k
A kx
t
k
i )
(
)
( 
dk
d
vg


Plane wave has constant
phase at peaks
 
x
k
t 

sin
2

 
 x
k
t
Wave packet structure
• Phase velocities of individual plane waves making up
the wave packet are different,
• The wave packet will then disperse with time
27
Electromagnetic waves
• Maxwell’s equations predict the existence of electromagnetic waves, later
discovered by Hertz.
• No charges, no currents:
0
0 
















B
D
t
B
E
t
D
H






2
2
2
2
2
2
2
2
2
:
equation
wave
3D
t
E
z
E
y
E
x
E
E



















 
 
2
2
2
2
t
E
t
D
B
t
t
B
E






























   
E
E
E
E




2
2












Nature of Electromagnetic Waves
• A general plane wave with angular frequency  travelling in the direction
of the wave vector k has the form
• Phase = 2  number of waves and so is a Lorentz invariant.
• Apply Maxwell’s equations
)]
(
exp[
)]
(
exp[ 0
0 x
k
t
i
B
B
x
k
t
i
E
E













 


i
t
k
i







B
E
k
B
E
B
k
E
k
B
E






























 0
0
Waves are transverse to the direction of propagation,
and and are mutually perpendicular
B
E


,
k

x
k
t





Plane
Electromagnetic Wave
30
Plane Electromagnetic Waves
E
c
B
k
t
E
c
B





2
2
1 














2
Frequency
k
2
Wavelength

 



2
that
deduce
with
Combined
kc
k
B
E
B
E
k









c
k

 

is
in vacuum
wave
of
speed
Reminder: The fact that is an
invariant tells us that
is a Lorentz 4-vector, the 4-Frequency vector.
Deduce frequency transforms as
x
k
t












 k
c

,

  v
c
v
c
k
v






 





Waves in a Conducting Medium
• (Ohm’s Law) For a medium of conductivity ,
• Modified Maxwell:
• Put
E
j







D
t
E
E
t
E
j
H


















E
i
E
H
k
i






 



conduction
current
displacement
current
)]
(
exp[
)]
(
exp[ 0
0 x
k
t
i
B
B
x
k
t
i
E
E













 

4
0
8
-
12
0
7
10
57
.
2
1
.
2
,
10
3
:
Teflon
10
,
10
8
.
5
:
Copper












D
D






Dissipation
factor
Attenuation in a Good Conductor
   
   
  0
since
with
Combine
2
2































E
k
i
k
E
i
E
k
k
E
k
E
i
H
k
E
k
k
H
E
k
t
B
E





































E
i
E
H
k
i






 



For a good conductor D >> 1,  
i
k
i
k 




 1
2
, 2 





 
depth
-
skin
the
is
2
where
1
1
,
exp
exp
is
form
Wave





























 i
k
x
x
t
i copper.mov water.mov
Charge Density in a Conducting Material
• Inside a conductor (Ohm’s law)
• Continuity equation is
• Solution is
E
j




























t
E
t
j
t
0
0





 t
e
 0
So charge density decays exponentially with time. For a very good
conductor, charges flow instantly to the surface to form a surface charge
density and (for time varying fields) a surface current. Inside a perfect
conductor () E=H=0
Maxwell’s Equations in a Uniform Perfectly
Conducting Guide
   










 










 














0
2
2
2
2

























































H
E
E
H
i
E
E
E
E
i
t
D
H
H
i
t
B
E










z
y
x
Hollow metallic cylinder with perfectly
conducting boundary surfaces
Maxwell’s equations with time dependence exp(it) are:
Assume
)
(
)
(
)
,
(
)
,
,
,
(
)
,
(
)
,
,
,
(
z
t
i
z
t
i
e
y
x
H
t
z
y
x
H
e
y
x
E
t
z
y
x
E












Then   0
)
( 2
2
2










H
E
t 




 is the propagation constant
Can solve for the fields completely
in terms of Ez and Hz
Special cases
• Transverse magnetic (TM modes):
– Hz=0 everywhere, Ez=0 on cylindrical boundary
• Transverse electric (TE modes):
– Ez=0 everywhere, on cylindrical boundary
• Transverse electromagnetic (TEM modes):
– Ez=Hz=0 everywhere
– requires
36
0



n
Hz





 i



 or
0
2
2
Cut-off frequency, c
 c gives real solution for , so
attenuation only. No wave propagates: cut-
off modes.
 c gives purely imaginary solution for ,
and a wave propagates without attenuation.
 For a given frequency  only a finite number
of modes can propagate.
37







 

a
n
e
a
x
n
A
E
a
n
c
z
t
i
c











 
,
sin
,
1
2







a
n
a
n
c 


 For given frequency, convenient to
choose a s.t. only n=1 mode
occurs.
 
2
1
2
2
2
1
2
2
1
, 



















 c
c
k
ik
Propagated Electromagnetic Fields
From
 
 




































kz
t
a
x
n
a
n
A
H
H
kz
t
a
x
n
Ak
H
E
i
H
A
t
B
E
z
y
x











sin
cos
0
cos
sin
real,
is
assuming
,




38
z
x
Phase and group velocities in the simple wave guide
39
  



 

 2
1
2
2
c
k
Wave number:
wavelength
space
free
the
,
2
2








k
Wavelength:
velocity
space
-
free
than
larger
,
1




k
vp
Phase velocity:
 
velocity
space
-
free
than
smaller
1
2
2
2





 





k
dk
d
v
k g
c
Group velocity:
Calculation of Wave Properties
• If a=3 cm, cut-off frequency of lowest order mode is
• At 7 GHz, only the n=1 mode propagates and
GHz
5
03
.
0
2
10
3
2
1
2
8









a
f c
c
   
c
k
v
c
k
v
k
k
g
p
c




















1
8
1
8
1
8
9
2
1
2
2
2
1
2
2
ms
10
1
.
2
ms
10
3
.
4
cm
6
2
m
103
10
3
/
10
5
7
2








40



a
n
c 
Flow of EM energy along the simple guide
 
 
kz
t
a
x
n
A
a
n
H
H
E
k
H
kz
t
a
x
n
A
E
E
E
z
y
y
x
y
z
x

















sin
cos
,
0
,
cos
sin
,
0










2
2
2
2
2
2
2
2
0
2
2
0
2
since
8
1
4
1
energy
Magnetic
8
1
4
1
energy
Electric




































a
n
k
W
k
a
n
a
A
dx
H
W
a
A
dx
E
W
e
a
m
a
e


41
Fields (c) are:
Time-averaged energy:
Total e/m energy
density
a
A
W 2
4
1


Poynting Vector
42
Poynting vector is  
x
y
z
y H
E
H
E
H
E
S 


 ,
0
,



Time-averaged:  
a
x
n
kA
S


2
2
sin
1
,
0
,
0
2
1


Integrate over x:

2
4
1 akA
Sz 
So energy is transported at a rate: g
m
e
z
v
k
W
W
S


 
Electromagnetic energy is transported down the waveguide
with the group velocity
Total e/m energy
density
a
A
W 2
4
1


Electromagnetism.ppt

More Related Content

PPTX
Electromagnetism.pptx
PPTX
Ph 101-4
PPTX
Electromagnetic fields_ Presentation.pptx
PPTX
Electromagnetic fields_ Presentation.pptx
PDF
Em theory lecture
PPT
class17A.ppt
PPT
class17A.ppt
PPT
class17A.pptddddddddddddddddddddddddddddddddddddddddddddd
Electromagnetism.pptx
Ph 101-4
Electromagnetic fields_ Presentation.pptx
Electromagnetic fields_ Presentation.pptx
Em theory lecture
class17A.ppt
class17A.ppt
class17A.pptddddddddddddddddddddddddddddddddddddddddddddd

Similar to Electromagnetism.ppt (20)

PPT
class17A.ppt
PPTX
Maxwell’s Equations 1.pptx
PDF
Maxwell
PPT
Laws of ELECTROMAGNETIC FIELD
PPTX
Electromagnetic Theory
PDF
Radar 2009 a 2 review of electromagnetism3
PPTX
Fundamental Concepts on Electromagnetic Theory
PPT
Eq mazwell
PDF
PPT Applied Physics Presentation (1).pdf
DOCX
DOCX
elecgtromgagnetic theory
PDF
Maxwells equation and Electromagnetic Waves
PDF
[Electricity and Magnetism] Electrodynamics
PDF
UNIT II @ MAGNETOSTATICS okokokokokokokokokkokoo
PPT
Faradays Law.ppt
PPT
A short and brief note on Faradays Law.ppt
PPTX
Waves and applications 4th 1
PPT
Phy electro
PPTX
Ampere Maxwell's equation
PDF
Daniel fleisch a student's guide to maxwell's equations-cambridge universit...
class17A.ppt
Maxwell’s Equations 1.pptx
Maxwell
Laws of ELECTROMAGNETIC FIELD
Electromagnetic Theory
Radar 2009 a 2 review of electromagnetism3
Fundamental Concepts on Electromagnetic Theory
Eq mazwell
PPT Applied Physics Presentation (1).pdf
elecgtromgagnetic theory
Maxwells equation and Electromagnetic Waves
[Electricity and Magnetism] Electrodynamics
UNIT II @ MAGNETOSTATICS okokokokokokokokokkokoo
Faradays Law.ppt
A short and brief note on Faradays Law.ppt
Waves and applications 4th 1
Phy electro
Ampere Maxwell's equation
Daniel fleisch a student's guide to maxwell's equations-cambridge universit...
Ad

Recently uploaded (20)

PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
Internet of Things (IOT) - A guide to understanding
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PDF
composite construction of structures.pdf
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
Well-logging-methods_new................
PPT
Project quality management in manufacturing
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
737-MAX_SRG.pdf student reference guides
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
OOP with Java - Java Introduction (Basics)
PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
Artificial Intelligence
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PPTX
additive manufacturing of ss316l using mig welding
Automation-in-Manufacturing-Chapter-Introduction.pdf
Internet of Things (IOT) - A guide to understanding
Model Code of Practice - Construction Work - 21102022 .pdf
composite construction of structures.pdf
bas. eng. economics group 4 presentation 1.pptx
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Well-logging-methods_new................
Project quality management in manufacturing
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
737-MAX_SRG.pdf student reference guides
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Fundamentals of safety and accident prevention -final (1).pptx
R24 SURVEYING LAB MANUAL for civil enggi
OOP with Java - Java Introduction (Basics)
CH1 Production IntroductoryConcepts.pptx
Artificial Intelligence
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
additive manufacturing of ss316l using mig welding
Ad

Electromagnetism.ppt

  • 2. Contents • Review of Maxwell’s equations and Lorentz Force Law • Motion of a charged particle under constant Electromagnetic fields • Relativistic transformations of fields • Electromagnetic energy conservation • Electromagnetic waves – Waves in vacuo – Waves in conducting medium • Waves in a uniform conducting guide – Simple example TE01 mode – Propagation constant, cut-off frequency – Group velocity, phase velocity – Illustrations 2
  • 3. Reading • J.D. Jackson: Classical Electrodynamics • H.D. Young and R.A. Freedman: University Physics (with Modern Physics) • P.C. Clemmow: Electromagnetic Theory • Feynmann Lectures on Physics • W.K.H. Panofsky and M.N. Phillips: Classical Electricity and Magnetism • G.L. Pollack and D.R. Stump: Electromagnetism 3
  • 4. Basic Equations from Vector Calculus                                         y F x F x F z F z F y F F z F y F x F F F F F F 1 2 3 1 2 3 3 2 1 3 2 1 , , : curl : divergence , , , vector a For                      z φ y φ x φ φ x,y,z,t φ , , : gradient , function scalar a For 4 Gradient is normal to surfaces =constant
  • 5. Basic Vector Calculus F F F F G F F G G F           2 ) ( ) ( 0 , 0 ) (                                5        S C r d F S d F     dS n S d    Oriented boundary C n  Stokes’ Theorem Divergence or Gauss’ Theorem       S V S d F dV F    Closed surface S, volume V, outward pointing normal
  • 6. What is Electromagnetism? • The study of Maxwell’s equations, devised in 1863 to represent the relationships between electric and magnetic fields in the presence of electric charges and currents, whether steady or rapidly fluctuating, in a vacuum or in matter. • The equations represent one of the most elegant and concise way to describe the fundamentals of electricity and magnetism. They pull together in a consistent way earlier results known from the work of Gauss, Faraday, Ampère, Biot, Savart and others. • Remarkably, Maxwell’s equations are perfectly consistent with the transformations of special relativity.
  • 7. Maxwell’s Equations Relate Electric and Magnetic fields generated by charge and current distributions. 1 , , In vacuum 2 0 0 0 0    c H B E D         t D j H t B E B D                          0  E = electric field D = electric displacement H = magnetic field B = magnetic flux density = charge density j = current density 0 (permeability of free space) = 4 10-7 0 (permittivity of free space) = 8.854 10-12 c (speed of light) = 2.99792458 108 m/s
  • 8. Maxwell’s 1st Equation 0 0 0 1      Q dV S d E dV E E V S V                  0 2 0 3 0 4 4    q r dS q S d E r r q E sphere sphere           0      E  8 Equivalent to Gauss’ Flux Theorem: The flux of electric field out of a closed region is proportional to the total electric charge Q enclosed within the surface. A point charge q generates an electric field Area integral gives a measure of the net charge enclosed; divergence of the electric field gives the density of the sources.
  • 9. Gauss’ law for magnetism: The net magnetic flux out of any closed surface is zero. Surround a magnetic dipole with a closed surface. The magnetic flux directed inward towards the south pole will equal the flux outward from the north pole. If there were a magnetic monopole source, this would give a non-zero integral. Maxwell’s 2nd Equation 0    B         0 0 S d B B    Gauss’ law for magnetism is then a statement that There are no magnetic monopoles
  • 10. Equivalent to Faraday’s Law of Induction: (for a fixed circuit C) The electromotive force round a circuit is proportional to the rate of change of flux of magnetic field, through the circuit. Maxwell’s 3rd Equation t B E         dt d S d B dt d l d E S d t B S d E C S S S                               l d E        S d B   N S Faraday’s Law is the basis for electric generators. It also forms the basis for inductors and transformers.
  • 11. Maxwell’s 4th Equation j B   0     t E c j B          2 0 1  I S d j S d B l d B C S S            0 0         Originates from Ampère’s (Circuital) Law : Satisfied by the field for a steady line current (Biot-Savart Law, 1820): r I B r r l d I B      2 4 0 3 0     current line straight a For    Ampère Biot
  • 12. Need for Displacement Current • Faraday: vary B-field, generate E-field • Maxwell: varying E-field should then produce a B-field, but not covered by Ampère’s Law. 12 Surface 1 Surface 2 Closed loop Current I  Apply Ampère to surface 1 (flat disk): line integral of B = 0I  Applied to surface 2, line integral is zero since no current penetrates the deformed surface.  In capacitor, , so  Displacement current density is t E jd      0  dt dE A dt dQ I 0    A ε Q E 0    t E j j j B d              0 0 0 0    
  • 13. Consistency with Charge Conservation 0                      t j dV t dV j dV dt d S d j        Charge conservation: Total current flowing out of a region equals the rate of decrease of charge within the volume. 13 From Maxwell’s equations: Take divergence of (modified) Ampère’s equation   t j t j E t c j B                                              0 0 1 0 0 0 0 2 0 Charge conservation is implicit in Maxwell’s Equations
  • 14. Maxwell’s Equations in Vacuum 2 0 0 0 0 1 , , c H B E D            In vacuum Source-free equations: Source equations 14 Equivalent integral forms (useful for simple geometries) 0 0          t B E B    j t E c B E     0 2 0 1                                     S d E dt d c S d j l d B dt d S d B dt d l d E S d B dV S d E               2 0 0 1 0 1   
  • 15. Example: Calculate E from B       0 0 0 0 sin r r r r t B Bz        dS B dt d l d E    t r B E t B r t B r dt d rE r r           cos 2 1 cos sin 2 0 0 2 0 2 0         t r B r E t B r t B r dt d rE r r           cos 2 cos sin 2 0 2 0 0 2 0 0 2 0 0         Also from t B E         dt E c j B         2 0 1  then gives current density necessary to sustain the fields r z
  • 16. Lorentz Force Law • Supplement to Maxwell’s equations, gives force on a charged particle moving in an electromagnetic field: • For continuous distributions, have a force density • Relativistic equation of motion – 4-vector form: – 3-vector component:   B v E q f                          dt p d dt dE c f c f v d dP F     , 1 ,    16 B j E fd             B v E q f v m dt d           0
  • 17. Motion of charged particles in constant magnetic fields         B v q v m dt d B v E q f v m dt d                  0 0 17 1. Dot product with v:         constant is constant is 0 So 1 But 0 2 2 2 0 v dt d dt d v dt d v c v γ B v v m q v dt d v                               No acceleration with a magnetic field     constant , 0 0 // 0          v v B dt d B v B m q v dt d B         2. Dot product with B:
  • 18. Motion in constant magnetic field         0 0 0 2 0 frequency angular at radius with motion circular m m m qB v ω qB v m ρ B v m q v B v m q dt v d                 Constant magnetic field gives uniform spiral about B with constant energy. rigidity Magnetic 0 q p q v m B    
  • 19. Motion in constant Electric Field Solution of   E m q v dt d   0   c m qE t m qE 0 2 0 for 2 1   19 Constant E-field gives uniform acceleration in straight line       E q v m dt d B v E q f v m dt d                0 0 2 0 2 2 0 1 1                      t m qE c v t m qE v     is                      1 1 2 0 2 0 c m qEt qE c m x v dt dx   qEx Energy gain is
  • 20. Potentials • Magnetic vector potential: • Electric scalar potential: • Lorentz Gauge: A B A B             that such 0         A A f(t)   , 20 0 1 2       A t c     t A E t A E t A E t A A t t B E                                                         so , with 0 Use freedom to set
  • 21. Electromagnetic 4-Vectors 21 Α , 1 , 1 0 1 4 2                           A c t c A t c     Lorentz Gauge 4-gradient 4 4-potential A Current 4-vector         0 0 0 where ) , ( ) , (       j c v c V J v j     Continuity equation   0 , , 1 4                     j t j c t c J     Charge-current transformations               2 , c j v v j j x x x     
  • 22. Example: Electromagnetic Field of a Single Particle • Charged particle moving along x-axis of Frame F • P has • In F, fields are only electrostatic (B=0), given by t c vx t t t v b r x b vt x p p P                    2 2 2 2 ' , ' ' so ), , 0 , ' ( '   3 3 3 ' ' , 0 ' , ' ' ' ' ' ' r qb E E r qvt E x r q E z y x P         Origins coincide at t=t=0 Observer P z b charge q x Frame F v Frame F’ z’ x’ t v x t v x x P P P          so ) ( 0 
  • 23. Electromagnetic Energy • Rate of doing work on unit volume of a system is • Substitute for j from Maxwell’s equations and re-arrange into the form   H B D E t S H E S t D E t B H S t D E E H H E E t D H E j                                                                           2 1 where 23   E j E v B j E v f v d                          Poynting vector
  • 24. 24     H E D E H B t E j                           2 1            S d H E dV H B D E dt d dt dW        2 1 electric + magnetic energy densities of the fields Poynting vector gives flux of e/m energy across boundaries Integrated over a volume, have energy conservation law: rate of doing work on system equals rate of increase of stored electromagnetic energy+ rate of energy flow across boundary.
  • 25. Review of Waves • 1D wave equation is with general solution • Simple plane wave: 2 2 2 2 2 1 t u v x u      ) ( ) ( ) , ( x vt g x vt f t x u         x k t x k t        sin : 3D sin : 1D k    2  Wavelength is Frequency is    2 
  • 26. Superposition of plane waves. While shape is relatively undistorted, pulse travels with the group velocity Phase and group velocities k t x v x k t p            0        dk e k A kx t k i ) ( ) (  dk d vg   Plane wave has constant phase at peaks   x k t   sin 2     x k t
  • 27. Wave packet structure • Phase velocities of individual plane waves making up the wave packet are different, • The wave packet will then disperse with time 27
  • 28. Electromagnetic waves • Maxwell’s equations predict the existence of electromagnetic waves, later discovered by Hertz. • No charges, no currents: 0 0                  B D t B E t D H       2 2 2 2 2 2 2 2 2 : equation wave 3D t E z E y E x E E                        2 2 2 2 t E t D B t t B E                                   E E E E     2 2            
  • 29. Nature of Electromagnetic Waves • A general plane wave with angular frequency  travelling in the direction of the wave vector k has the form • Phase = 2  number of waves and so is a Lorentz invariant. • Apply Maxwell’s equations )] ( exp[ )] ( exp[ 0 0 x k t i B B x k t i E E                  i t k i        B E k B E B k E k B E                                0 0 Waves are transverse to the direction of propagation, and and are mutually perpendicular B E   , k  x k t     
  • 31. Plane Electromagnetic Waves E c B k t E c B      2 2 1                2 Frequency k 2 Wavelength       2 that deduce with Combined kc k B E B E k          c k     is in vacuum wave of speed Reminder: The fact that is an invariant tells us that is a Lorentz 4-vector, the 4-Frequency vector. Deduce frequency transforms as x k t              k c  ,    v c v c k v             
  • 32. Waves in a Conducting Medium • (Ohm’s Law) For a medium of conductivity , • Modified Maxwell: • Put E j        D t E E t E j H                   E i E H k i            conduction current displacement current )] ( exp[ )] ( exp[ 0 0 x k t i B B x k t i E E                 4 0 8 - 12 0 7 10 57 . 2 1 . 2 , 10 3 : Teflon 10 , 10 8 . 5 : Copper             D D       Dissipation factor
  • 33. Attenuation in a Good Conductor           0 since with Combine 2 2                                E k i k E i E k k E k E i H k E k k H E k t B E                                      E i E H k i            For a good conductor D >> 1,   i k i k       1 2 , 2         depth - skin the is 2 where 1 1 , exp exp is form Wave                               i k x x t i copper.mov water.mov
  • 34. Charge Density in a Conducting Material • Inside a conductor (Ohm’s law) • Continuity equation is • Solution is E j                             t E t j t 0 0       t e  0 So charge density decays exponentially with time. For a very good conductor, charges flow instantly to the surface to form a surface charge density and (for time varying fields) a surface current. Inside a perfect conductor () E=H=0
  • 35. Maxwell’s Equations in a Uniform Perfectly Conducting Guide                                           0 2 2 2 2                                                          H E E H i E E E E i t D H H i t B E           z y x Hollow metallic cylinder with perfectly conducting boundary surfaces Maxwell’s equations with time dependence exp(it) are: Assume ) ( ) ( ) , ( ) , , , ( ) , ( ) , , , ( z t i z t i e y x H t z y x H e y x E t z y x E             Then   0 ) ( 2 2 2           H E t       is the propagation constant Can solve for the fields completely in terms of Ez and Hz
  • 36. Special cases • Transverse magnetic (TM modes): – Hz=0 everywhere, Ez=0 on cylindrical boundary • Transverse electric (TE modes): – Ez=0 everywhere, on cylindrical boundary • Transverse electromagnetic (TEM modes): – Ez=Hz=0 everywhere – requires 36 0    n Hz       i     or 0 2 2
  • 37. Cut-off frequency, c  c gives real solution for , so attenuation only. No wave propagates: cut- off modes.  c gives purely imaginary solution for , and a wave propagates without attenuation.  For a given frequency  only a finite number of modes can propagate. 37           a n e a x n A E a n c z t i c              , sin , 1 2        a n a n c     For given frequency, convenient to choose a s.t. only n=1 mode occurs.   2 1 2 2 2 1 2 2 1 ,                      c c k ik
  • 38. Propagated Electromagnetic Fields From                                         kz t a x n a n A H H kz t a x n Ak H E i H A t B E z y x            sin cos 0 cos sin real, is assuming ,     38 z x
  • 39. Phase and group velocities in the simple wave guide 39           2 1 2 2 c k Wave number: wavelength space free the , 2 2         k Wavelength: velocity space - free than larger , 1     k vp Phase velocity:   velocity space - free than smaller 1 2 2 2             k dk d v k g c Group velocity:
  • 40. Calculation of Wave Properties • If a=3 cm, cut-off frequency of lowest order mode is • At 7 GHz, only the n=1 mode propagates and GHz 5 03 . 0 2 10 3 2 1 2 8          a f c c     c k v c k v k k g p c                     1 8 1 8 1 8 9 2 1 2 2 2 1 2 2 ms 10 1 . 2 ms 10 3 . 4 cm 6 2 m 103 10 3 / 10 5 7 2         40    a n c 
  • 41. Flow of EM energy along the simple guide     kz t a x n A a n H H E k H kz t a x n A E E E z y y x y z x                  sin cos , 0 , cos sin , 0           2 2 2 2 2 2 2 2 0 2 2 0 2 since 8 1 4 1 energy Magnetic 8 1 4 1 energy Electric                                     a n k W k a n a A dx H W a A dx E W e a m a e   41 Fields (c) are: Time-averaged energy: Total e/m energy density a A W 2 4 1  
  • 42. Poynting Vector 42 Poynting vector is   x y z y H E H E H E S     , 0 ,    Time-averaged:   a x n kA S   2 2 sin 1 , 0 , 0 2 1   Integrate over x:  2 4 1 akA Sz  So energy is transported at a rate: g m e z v k W W S     Electromagnetic energy is transported down the waveguide with the group velocity Total e/m energy density a A W 2 4 1  