SlideShare a Scribd company logo
Esophageal Cancer: Artificial Intelligence,
Synergetics, Complex System Analysis,
Statistics and Modeling for Optimal
Management.
Kshivets Oleg Surgery Department, Bagrationovsk Hospital,
Bagrationovsk, Kaliningrad, Russia
ABSTRACT
OBJECTIVE: 5-survival (5YS) and life span after radical surgery for esophageal cancer (EC) patients (ECP)(T1-4N0-
2M0) - alive supersysems was analyzed. The importance must be stressed of using complex system analysis, artificial
intelligence (neural networks computing), simulation modeling and statistical methods in combination, because the
different approaches yield complementary pieces of prognostic information.
METHODS: We analyzed data of 563 consecutive ECP (age=56.6±8.9 years; tumor size=6±3.5 cm) radically operated
(R0) and monitored in 1975-2024 (m=419, f=144; esophagogastrectomies (EG) Garlock=289, EG Lewis=274, combined
EG with resection of pancreas, liver, diaphragm, aorta, VCS, colon transversum, lung, trachea, pericardium,
splenectomy=170; adenocarcinoma=323, squamous=230, mix=10; T1=131, T2=119, T3=185, T4=128; N0=285, N1=71,
N2=207; G1=161, G2=143, G3=259; early EC=112, invasive=451; only surgery=428, adjuvant
chemoimmunoradiotherapy-AT=135: 5-FU+thymalin/taktivin+radiotherapy 45-50Gy). Multivariate Cox modeling,
clustering, SEPATH, Monte Carlo, bootstrap and neural networks computing were used to determine any significant
dependence.
RESULTS: Overall life span (LS) was 1915.4±2284.8 days and cumulative 5-year survival (5YS) reached 52.6%, 10
years – 46.3%, 20 years – 33.3%, 30 years – 27.5%. 193 ECP lived more than 5 years (LS=4309.1±2507.4 days), 105 ECP
– more than 10 years (LS=5860.8±2469.2 days). 228 ECP died because of EC (LS=629.8±324.1 days). AT significantly
improved 5YS (69% vs. 49.1%) (P=0.0007 by log-rank test). 5YS of ECP of upper/3 was significantly better than others
(65.3% vs.50.3%) (P=0.003). Cox modeling displayed that 5YS of ECP significantly depended on: phase transition (PT)
N0—N12 in terms of synergetics, cell ratio factors (ratio between cancer cells- CC and blood cells subpopulations), T,
G, histology, age, AT, localization, prothrombin index, hemorrhage time, residual nitrogen, protein (P=0.000-0.019).
Neural networks, genetic algorithm selection and bootstrap simulation revealed relationships between 5YS and
healthy cells/CC (rank=1), PT N0—N12 (2), PT early-invasive EC (3), erythrocytes/CC (4), thrombocytes/CC (5);
segmented neutrophils/CC (6), stick neutrophils/CC (7), lymphocytes/CC (8), eosinophils/CC (9), monocytes/CC (10),
leucocytes/CC (11). Correct prediction of 5YS was 100% by neural networks computing (area under ROC curve=1.0;
error=0.0).
CONCLUSIONS: 5-year survival of ECP after radical procedures significantly depended on: 1) PT “early-invasive
cancer”; 2) PT N0--N12; 3) Cell Ratio Factors; 4) blood cell circuit; 5) biochemical factors; 6) hemostasis system; 7) AT;
8) EC cell dynamics; 9) EC characteristics; 10) tumor localization; 11) anthropometric data; 12) surgery type. Optimal
diagnosis and treatment strategies for EC are: 1) screening and early detection of EC; 2) availability of experienced
thoracoabdominal surgeons because of complexity of radical procedures; 3) aggressive en block surgery and
adequate lymph node dissection for completeness; 4) precise prediction; 5) adjuvant chemoimmunoradiotherapy for
ECP with unfavorable prognosis.
Data:
• Males…………………………………………………...419
• Females………..……………………………...............144
• Age=56.6±8.9 years
• Tumor Size=6±3.5 cm
• Only Surgery.……………………………………........428
• Adjuvant Chemoimmunoradiotherapy
• (5FU+thymalin/taktivin, 5-6 cycles+ Radiotherapy
• 45-50Gy)………………………...................................135
:Radical Procedures
• Esophagogastrectomies Lewis (R0)…………………274
• Esophagogastrectomies Garlock (R0)………...........289
• Combined Esophagogastrectomies with Resection
• of Pancreas, Liver, Trachea, Lung, Aorta, Vena
• Cava Superior, Colon Transversum, Diaphragm,
Pericardium, Splenectomy (R0)……………...............170
• 2-Field Lymphadenectomy…………………………….362
• 3-Field Lymphadenectomy.………………………….…201
Staging:
• T1……131 N0..….285 G1…………161
• T2……119 N1….....71 G2…………143
• T3……185 N2…...207 G3…………259
• T4……128 M0…..563
• Adenocarcinoma…………………………….323
• Squamos Cell Carcinoma…………………..230
• Mix………………….....…………………...........10
• Early Cancer……………………………...…...112
• Invasive Cancer…………………………..…..451
Survival Rate:
• Alive……………………………………….....296 (52.6%)
• 5-Year Survivors…………..……………….193 (34.3%)
• 10-Year Survivors………………………….105 (18.7%)
• Losses………………………………………..228 (40.5%)
• General Life Span=1915.4±2284.8 days
• For 5-Year Survivors=4309.1±2507.4 days
• For 10-Year Survivors=5860.8±2469.2 days
• For Losses=629.8±324.1 days
• Cumulative 5-Year Survival……………………..52.6%
• Cumulative 10-Year Survival…………………....46.3%
• Cumulative 20-Year Survival…………………....33.3%
• Cumulative 30-Year Survival…………………....27.5%
General Esophageal Cancer Patients Survival after
Complete Esophagogastrectomies (Kaplan-Meier)
(n=563):
Survival Function
5YS=52.6%; 10YS=46.3%;
20YS=33.3%; 30YS=27.5%.
Complete Censored
-5 0 5 10 15 20 25 30 35 40 45
Years after Esophagogastrectomies
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Cumulative
Proportion
Surviving
Results of Univariate Analysis of Phase
Transition Early—Invasive Cancer in Prediction
of Esophageal Cancer Patients Survival (n=563):
Cumulative Proportion Surviving (Kaplan-Meier)
P=0.000
Complete Censored
0 5 10 15 20 25 30 35 40 45 50
Years after Esophagogastrectomies
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Cumulative
Proportion
Surviving
Invasive ECP
Early ECP
Results of Univariate Analysis of Phase Transition
N0—N1-2 in Prediction of Esophageal Cancer
Patients Survival (n=563):
Cumulative Proportion Surviving (Kaplan-Meier)
P=0.000
Complete Censored
0 5 10 15 20 25 30 35 40 45 50
Time
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Cumulative
Proportion
Surviving
N0
N1-2
Results of Univariate Analysis of Localization
(Upper/3 vs. Others) in Prediction of
Esophageal Cancer Patients Survival (n=563):
Cumulative Proportion Surviving (Kaplan-Meier)
P=0.000
Complete Censored
0 5 10 15 20 25 30 35 40 45 50
Years after Esophagogastrectomies
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Cumulative
Proportion
Surviving
Others
Upper/3
Results of Univariate Analysis of Localization
(Cardioesophageal vs. Esophageal) in
Prediction of Esophageal Cancer Patients
Survival (n=563):
Cumulative Proportion Surviving (Kaplan-Meier)
P=0.000
Complete Censored
0 5 10 15 20 25 30 35 40 45 50
Years after Esophagogastrectomies
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Cumulative
Proportion
Surviving
Cardioesophageal CP
Esophageal CP
Results of Univariate Analysis of Adjuvant
Treatment (Adjuvant
Chemoimmunoradiotherapy vs Surgery along)
in Prediction of Esophageal Cancer Patients
Survival (n=563):
Cumulative Proportion Surviving (Kaplan-Meier)
P=0.00375
Complete Censored
0 5 10 15 20 25 30 35 40 45 50
Years after Esophagogastrectomies
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Cumulative
Proportion
Surviving
Adjuvant Chemoradiotherapy
Surgery along
Results of Cox Regression Modeling in Prediction of Esophageal Cancer Patients
Survival after Complete Esophagogastrectomies (n=563):
Cox Regression, ECP=563
Parameter
Estimate
Standard
Error
Chi-
square
P value
95%
Lower CL
95%
Upper CL
Hazard
Ratio
Segmented Neutrophils (%) 0.060757 0.017913 11.50399 0.000694 0.02565 0.095867 1.062641
Hemorrhage of Blood 0.001559 0.000400 15.16684 0.000098 0.00077 0.002343 1.001560
Protein 0.020805 0.008677 5.74991 0.016489 0.00380 0.037811 1.021023
Residual Nitrogen 0.046396 0.010866 18.23261 0.000020 0.02510 0.067693 1.047490
Prothrombin Index 0.021704 0.006456 11.30163 0.000774 0.00905 0.034358 1.021942
Segmented Neutrophils (abs) -0.761788 0.204580 13.86576 0.000196 -1.16276 -0.360820 0.466831
Lymphocytes (abs) 0.546870 0.228784 5.71370 0.016833 0.09846 0.995277 1.727836
T1-4 0.418271 0.094110 19.75331 0.000009 0.23382 0.602724 1.519332
PT N0---N12 0.642382 0.161510 15.81930 0.000070 0.32583 0.958936 1.901004
Age 0.028998 0.007691 14.21475 0.000163 0.01392 0.044073 1.029423
Weight -0.034970 0.013244 6.97240 0.008278 -0.06093 -0.009013 0.965634
Histology -0.285581 0.125754 5.15725 0.023150 -0.53205 -0.039108 0.751577
G1-3 0.426268 0.091239 21.82750 0.000003 0.24744 0.605094 1.531532
Adjuvant Chemoimmunoradiotherapy -0.870165 0.190510 20.86250 0.000005 -1.24356 -0.496772 0.418882
Segmented Neutrophils (tot) 0.124208 0.040804 9.26585 0.002335 0.04423 0.204183 1.132252
Leucocytes/Cancer Cells -0.132461 0.037769 12.30035 0.000453 -0.20649 -0.058436 0.875937
Monocytes/Cancer Cells 1.046746 0.401192 6.80736 0.009078 0.26042 1.833067 2.848367
Upper/3 vs Others -0.456165 0.195540 5.44218 0.019656 -0.83942 -0.072914 0.633709
Eosinophils (abs) 0.887039 0.450614 3.87504 0.049009 0.00385 1.770226 2.427929
Results of Neural Networks and Monte Carlo
Computing in Prediction of Esophageal Cancer
Patients Survival after Complete
Esophagogastrectomies (n=421):
Corect Classification Rate=100%
Error=0.000
Area under ROC Curve=1.000
Factors n=421 (Neural Networks) Rank Sensitivity
Healthy Cells/Cancer Cells 1 47967
Phase Transition N0---N12 2 32041
Phase Transition Early---Invasive Esophageal Cancer 3 32029
Erythrocytes/ Cancer Cells 4 21816
Thrombocytes/ Cancer Cells 5 20377
Segmented Neutrophils/ Cancer Cells 6 16849
Stick Neutrophils/ Cancer Cells 7 11869
Lymphocyes/ Cancer Cells 8 10648
Eosinophils/ Cancer Cells 9 10401
Monocytes/ Cancer Cells 10 9258
Leucocytes/ Cancer Cells 11 9196
Results of Bootstrap Simulation in Prediction
of Esophageal Cancer Patients Survival after
Complete Esophagogastrectomies (n=421):
Significant Factors (Number of Samples=3333) Rank Kendal Tau-A P
Tumor Size 1 -0.308 0.000
Healthy Cells/Cancer Cells 2 0.305 0.000
T1-4 3 -0.299 0.000
Erythrocytes/Cancer Cells 4 0.299 0.000
Leucocytes/Cancer Cells 5 0.290 0.000
Thrombocytes/Cancer Cells 6 0.285 0.000
Lymphocytes/Cancer Cells 7 0.281 0.000
Residual Nitrogen 8 -0.275 0.000
Segmented Neutrophils/Cancer Cells 9 0.273 0.000
Phase Transition N0---N12 10 -0.239 0.000
Hemorrhage Time 11 -0.228 0.000
Monocytes/Cancer Cells 12 0.227 0.000
Phase Transition Early---Invasive Cancer 13 -0.222 0.000
Esophageal/Cardioesophageal Cancer 14 -0.191 0.000
Operation Type 15 -0.187 0.000
Eosinophils/Cancer Cells 16 0.173 0.000
Stick Neutrophils/Cancer Cells 17 0.144 0.001
G1-3 18 -0.140 0.001
Tumor Growth 19 -0.113 0.01
Erythrocytes 20 0.100 0.01
Combined Procedure 21 0.095 0.01
Weight 22 0.092 0.01
Localization 23 0.069 0.05
Results of Kohonen Self-Organizing Neural
Networks Computing in Prediction of
Esophageal Cancer Patients Survival after
Complete Esophagogastrectomies (n=421):
Esophageal Cancer Cell Dynamics:
Prognostic Equation Models of Esophageal
Cancer Patients Survival after Complete
Esophagogastrectomies (n=421):
Prognostic Equation Models of Esophageal
Cancer Patients Survival after Complete
Esophagogastrectomies (n=421):
Prognostic Equation Models of Esophageal
Cancer Patients Survival after Complete
Esophagogastrectomies (n=421):
Prognostic Equation Models of Esophageal
Cancer Patients Survival after Complete
Esophagogastrectomies (n=421):
SEPATH Modeling in Prediction of Esophageal
Cancer Patients Survival after Complete
Esophagogastrectomies (n=421):
5-year survival of ECP after radical
procedures significantly depended on:
1) PT “Early-Invasive Cancer”;
2) PT N0--N12;
3) Cell Ratio Factors;
4) Blood Cell Circuit;
5) Biochemical Factors;
6) Hemostasis System;
7) Adjuvant Treatment;
8) EC Characteristics;
9) EC Cell Dynamics;
10) Tumor Localization;
11) Anthropometric Data;
12) Surgery Type.
Conclusion:
Optimal diagnosis and treatment
strategies for ECP are:
1) Screening and Early Detection
of EC;
2) Availability of Sufficient
Quantity of Very Experienced
Thoracoabdominal Surgeons
because of Extreme Complexity of
Radical Procedures;
3) Aggressive en block Surgery
and Adequate Lymph Node
Dissection for Completeness;
4) Precise Prediction;
5) Adjuvant
Chemoimmunoradiotherapy for
ECP with Unfavorable Prognosis.
Conclusion:
Address:
Oleg Kshivets,
M.D.,Ph.D.
Consultant Thoracic, Abdominal,
General Surgeon & Surgical
Oncologist
• e-mail: okshivets@yahoo.com
• skype: okshivets
• http: //www.ctsnet.org/home/okshivets

More Related Content

PDF
Local Advanced Esophageal Cancer (T3-4N0-2M0): Artificial Intelligence, Syner...
PDF
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
PDF
Lung Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, S...
PDF
Local Advanced Lung Cancer: Artificial Intelligence, Synergetics, Complex Sys...
PDF
Kshivets Oleg Optimization of Management for Esophageal Cancer Patients (T1-...
PDF
Kshivets Hong Kong Sydney2020
PDF
Kshivets_IASLC_Singapore2023.pdf
PDF
Artificial Intelligence, Synergetics, Complex System Analysis and Simulation ...
Local Advanced Esophageal Cancer (T3-4N0-2M0): Artificial Intelligence, Syner...
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
Lung Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, S...
Local Advanced Lung Cancer: Artificial Intelligence, Synergetics, Complex Sys...
Kshivets Oleg Optimization of Management for Esophageal Cancer Patients (T1-...
Kshivets Hong Kong Sydney2020
Kshivets_IASLC_Singapore2023.pdf
Artificial Intelligence, Synergetics, Complex System Analysis and Simulation ...

Similar to Esophageal Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, Statistics and Modeling for Optimal Management. (20)

PDF
Esophageal Cancer: Artificial Intelligence, Synergetics, Complex System Analy...
PDF
Kshivets_SPB_WSCTS2022Eso.pdf
PDF
Esophageal Cancer: Precise Prediction
PDF
Kshivets eacts milan2018
PDF
Kshivets ASCVTS Moscow2018
PPTX
Kshivets milan2014
PDF
Kshivets astana wscts2017
PPT
Kshivets O. Esophageal Cancer Surgery
PDF
Kshivets ny2021aats
PPT
Kshivets sso2013
PDF
Kshivets aats new_york2019
PDF
Combined Esophagogastrectomies: Survival Outcomes in Patients with Local Adva...
PDF
KshivetsWSCTS2023_Brazil.pdf
PDF
KshivetsWSCTS2023_Brazil.pdf
PDF
KshivetsWSCTS2023_Brazil.pdf
PDF
Kshivets barcelona2017
PDF
Kshivets esmo2021
PPT
Kshivets O. Esophageal and Cardioesophageal Cancer Surgery
PPTX
Kshivets wscts2015
PPT
Kshivets O. Esophagogastric Cancer Surgery
Esophageal Cancer: Artificial Intelligence, Synergetics, Complex System Analy...
Kshivets_SPB_WSCTS2022Eso.pdf
Esophageal Cancer: Precise Prediction
Kshivets eacts milan2018
Kshivets ASCVTS Moscow2018
Kshivets milan2014
Kshivets astana wscts2017
Kshivets O. Esophageal Cancer Surgery
Kshivets ny2021aats
Kshivets sso2013
Kshivets aats new_york2019
Combined Esophagogastrectomies: Survival Outcomes in Patients with Local Adva...
KshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdf
Kshivets barcelona2017
Kshivets esmo2021
Kshivets O. Esophageal and Cardioesophageal Cancer Surgery
Kshivets wscts2015
Kshivets O. Esophagogastric Cancer Surgery
Ad

More from Oleg Kshivets (15)

PDF
Lung Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, B...
PDF
Gastric Cancer: Artificial Intelligence, Synergetics, Complex System Analysis...
PDF
Kshivets_WCGIC2023.pdf
PDF
Kshivets_ELCC2023.pdf
PDF
Kshivets_ELCC2023.pdf
PDF
Lung Cancer: Precise Prediction
PDF
Kshivets_SPB_WSCTS2022Lung.pdf
PDF
Lung cancer cell dynamics significantly depended on blood cell circuit, bioch...
PDF
Survival of Lung Cancer Patients after Lobectomies was Significantly Superior...
PDF
• Gastric cancer prognosis and cell ratio factors
PPTX
Kshivets elcc2022
PDF
Kshivets gc 10_ys_wjarr-2021-0659
PDF
Kshivets lc10 ys_wjarr
PDF
Kshivets eso10 y2021
PDF
Kshivets iaslc denver2021
Lung Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, B...
Gastric Cancer: Artificial Intelligence, Synergetics, Complex System Analysis...
Kshivets_WCGIC2023.pdf
Kshivets_ELCC2023.pdf
Kshivets_ELCC2023.pdf
Lung Cancer: Precise Prediction
Kshivets_SPB_WSCTS2022Lung.pdf
Lung cancer cell dynamics significantly depended on blood cell circuit, bioch...
Survival of Lung Cancer Patients after Lobectomies was Significantly Superior...
• Gastric cancer prognosis and cell ratio factors
Kshivets elcc2022
Kshivets gc 10_ys_wjarr-2021-0659
Kshivets lc10 ys_wjarr
Kshivets eso10 y2021
Kshivets iaslc denver2021
Ad

Recently uploaded (20)

PPTX
Full Slide Deck - SY CF Talk Adelaide 10June.pptx
PDF
Fundamentals Final Review Questions.docx.pdf
PPTX
Obstetric management in women with epilepsy.pptx
PPTX
GCP GUIDELINES 2025 mmch workshop .pptx
PDF
ENT MedMap you can study for the exam with this.pdf
PPTX
Fever and skin rash - Approach.pptxBy Dr Gururaja R , Paediatrician. An usef...
PPTX
Understanding The Self : 1Sexual health
PPTX
Nancy Caroline Emergency Paramedic Chapter 8
PPTX
Nancy Caroline Emergency Paramedic Chapter 18
PPTX
unit1-introduction of nursing education..
PDF
_OB Finals 24.pdf notes for pregnant women
PDF
Medical_Biology_and_Genetics_Current_Studies_I.pdf
PPTX
Nancy Caroline Emergency Paramedic Chapter 1
PPTX
OSTEOMYELITIS and OSTEORADIONECROSIS.pptx
PDF
Essentials of Hysteroscopy at World Laparoscopy Hospital
PPTX
Nancy Caroline Emergency Paramedic Chapter 16
PDF
Zuri Health Pan-African Digital Health Innovator.pdf
PDF
Back node with known primary managementt
PPTX
Nancy Caroline Emergency Paramedic Chapter 15
DOCX
ch 9 botes for OB aka Pregnant women eww
Full Slide Deck - SY CF Talk Adelaide 10June.pptx
Fundamentals Final Review Questions.docx.pdf
Obstetric management in women with epilepsy.pptx
GCP GUIDELINES 2025 mmch workshop .pptx
ENT MedMap you can study for the exam with this.pdf
Fever and skin rash - Approach.pptxBy Dr Gururaja R , Paediatrician. An usef...
Understanding The Self : 1Sexual health
Nancy Caroline Emergency Paramedic Chapter 8
Nancy Caroline Emergency Paramedic Chapter 18
unit1-introduction of nursing education..
_OB Finals 24.pdf notes for pregnant women
Medical_Biology_and_Genetics_Current_Studies_I.pdf
Nancy Caroline Emergency Paramedic Chapter 1
OSTEOMYELITIS and OSTEORADIONECROSIS.pptx
Essentials of Hysteroscopy at World Laparoscopy Hospital
Nancy Caroline Emergency Paramedic Chapter 16
Zuri Health Pan-African Digital Health Innovator.pdf
Back node with known primary managementt
Nancy Caroline Emergency Paramedic Chapter 15
ch 9 botes for OB aka Pregnant women eww

Esophageal Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, Statistics and Modeling for Optimal Management.

  • 1. Esophageal Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, Statistics and Modeling for Optimal Management. Kshivets Oleg Surgery Department, Bagrationovsk Hospital, Bagrationovsk, Kaliningrad, Russia
  • 2. ABSTRACT OBJECTIVE: 5-survival (5YS) and life span after radical surgery for esophageal cancer (EC) patients (ECP)(T1-4N0- 2M0) - alive supersysems was analyzed. The importance must be stressed of using complex system analysis, artificial intelligence (neural networks computing), simulation modeling and statistical methods in combination, because the different approaches yield complementary pieces of prognostic information. METHODS: We analyzed data of 563 consecutive ECP (age=56.6±8.9 years; tumor size=6±3.5 cm) radically operated (R0) and monitored in 1975-2024 (m=419, f=144; esophagogastrectomies (EG) Garlock=289, EG Lewis=274, combined EG with resection of pancreas, liver, diaphragm, aorta, VCS, colon transversum, lung, trachea, pericardium, splenectomy=170; adenocarcinoma=323, squamous=230, mix=10; T1=131, T2=119, T3=185, T4=128; N0=285, N1=71, N2=207; G1=161, G2=143, G3=259; early EC=112, invasive=451; only surgery=428, adjuvant chemoimmunoradiotherapy-AT=135: 5-FU+thymalin/taktivin+radiotherapy 45-50Gy). Multivariate Cox modeling, clustering, SEPATH, Monte Carlo, bootstrap and neural networks computing were used to determine any significant dependence. RESULTS: Overall life span (LS) was 1915.4±2284.8 days and cumulative 5-year survival (5YS) reached 52.6%, 10 years – 46.3%, 20 years – 33.3%, 30 years – 27.5%. 193 ECP lived more than 5 years (LS=4309.1±2507.4 days), 105 ECP – more than 10 years (LS=5860.8±2469.2 days). 228 ECP died because of EC (LS=629.8±324.1 days). AT significantly improved 5YS (69% vs. 49.1%) (P=0.0007 by log-rank test). 5YS of ECP of upper/3 was significantly better than others (65.3% vs.50.3%) (P=0.003). Cox modeling displayed that 5YS of ECP significantly depended on: phase transition (PT) N0—N12 in terms of synergetics, cell ratio factors (ratio between cancer cells- CC and blood cells subpopulations), T, G, histology, age, AT, localization, prothrombin index, hemorrhage time, residual nitrogen, protein (P=0.000-0.019). Neural networks, genetic algorithm selection and bootstrap simulation revealed relationships between 5YS and healthy cells/CC (rank=1), PT N0—N12 (2), PT early-invasive EC (3), erythrocytes/CC (4), thrombocytes/CC (5); segmented neutrophils/CC (6), stick neutrophils/CC (7), lymphocytes/CC (8), eosinophils/CC (9), monocytes/CC (10), leucocytes/CC (11). Correct prediction of 5YS was 100% by neural networks computing (area under ROC curve=1.0; error=0.0). CONCLUSIONS: 5-year survival of ECP after radical procedures significantly depended on: 1) PT “early-invasive cancer”; 2) PT N0--N12; 3) Cell Ratio Factors; 4) blood cell circuit; 5) biochemical factors; 6) hemostasis system; 7) AT; 8) EC cell dynamics; 9) EC characteristics; 10) tumor localization; 11) anthropometric data; 12) surgery type. Optimal diagnosis and treatment strategies for EC are: 1) screening and early detection of EC; 2) availability of experienced thoracoabdominal surgeons because of complexity of radical procedures; 3) aggressive en block surgery and adequate lymph node dissection for completeness; 4) precise prediction; 5) adjuvant chemoimmunoradiotherapy for ECP with unfavorable prognosis.
  • 3. Data: • Males…………………………………………………...419 • Females………..……………………………...............144 • Age=56.6±8.9 years • Tumor Size=6±3.5 cm • Only Surgery.……………………………………........428 • Adjuvant Chemoimmunoradiotherapy • (5FU+thymalin/taktivin, 5-6 cycles+ Radiotherapy • 45-50Gy)………………………...................................135
  • 4. :Radical Procedures • Esophagogastrectomies Lewis (R0)…………………274 • Esophagogastrectomies Garlock (R0)………...........289 • Combined Esophagogastrectomies with Resection • of Pancreas, Liver, Trachea, Lung, Aorta, Vena • Cava Superior, Colon Transversum, Diaphragm, Pericardium, Splenectomy (R0)……………...............170 • 2-Field Lymphadenectomy…………………………….362 • 3-Field Lymphadenectomy.………………………….…201
  • 5. Staging: • T1……131 N0..….285 G1…………161 • T2……119 N1….....71 G2…………143 • T3……185 N2…...207 G3…………259 • T4……128 M0…..563 • Adenocarcinoma…………………………….323 • Squamos Cell Carcinoma…………………..230 • Mix………………….....…………………...........10 • Early Cancer……………………………...…...112 • Invasive Cancer…………………………..…..451
  • 6. Survival Rate: • Alive……………………………………….....296 (52.6%) • 5-Year Survivors…………..……………….193 (34.3%) • 10-Year Survivors………………………….105 (18.7%) • Losses………………………………………..228 (40.5%) • General Life Span=1915.4±2284.8 days • For 5-Year Survivors=4309.1±2507.4 days • For 10-Year Survivors=5860.8±2469.2 days • For Losses=629.8±324.1 days • Cumulative 5-Year Survival……………………..52.6% • Cumulative 10-Year Survival…………………....46.3% • Cumulative 20-Year Survival…………………....33.3% • Cumulative 30-Year Survival…………………....27.5%
  • 7. General Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (Kaplan-Meier) (n=563): Survival Function 5YS=52.6%; 10YS=46.3%; 20YS=33.3%; 30YS=27.5%. Complete Censored -5 0 5 10 15 20 25 30 35 40 45 Years after Esophagogastrectomies 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Cumulative Proportion Surviving
  • 8. Results of Univariate Analysis of Phase Transition Early—Invasive Cancer in Prediction of Esophageal Cancer Patients Survival (n=563): Cumulative Proportion Surviving (Kaplan-Meier) P=0.000 Complete Censored 0 5 10 15 20 25 30 35 40 45 50 Years after Esophagogastrectomies 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Cumulative Proportion Surviving Invasive ECP Early ECP
  • 9. Results of Univariate Analysis of Phase Transition N0—N1-2 in Prediction of Esophageal Cancer Patients Survival (n=563): Cumulative Proportion Surviving (Kaplan-Meier) P=0.000 Complete Censored 0 5 10 15 20 25 30 35 40 45 50 Time 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Cumulative Proportion Surviving N0 N1-2
  • 10. Results of Univariate Analysis of Localization (Upper/3 vs. Others) in Prediction of Esophageal Cancer Patients Survival (n=563): Cumulative Proportion Surviving (Kaplan-Meier) P=0.000 Complete Censored 0 5 10 15 20 25 30 35 40 45 50 Years after Esophagogastrectomies 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Cumulative Proportion Surviving Others Upper/3
  • 11. Results of Univariate Analysis of Localization (Cardioesophageal vs. Esophageal) in Prediction of Esophageal Cancer Patients Survival (n=563): Cumulative Proportion Surviving (Kaplan-Meier) P=0.000 Complete Censored 0 5 10 15 20 25 30 35 40 45 50 Years after Esophagogastrectomies 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Cumulative Proportion Surviving Cardioesophageal CP Esophageal CP
  • 12. Results of Univariate Analysis of Adjuvant Treatment (Adjuvant Chemoimmunoradiotherapy vs Surgery along) in Prediction of Esophageal Cancer Patients Survival (n=563): Cumulative Proportion Surviving (Kaplan-Meier) P=0.00375 Complete Censored 0 5 10 15 20 25 30 35 40 45 50 Years after Esophagogastrectomies 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Cumulative Proportion Surviving Adjuvant Chemoradiotherapy Surgery along
  • 13. Results of Cox Regression Modeling in Prediction of Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (n=563): Cox Regression, ECP=563 Parameter Estimate Standard Error Chi- square P value 95% Lower CL 95% Upper CL Hazard Ratio Segmented Neutrophils (%) 0.060757 0.017913 11.50399 0.000694 0.02565 0.095867 1.062641 Hemorrhage of Blood 0.001559 0.000400 15.16684 0.000098 0.00077 0.002343 1.001560 Protein 0.020805 0.008677 5.74991 0.016489 0.00380 0.037811 1.021023 Residual Nitrogen 0.046396 0.010866 18.23261 0.000020 0.02510 0.067693 1.047490 Prothrombin Index 0.021704 0.006456 11.30163 0.000774 0.00905 0.034358 1.021942 Segmented Neutrophils (abs) -0.761788 0.204580 13.86576 0.000196 -1.16276 -0.360820 0.466831 Lymphocytes (abs) 0.546870 0.228784 5.71370 0.016833 0.09846 0.995277 1.727836 T1-4 0.418271 0.094110 19.75331 0.000009 0.23382 0.602724 1.519332 PT N0---N12 0.642382 0.161510 15.81930 0.000070 0.32583 0.958936 1.901004 Age 0.028998 0.007691 14.21475 0.000163 0.01392 0.044073 1.029423 Weight -0.034970 0.013244 6.97240 0.008278 -0.06093 -0.009013 0.965634 Histology -0.285581 0.125754 5.15725 0.023150 -0.53205 -0.039108 0.751577 G1-3 0.426268 0.091239 21.82750 0.000003 0.24744 0.605094 1.531532 Adjuvant Chemoimmunoradiotherapy -0.870165 0.190510 20.86250 0.000005 -1.24356 -0.496772 0.418882 Segmented Neutrophils (tot) 0.124208 0.040804 9.26585 0.002335 0.04423 0.204183 1.132252 Leucocytes/Cancer Cells -0.132461 0.037769 12.30035 0.000453 -0.20649 -0.058436 0.875937 Monocytes/Cancer Cells 1.046746 0.401192 6.80736 0.009078 0.26042 1.833067 2.848367 Upper/3 vs Others -0.456165 0.195540 5.44218 0.019656 -0.83942 -0.072914 0.633709 Eosinophils (abs) 0.887039 0.450614 3.87504 0.049009 0.00385 1.770226 2.427929
  • 14. Results of Neural Networks and Monte Carlo Computing in Prediction of Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (n=421): Corect Classification Rate=100% Error=0.000 Area under ROC Curve=1.000 Factors n=421 (Neural Networks) Rank Sensitivity Healthy Cells/Cancer Cells 1 47967 Phase Transition N0---N12 2 32041 Phase Transition Early---Invasive Esophageal Cancer 3 32029 Erythrocytes/ Cancer Cells 4 21816 Thrombocytes/ Cancer Cells 5 20377 Segmented Neutrophils/ Cancer Cells 6 16849 Stick Neutrophils/ Cancer Cells 7 11869 Lymphocyes/ Cancer Cells 8 10648 Eosinophils/ Cancer Cells 9 10401 Monocytes/ Cancer Cells 10 9258 Leucocytes/ Cancer Cells 11 9196
  • 15. Results of Bootstrap Simulation in Prediction of Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (n=421): Significant Factors (Number of Samples=3333) Rank Kendal Tau-A P Tumor Size 1 -0.308 0.000 Healthy Cells/Cancer Cells 2 0.305 0.000 T1-4 3 -0.299 0.000 Erythrocytes/Cancer Cells 4 0.299 0.000 Leucocytes/Cancer Cells 5 0.290 0.000 Thrombocytes/Cancer Cells 6 0.285 0.000 Lymphocytes/Cancer Cells 7 0.281 0.000 Residual Nitrogen 8 -0.275 0.000 Segmented Neutrophils/Cancer Cells 9 0.273 0.000 Phase Transition N0---N12 10 -0.239 0.000 Hemorrhage Time 11 -0.228 0.000 Monocytes/Cancer Cells 12 0.227 0.000 Phase Transition Early---Invasive Cancer 13 -0.222 0.000 Esophageal/Cardioesophageal Cancer 14 -0.191 0.000 Operation Type 15 -0.187 0.000 Eosinophils/Cancer Cells 16 0.173 0.000 Stick Neutrophils/Cancer Cells 17 0.144 0.001 G1-3 18 -0.140 0.001 Tumor Growth 19 -0.113 0.01 Erythrocytes 20 0.100 0.01 Combined Procedure 21 0.095 0.01 Weight 22 0.092 0.01 Localization 23 0.069 0.05
  • 16. Results of Kohonen Self-Organizing Neural Networks Computing in Prediction of Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (n=421):
  • 18. Prognostic Equation Models of Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (n=421):
  • 19. Prognostic Equation Models of Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (n=421):
  • 20. Prognostic Equation Models of Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (n=421):
  • 21. Prognostic Equation Models of Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (n=421):
  • 22. SEPATH Modeling in Prediction of Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (n=421):
  • 23. 5-year survival of ECP after radical procedures significantly depended on: 1) PT “Early-Invasive Cancer”; 2) PT N0--N12; 3) Cell Ratio Factors; 4) Blood Cell Circuit; 5) Biochemical Factors; 6) Hemostasis System; 7) Adjuvant Treatment; 8) EC Characteristics; 9) EC Cell Dynamics; 10) Tumor Localization; 11) Anthropometric Data; 12) Surgery Type. Conclusion:
  • 24. Optimal diagnosis and treatment strategies for ECP are: 1) Screening and Early Detection of EC; 2) Availability of Sufficient Quantity of Very Experienced Thoracoabdominal Surgeons because of Extreme Complexity of Radical Procedures; 3) Aggressive en block Surgery and Adequate Lymph Node Dissection for Completeness; 4) Precise Prediction; 5) Adjuvant Chemoimmunoradiotherapy for ECP with Unfavorable Prognosis. Conclusion:
  • 25. Address: Oleg Kshivets, M.D.,Ph.D. Consultant Thoracic, Abdominal, General Surgeon & Surgical Oncologist • e-mail: okshivets@yahoo.com • skype: okshivets • http: //www.ctsnet.org/home/okshivets