Elliptic curve cryptography (ECC) uses elliptic curves over finite fields for encryption, digital signatures, and key exchange. The key sizes are smaller than RSA for the same security level. Its security relies on the assumed hardness of solving the discrete logarithm problem over elliptic curves. ECC defines elliptic curves with parameters over Galois fields GF(p) for prime p or binary fields GF(2m). Points on the curves along with addition and doubling formulas are used to perform scalar multiplications for cryptographic operations.