SlideShare a Scribd company logo
Estimates for a class of
non-standard bilinear multipliers
Vjekoslav Kovaˇc (University of Zagreb)
Joint work with Fr´ed´eric Bernicot (Universit´e de Nantes)
and Christoph Thiele (Universit¨at Bonn)
Joint CRM-ISAAC Conference on
Fourier Analysis and Approximation Theory
Bellaterra, November 6, 2013
Talk outline |
Part 1 — Introduction
Motivation for multilinear estimates
Concrete examples and some results
Talk outline |
Part 1 — Introduction
Motivation for multilinear estimates
Concrete examples and some results
Part 2 — The “entangled” structure
The scope of our techniques
Talk outline |
Part 1 — Introduction
Motivation for multilinear estimates
Concrete examples and some results
Part 2 — The “entangled” structure
The scope of our techniques
Part 3 — Dyadic model operators
Formulating a T(1)-type theorem
Setting up the Bellman function scheme
Talk outline |
Part 1 — Introduction
Motivation for multilinear estimates
Concrete examples and some results
Part 2 — The “entangled” structure
The scope of our techniques
Part 3 — Dyadic model operators
Formulating a T(1)-type theorem
Setting up the Bellman function scheme
Part 4 — Transition to continuous-type operators
Back to bilinear multipliers
“Entangled” operators with continuous kernels
Part 1 — Multilinear estimates ||
T = a multilinear integral operator
T is “singular” in some sense
Part 1 — Multilinear estimates ||
T = a multilinear integral operator
T is “singular” in some sense
We are interested in Lp
estimates:
T(F1, F2, . . . , Fk) Lp(Rn) ≤ Cp,p1,...,pk
k
j=1
Fj L
pj (R
nj )
in a subrange of 0 < p, p1, . . . , pk < ∞
Possibly also some Sobolev norm estimates, etc.
Part 1 — Multilinear estimates, motivation |||
Motivation for multilinear estimates:
Part 1 — Multilinear estimates, motivation |||
Motivation for multilinear estimates:
paraproducts
J.-M. Bony (1981) — paradifferential operators
G. David and J.-L. Journ´e (1984) — T(1) theorem
Part 1 — Multilinear estimates, motivation |||
Motivation for multilinear estimates:
paraproducts
J.-M. Bony (1981) — paradifferential operators
G. David and J.-L. Journ´e (1984) — T(1) theorem
multilinear expansions of nonlinear/“curved” operators
A. Calder´on (1960s) — Cauchy integral on Lipschitz curves
M. Christ and A. Kiselev (2001) — Hausdorff-Young
inequalities for the Dirac scattering transform
J. Bourgain and L. Guth (2010) — restriction estimates,
oscillatory integrals
Part 1 — Multilinear estimates, motivation |||
Motivation for multilinear estimates:
paraproducts
J.-M. Bony (1981) — paradifferential operators
G. David and J.-L. Journ´e (1984) — T(1) theorem
multilinear expansions of nonlinear/“curved” operators
A. Calder´on (1960s) — Cauchy integral on Lipschitz curves
M. Christ and A. Kiselev (2001) — Hausdorff-Young
inequalities for the Dirac scattering transform
J. Bourgain and L. Guth (2010) — restriction estimates,
oscillatory integrals
recurrence in ergodic theory
J. Bourgain (1988) — return times theorem
C. Demeter, M. Lacey, T. Tao, and C. Thiele (2008) —
extending the exponent range
Part 1 — A basic example ||||
Bilinear case only (for simplicity)
Part 1 — A basic example ||||
Bilinear case only (for simplicity)
From the viewpoint of bilinear singular integrals:
T(F, G)(x) = p.v.
(Rn)2
K(s, t)F(x − s)G(x − t) ds dt
K = translation-invariant Calder´on-Zygmund kernel
Generalized by L. Grafakos and R. H. Torres (2002):
multilinear C-Z operators
Take m = K
Part 1 — A basic example ||||
Bilinear case only (for simplicity)
From the viewpoint of bilinear multipliers:
Coifman-Meyer multipliers, R. Coifman and Y. Meyer (1978)
T(F, G)(x) =
(Rn)2
m(ξ, η)e2πix·(ξ+η)
F(ξ)G(η)dξdη
m∈C∞
R2{(0, 0)}
∂α1
ξ ∂α2
η m(ξ, η) ≤ Cα1,α2,n(|ξ| + |η|)−α1−α2
Note: m(ξ, η) is singular only at the origin ξ = η = 0
Part 1 — More singular examples, 1D ||||
1D example: bilinear Hilbert transform
Suggested by A. Calderon (Cauchy integral on Lipschitz curves)
Bounded by M. Lacey and C. Thiele (1997)
Part 1 — More singular examples, 1D ||||
1D example: bilinear Hilbert transform
Suggested by A. Calderon (Cauchy integral on Lipschitz curves)
Bounded by M. Lacey and C. Thiele (1997)
As a singular integral:
T(f , g)(x) = p.v.
R
f (x − t)g(x + t)
dt
t
Part 1 — More singular examples, 1D ||||
1D example: bilinear Hilbert transform
Suggested by A. Calderon (Cauchy integral on Lipschitz curves)
Bounded by M. Lacey and C. Thiele (1997)
As a singular integral:
T(f , g)(x) = p.v.
R
f (x − t)g(x + t)
dt
t
As a multiplier:
T(f , g)(x) =
R2
πi sgn(η − ξ)e2πix(ξ+η)
f (ξ)g(η)dξdη
Note: m(ξ, η) = πi sgn(η − ξ) is singular along the line ξ = η
Part 1 — More singular examples, 2D | ||||
2D example: a variant of the 2D bilinear Hilbert transform
Introduced by Demeter and Thiele and bounded for “most” cases
of A, B ∈ M2(R) (2008)
Part 1 — More singular examples, 2D | ||||
2D example: a variant of the 2D bilinear Hilbert transform
Introduced by Demeter and Thiele and bounded for “most” cases
of A, B ∈ M2(R) (2008)
As a singular integral:
T(F, G)(x, y) = p.v.
R2
K(s, t)F (x, y)−A(s, t)
G (x, y)−B(s, t) ds dt
Part 1 — More singular examples, 2D | ||||
2D example: a variant of the 2D bilinear Hilbert transform
Introduced by Demeter and Thiele and bounded for “most” cases
of A, B ∈ M2(R) (2008)
As a singular integral:
T(F, G)(x, y) = p.v.
R2
K(s, t)F (x, y)−A(s, t)
G (x, y)−B(s, t) ds dt
Essentially the only case that was left out:
A =
1 0
0 0
and B =
0 0
0 1
Part 1 — More singular examples, 2D | ||||
2D example: a variant of the 2D bilinear Hilbert transform
As a multiplier:
T(F, G)(x, y) =
R4
µ(ξ1, ξ2, η1, η2)e2πi(x(ξ1+η1)+y(ξ2+η2))
F(ξ1, ξ2)G(η1, η2) dξ1dξ2dη1dη2
µ(ξ1, ξ2, η1, η2) = m Aτ (ξ1, ξ2) + Bτ (η1, η2) , m = K
m ∈ C∞
R2{(0, 0)}
∂α1
τ1
∂α2
τ2
m(τ1, τ2) ≤ Cα1,α2 (|τ1| + |τ2|)−α1−α2
Note: µ(ξ1, ξ2, η1, η2) is singular along the 2-plane
Aτ (ξ1, ξ2) + Bτ (η1, η2) = (0, 0)
Part 1 — Remaining case of 2D BHT || ||||
T(F, G)(x, y) =
R4
m(ξ1, η2)e2πi(x(ξ1+η1)+y(ξ2+η2))
F(ξ1, ξ2)G(η1, η2)dξ1dξ2dη1dη2
Part 1 — Remaining case of 2D BHT || ||||
T(F, G)(x, y) =
R4
m(ξ1, η2)e2πi(x(ξ1+η1)+y(ξ2+η2))
F(ξ1, ξ2)G(η1, η2)dξ1dξ2dη1dη2
Theorem. Lp
estimate — F. Bernicot (2010), V. K. (2010)
T(F, G) Lr ≤ Cp,q,r F Lp G Lq
for 1 < p, q < ∞, 0 < r < 2, 1
p + 1
q = 1
r .
Part 1 — Remaining case of 2D BHT || ||||
T(F, G)(x, y) =
R4
m(ξ1, η2)e2πi(x(ξ1+η1)+y(ξ2+η2))
F(ξ1, ξ2)G(η1, η2)dξ1dξ2dη1dη2
Theorem. Lp
estimate — F. Bernicot (2010), V. K. (2010)
T(F, G) Lr ≤ Cp,q,r F Lp G Lq
for 1 < p, q < ∞, 0 < r < 2, 1
p + 1
q = 1
r .
Theorem. Sobolev estimate — F. Bernicot and V. K. (2013)
If supp m ⊆ (ξ1, η2) : |ξ1| ≤ c |η2| , then
T(F, G) Lr
y (Ws,r
x ) ≤ Cp,q,r,s F Lp G Ws,q
for s ≥ 0, 1 < p, q < ∞, 1 < r < 2, 1
p + 1
q = 1
r .
Part 1 — A warning example ||| ||||
Bi-parameter bilinear Hilbert transform
Part 1 — A warning example ||| ||||
Bi-parameter bilinear Hilbert transform
T(F, G)(x, y) = p.v.
R2
F(x − s, y − t) G(x + s, y + t)
ds
s
dt
t
Part 1 — A warning example ||| ||||
Bi-parameter bilinear Hilbert transform
T(F, G)(x, y) = p.v.
R2
F(x − s, y − t) G(x + s, y + t)
ds
s
dt
t
T(F, G)(x, y) =
R4
π2
sgn(ξ1 + ξ2)sgn(η1 + η2)
e2πi(x(ξ1+η1)+y(ξ2+η2))
F(ξ1, ξ2)G(η1, η2) dξ1dξ2dη1dη2
Part 1 — A warning example ||| ||||
Bi-parameter bilinear Hilbert transform
T(F, G)(x, y) = p.v.
R2
F(x − s, y − t) G(x + s, y + t)
ds
s
dt
t
T(F, G)(x, y) =
R4
π2
sgn(ξ1 + ξ2)sgn(η1 + η2)
e2πi(x(ξ1+η1)+y(ξ2+η2))
F(ξ1, ξ2)G(η1, η2) dξ1dξ2dη1dη2
Satisfies no Lp
estimates!
C. Muscalu, J. Pipher, T. Tao, and C. Thiele (2004)
Note: the symbol is singular along the union of two 3-planes,
ξ1 + ξ2 = 0 and η1 + η2 = 0
Part 1 — Open problem #1 |||| ||||
Triangular Hilbert transform
Part 1 — Open problem #1 |||| ||||
Triangular Hilbert transform
T(F, G)(x, y) = p.v.
R
F(x−t, y)G(x, y −t)
dt
t
Part 1 — Open problem #1 |||| ||||
Triangular Hilbert transform
T(F, G)(x, y) = p.v.
R
F(x−t, y)G(x, y −t)
dt
t
T(F, G)(x, y) =
R4
−πisgn(ξ1 + η2) e2πi(x(ξ1+η1)+y(ξ2+η2))
F(ξ1, ξ2)G(η1, η2) dξ1dξ2dη1dη2
Part 1 — Open problem #1 |||| ||||
Triangular Hilbert transform
T(F, G)(x, y) = p.v.
R
F(x−t, y)G(x, y −t)
dt
t
T(F, G)(x, y) =
R4
−πisgn(ξ1 + η2) e2πi(x(ξ1+η1)+y(ξ2+η2))
F(ξ1, ξ2)G(η1, η2) dξ1dξ2dη1dη2
Still no Lp
estimates are known
Note: the symbol is singular along the 3-plane ξ1 + η2 = 0
Probably not the right way of looking at the operator
Part 1 — Open problem #1 |||| ||||
Triangular Hilbert transform
A singular integral approach to bilinear ergodic averages
(suggested by C. Demeter and C. Thiele):
1
N
N−1
k=0
f (Sk
ω)g(Tk
ω), ω ∈ Ω
S, T : Ω → Ω are commuting measure preserving transformations
L2
norm convergence as N → ∞ was shown by J.-P. Conze and E.
Lesigne (1984)
a.e. convergence as N → ∞ is still an open problem
Part 1 — Open problem #2 |||| ||||
Trilinear Hilbert transform
Part 1 — Open problem #2 |||| ||||
Trilinear Hilbert transform
T(f , g, h)(x) = p.v.
R
f (x−t)g(x+t)h(x+2t)
dt
t
Part 1 — Open problem #2 |||| ||||
Trilinear Hilbert transform
T(f , g, h)(x) = p.v.
R
f (x−t)g(x+t)h(x+2t)
dt
t
T(f , g, h)(x) =
R3
πi sgn(−ξ + η + 2ζ)e2πix(ξ+η+ζ)
f (ξ)g(η)h(ζ)dξdηdζ
Part 1 — Open problem #2 |||| ||||
Trilinear Hilbert transform
T(f , g, h)(x) = p.v.
R
f (x−t)g(x+t)h(x+2t)
dt
t
T(f , g, h)(x) =
R3
πi sgn(−ξ + η + 2ζ)e2πix(ξ+η+ζ)
f (ξ)g(η)h(ζ)dξdηdζ
Note: the symbol is singular along the 2-plane −ξ + η + 2ζ = 0
A complete mystery!
Only some negative results are known: C. Demeter (2008)
Part 2 — Entangled structure | |||| ||||
k-linear operator (k+1)-linear form
Object of study:
Multilinear singular integral forms with functions that partially
share variables
Part 2 — Entangled structure | |||| ||||
k-linear operator (k+1)-linear form
Object of study:
Multilinear singular integral forms with functions that partially
share variables
Schematically:
Λ(F1, F2, . . .) =
Rn
F1(x1, x2) F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
K = singular kernel
F1, F2, . . . = functions on R2
Part 2 — Generalized modulation invariance || |||| ||||
An alternative viewpoint: generalized modulation invariances
Part 2 — Generalized modulation invariance || |||| ||||
An alternative viewpoint: generalized modulation invariances
Rn
F1(x1, x2) F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
Part 2 — Generalized modulation invariance || |||| ||||
An alternative viewpoint: generalized modulation invariances
Rn
F1(x1, x2) F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
=
Rn
e2πiax1
F1(x1, x2) e−2πiax1
F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
Part 2 — Generalized modulation invariance || |||| ||||
An alternative viewpoint: generalized modulation invariances
Rn
F1(x1, x2) F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
=
Rn
e2πiax1
F1(x1, x2) e−2πiax1
F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
=
Rn
ϕ(x1)F1(x1, x2)
1
ϕ(x1)
F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
Part 2 — Estimates ||| |||| ||||
Goal: Lp estimates
|Λ(F1, F2, . . . , Fk)| F1 Lp1 F2 Lp2 . . . Fk Lpk
in a nonempty open subrange of
1
p1
+
1
p2
+ . . . +
1
pk
= 1
Part 2 — Estimates ||| |||| ||||
Goal: Lp estimates
|Λ(F1, F2, . . . , Fk)| F1 Lp1 F2 Lp2 . . . Fk Lpk
in a nonempty open subrange of
1
p1
+
1
p2
+ . . . +
1
pk
= 1
Desired results: characterizations of Lp boundedness
T(1)-type theorems
Part 2 — Back to examples, rem. case of 2D BHT|||| |||| ||||
T(F, G)(x, y) =
R2
F(x − s, y) G(x, y − t) K(s, t) ds dt
Part 2 — Back to examples, rem. case of 2D BHT|||| |||| ||||
T(F, G)(x, y) =
R2
F(x − s, y) G(x, y − t) K(s, t) ds dt
Substitute u = x − s, v = y − t:
Λ(F, G, H) = T(F, G), H
=
R4
F(u, y)G(x, v)H(x, y)K(x − u, y − v) dudvdxdy
Part 2 — Back to examples, rem. case of 2D BHT|||| |||| ||||
T(F, G)(x, y) =
R2
F(x − s, y) G(x, y − t) K(s, t) ds dt
Substitute u = x − s, v = y − t:
Λ(F, G, H) = T(F, G), H
=
R4
F(u, y)G(x, v)H(x, y)K(x − u, y − v) dudvdxdy
Non-translation-invariant generalization:
Λ(F, G, H) =
R4
F(u, y)G(x, v)H(x, y)K(u, v, x, y) dudvdxdy
Part 2 — Back to examples, rem. case of 2D BHT|||| |||| ||||
Λ(F, G, H) =
R4
F(u, y)G(x, v)H(x, y)K(u, v, x, y) dudvdxdy
Graph associated with its structure:
x ◦
H
G
◦
F
y
v ◦ ◦ u
Part 2 — Back to examples, triangular HT |||| |||| ||||
T(F, G)(x, y) := p.v.
R
F(x + t, y)G(x, y + t)
dt
t
Part 2 — Back to examples, triangular HT |||| |||| ||||
T(F, G)(x, y) := p.v.
R
F(x + t, y)G(x, y + t)
dt
t
Substitute: z = −x − y − t,
F1(x, y) = H(x, y), F2(y, z) = F(−y −z, y), F3(z, x) = G(x, −x−z)
Λ(F, G, H) = T(F, G), H
=
R3
F1(x, y) F2(y, z) F3(z, x)
−1
x + y + z
dxdydz
We do not know how to proceed in this example
Part 2 — Back to examples, triangular HT |||| |||| ||||
Λ(F1, F2, F3) =
R3
F1(x, y) F2(y, z) F3(z, x)
−1
x + y + z
dxdydz
Associated graph:
x
◦
F3F1
y ◦
F2
◦ z
Note: this graph is not bipartite
Part 2 — A manageable modification | |||| |||| ||||
Quadrilinear variant:
Λ(F1, F2, F3, F4)
=
R4
F1(u, v)F2(u, y)F3(x, y)F4(x, v) K(u, v, x, y) dudvdxdy
Part 2 — A manageable modification | |||| |||| ||||
Quadrilinear variant:
Λ(F1, F2, F3, F4)
=
R4
F1(u, v)F2(u, y)F3(x, y)F4(x, v) K(u, v, x, y) dudvdxdy
Associated graph:
x ◦
F3
F4
◦
F2
y
v ◦
F1
◦ u
Part 2 — A manageable modification | |||| |||| ||||
Quadrilinear variant:
Λ(F1, F2, F3, F4)
=
R4
F1(u, v)F2(u, y)F3(x, y)F4(x, v) K(u, v, x, y) dudvdxdy
Associated graph:
x ◦
F3
F4
◦
F2
y
v ◦
F1
◦ u
x ◦
F3
F2
◦
F4
y
u ◦
F1
◦ v
Note: this graph is bipartite
Part 3 — Dyadic model operators || |||| |||| ||||
Scope of our techniques
Part 3 — Dyadic model operators || |||| |||| ||||
Scope of our techniques
We specialize to:
bipartite graphs
multilinear Calder´on-Zygmund kernels K
“perfect” dyadic models
Part 3 — Perfect dyadic conditions ||| |||| |||| ||||
m, n = positive integers
D := (x, . . . , x
m
, y, . . . , y
n
) : x, y ∈ R
the “diagonal” in Rm+n
Part 3 — Perfect dyadic conditions ||| |||| |||| ||||
m, n = positive integers
D := (x, . . . , x
m
, y, . . . , y
n
) : x, y ∈ R
the “diagonal” in Rm+n
Perfect dyadic Calder´on-Zygmund kernel K : Rm+n → C,
Auscher, Hofmann, Muscalu, Tao, Thiele (2002):
|K(x1, . . . , xm, y1, . . . , yn)|
i1<i2
|xi1 − xi2 | + j1<j2
|yj1 − yj2 |
2−m−n
K is constant on (m+n)-dimensional dyadic cubes disjoint
from D
K is bounded and compactly supported
Part 3 — Bipartite structure |||| |||| |||| ||||
E ⊆ {1, . . . , m}×{1, . . . , n}
G = simple bipartite undirected graph on
{x1, . . . , xm} and {y1, . . . , yn}
xi —yj ⇔ (i, j) ∈ E
Part 3 — Bipartite structure |||| |||| |||| ||||
E ⊆ {1, . . . , m}×{1, . . . , n}
G = simple bipartite undirected graph on
{x1, . . . , xm} and {y1, . . . , yn}
xi —yj ⇔ (i, j) ∈ E
|E|-linear singular form:
Λ (Fi,j )(i,j)∈E :=
Rm+n
K(x1, . . . , xm, y1, . . . , yn)
(i,j)∈E
Fi,j (xi , yj ) dx1 . . . dxmdy1 . . . dyn
Assume: there are no isolated vertices in G
avoids degeneracy
Part 3 — Adjoints |||| |||| |||| ||||
There are |E| mutually adjoint (|E|−1)-linear operators Tu,v ,
(u, v) ∈ E:
Λ (Fi,j )(i,j)∈E =
R2
Tu,v (Fi,j )(i,j)=(u,v) Fu,v
Part 3 — Adjoints |||| |||| |||| ||||
There are |E| mutually adjoint (|E|−1)-linear operators Tu,v ,
(u, v) ∈ E:
Λ (Fi,j )(i,j)∈E =
R2
Tu,v (Fi,j )(i,j)=(u,v) Fu,v
Explicitly:
Tu,v (Fi,j )(i,j)∈E{(u,v)} (xu, yv )
=
Rm+n−2
K(x1, . . . , xm, y1, . . . , yn)
(i,j)∈E{(u,v)}
Fi,j (xi , yj )
i=u
dxi
j=v
dyj
Part 3 — A T(1)-type theorem | |||| |||| |||| ||||
Theorem. “Entangled” T(1) — V. K. and C. Thiele (2013)
(a) For m, n ≥ 2 and a graph G there exist positive integers di,j
such that (i,j)∈E
1
di,j
> 1 and the following holds. If
|Λ(1Q, . . . , 1Q)| |Q|, Q dyadic square,
Tu,v (1R2 , . . . , 1R2 ) BMO(R2) 1, (u, v) ∈ E,
then
Λ (Fi,j )(i,j)∈E
(i,j)∈E
Fi,j L
pi,j (R2)
for exponents pi,j s.t. (i,j)∈E
1
pi,j
= 1, di,j < pi,j ≤ ∞.
Part 3 — A T(1)-type theorem | |||| |||| |||| ||||
Theorem. “Entangled” T(1) — V. K. and C. Thiele (2013)
(a) For m, n ≥ 2 and a graph G there exist positive integers di,j
such that (i,j)∈E
1
di,j
> 1 and the following holds. If
|Λ(1Q, . . . , 1Q)| |Q|, Q dyadic square,
Tu,v (1R2 , . . . , 1R2 ) BMO(R2) 1, (u, v) ∈ E,
then
Λ (Fi,j )(i,j)∈E
(i,j)∈E
Fi,j L
pi,j (R2)
for exponents pi,j s.t. (i,j)∈E
1
pi,j
= 1, di,j < pi,j ≤ ∞.
(b) Conversely, the estimate for some choice of exponents implies
the conditions.
Part 3 — A T(1)-type theorem, reformulation|| |||| |||| |||| ||||
Theorem. “Entangled” T(1) — V. K. and C. Thiele (2013)
For m, n ≥ 2 and a graph G there exist positive integers di,j such
that (i,j)∈E
1
di,j
> 1 and the following holds. If
Tu,v (1Q, . . . , 1Q) L1
(Q)
|Q|, Q dyadic square, (u, v) ∈ E,
then
Λ (Fi,j )(i,j)∈E
(i,j)∈E
Fi,j L
pi,j (R2)
for exponents pi,j s.t. (i,j)∈E
1
pi,j
= 1, di,j < pi,j ≤ ∞.
Part 3 — Proof outline ||| |||| |||| |||| ||||
The only nonstandard part — sufficiency of the testing conditions
Part 3 — Proof outline ||| |||| |||| |||| ||||
The only nonstandard part — sufficiency of the testing conditions
Scheme of the proof:
Part 3 — Proof outline ||| |||| |||| |||| ||||
The only nonstandard part — sufficiency of the testing conditions
Scheme of the proof:
decomposition into paraproducts
Part 3 — Proof outline ||| |||| |||| |||| ||||
The only nonstandard part — sufficiency of the testing conditions
Scheme of the proof:
decomposition into paraproducts
a stopping time argument for reducing global estimates to
local estimates
Part 3 — Proof outline ||| |||| |||| |||| ||||
The only nonstandard part — sufficiency of the testing conditions
Scheme of the proof:
decomposition into paraproducts
a stopping time argument for reducing global estimates to
local estimates
cancellative paraproducts with ∞ coefficients
“most” cases of graphs G
di,j related to sizes of connected components of G
stuctural induction + Bellman function technique
exceptional cases of graphs G
Part 3 — Proof outline ||| |||| |||| |||| ||||
The only nonstandard part — sufficiency of the testing conditions
Scheme of the proof:
decomposition into paraproducts
a stopping time argument for reducing global estimates to
local estimates
cancellative paraproducts with ∞ coefficients
“most” cases of graphs G
di,j related to sizes of connected components of G
stuctural induction + Bellman function technique
exceptional cases of graphs G
non-cancellative paraproducts with BMO coefficients
reduction to cancellative paraproducts
Part 3 — Proof outline ||| |||| |||| |||| ||||
The only nonstandard part — sufficiency of the testing conditions
Scheme of the proof:
decomposition into paraproducts
a stopping time argument for reducing global estimates to
local estimates
cancellative paraproducts with ∞ coefficients
“most” cases of graphs G
di,j related to sizes of connected components of G
stuctural induction + Bellman function technique
exceptional cases of graphs G
non-cancellative paraproducts with BMO coefficients
reduction to cancellative paraproducts
counterexample for m = 1 or n = 1
Part 3 — Multilinear Bellman functions |||| |||| |||| |||| ||||
Bellman functions in harmonic analysis
Invented by Burkholder (1980s)
Developed by Nazarov, Treil, Volberg, etc. (1990s)
We only keep the “induction on scales” idea
Part 3 — Multilinear Bellman functions |||| |||| |||| |||| ||||
Bellman functions in harmonic analysis
Invented by Burkholder (1980s)
Developed by Nazarov, Treil, Volberg, etc. (1990s)
We only keep the “induction on scales” idea
A broad class of interesting dyadic objects can be reduced to
bounding expressions of the form
ΛT (F1, . . . , F ) =
Q∈T
|Q| AQ(F1, . . . , F )
T = a finite convex tree of dyadic squares
AQ(F1, . . . , F ) = some “scale-invariant” quantity
depending on F1, . . . , F and Q ∈ T
Part 3 — Calculus of finite differences |||| |||| |||| |||| ||||
B = BQ(F1, . . . , F )
First order difference of B: B = BQ(F1, . . . , F )
BI×J := 1
4BIleft×Jleft
+ 1
4BIleft×Jright
+ 1
4BIright×Jleft
+ 1
4BIright×Jright
− BI×J
Part 3 — Calculus of finite differences |||| |||| |||| |||| ||||
B = BQ(F1, . . . , F )
First order difference of B: B = BQ(F1, . . . , F )
BI×J := 1
4BIleft×Jleft
+ 1
4BIleft×Jright
+ 1
4BIright×Jleft
+ 1
4BIright×Jright
− BI×J
Suppose: |A| ≤ B, i.e.
|AQ(F1, . . . , F )| ≤ BQ(F1, . . . , F )
for all Q ∈ T and nonnegative bounded measurable F1, . . . , F
Part 3 — Calculus of finite differences |||| |||| |||| |||| ||||
|AQ(F1, . . . , F )| ≤ BQ(F1, . . . , F )
|Q| |AQ(F1, . . . , F )| ≤
Q is a child of Q
|Q| BQ
(F1, . . . , F )
− |Q| BQ(F1, . . . , F )
Part 3 — Calculus of finite differences |||| |||| |||| |||| ||||
|AQ(F1, . . . , F )| ≤ BQ(F1, . . . , F )
|Q| |AQ(F1, . . . , F )| ≤
Q is a child of Q
|Q| BQ
(F1, . . . , F )
− |Q| BQ(F1, . . . , F )
|ΛT (F1, . . . , F )| ≤
Q∈L(T )
|Q| BQ(F1, . . . , F )
− |QT | BQT
(F1, . . . , F )
B = a Bellman function for ΛT
Part 4 — Ordinary paraproduct | |||| |||| |||| |||| ||||
Dyadic version
Td(f , g) :=
k∈Z
(Ekf )(∆kg)
Ekf := |I|=2−k
1
|I| I f 1I , ∆kg := Ek+1g − Ekg
Part 4 — Ordinary paraproduct | |||| |||| |||| |||| ||||
Dyadic version
Td(f , g) :=
k∈Z
(Ekf )(∆kg)
Ekf := |I|=2−k
1
|I| I f 1I , ∆kg := Ek+1g − Ekg
Continuous version
Tc(f , g) :=
k∈Z
(Pϕk
f )(Pψk
g)
Pϕk
f := f ∗ ϕk, Pψk
g := g ∗ ψk
ϕ, ψ Schwartz, supp( ˆψ) ⊆ {ξ ∈ R : 1
2 ≤|ξ| ≤ 2}
ϕk(t) := 2kϕ(2kt), ψk(t) := 2kψ(2kt)
Part 4 — Twisted paraproduct || |||| |||| |||| |||| ||||
Dyadic version
Td(F, G) :=
k∈Z
(E
(1)
k F)(∆
(2)
k G)
E
(1)
k martingale averages in the 1st variable
∆
(2)
k martingale differences in the 2nd variable
Part 4 — Twisted paraproduct || |||| |||| |||| |||| ||||
Dyadic version
Td(F, G) :=
k∈Z
(E
(1)
k F)(∆
(2)
k G)
E
(1)
k martingale averages in the 1st variable
∆
(2)
k martingale differences in the 2nd variable
Continuous version
Tc(F, G) :=
k∈Z
(P(1)
ϕk
F)(P
(2)
ψk
G)
P
(1)
ϕk , P
(2)
ψk
L-P projections in the 1st and the 2nd variable
(P
(1)
ϕk F)(x, y) := R F(x−t, y)ϕk(t)dt
(P
(2)
ψk
G)(x, y) := R G(x, y −t)ψk(t)dt
Part 4 — Twisted paraproduct || |||| |||| |||| |||| ||||
Dyadic version
Td(F, G) :=
k∈Z
(E
(1)
k F)(∆
(2)
k G)
Continuous version
Tc(F, G) :=
k∈Z
(P(1)
ϕk
F)(P
(2)
ψk
G)
Bilinear multipliers from our theorems reduce to these
using cone decomposition of the symbol:
m =
j
m[j]
from the Fourier series
m[j]
(ξ1, η2) =
k∈Z
ϕ
[j]
k (ξ1) ψ
[j]
k (η2)
Part 4 — Twisted paraproduct, estimates ||| |||| |||| |||| |||| ||||
B( ), _
2
1 C( )_
2
1 , _
2
1
1
2
_,1
4
_ )(E
D( )_
2
1 ,
0
0,1
2
_ )(A
_
4
1
_1
q
p
1_
1
0
10
the shaded region – the
strong estimate
two solid sides of the square
– the weak estimate
two dashed sides of the
square – no estimates
the white region –
unresolved
Part 4 — Proof outline |||| |||| |||| |||| |||| ||||
B( ), _
2
1 C( )_
2
1 , _
2
1
1
2
_,1
4
_ )(E
D( )_
2
1 ,
0
0,1
2
_ )(A
_
4
1
_1
q
p
1_
1
0
10
Dyadic version Td
ABC – a very special case
of the technique in Part 3
the rest of the shaded region
– conditional proof,
F. Bernicot (2010)
dashed segments –
counterexamples
D, E – an alternative purely
Bellman function proof
Continuous version Tc
transition using the
Jones-Seeger-Wright square
function
Part 4 — Transition to cont. version |||| |||| |||| |||| |||| ||||
Assume: ψk = φk+1 − φk for some φ Schwartz, R φ = 1
The general case is then obtained by composing with a bounded
Fourier multiplier in the second variable
Part 4 — Transition to cont. version |||| |||| |||| |||| |||| ||||
Assume: ψk = φk+1 − φk for some φ Schwartz, R φ = 1
The general case is then obtained by composing with a bounded
Fourier multiplier in the second variable
A. Calder´on (1960s), R. L. Jones, A. Seeger and J. Wright (2008)
If ϕ is Schwartz and R ϕ = 1, then the square function
SF :=
k∈Z
Pϕk
F − EkF
2 1/2
satisfies SF Lp
(R) p F Lp
(R)
for 1 < p < ∞.
Part 4 — Transition to cont. version |||| |||| |||| |||| |||| ||||
Assume: ψk = φk+1 − φk for some φ Schwartz, R φ = 1
The general case is then obtained by composing with a bounded
Fourier multiplier in the second variable
A. Calder´on (1960s), R. L. Jones, A. Seeger and J. Wright (2008)
If ϕ is Schwartz and R ϕ = 1, then the square function
SF :=
k∈Z
Pϕk
F − EkF
2 1/2
satisfies SF Lp
(R) p F Lp
(R)
for 1 < p < ∞.
Proposition
Tc(F, G) − Td(F, G) Lpq/(p+q) p,q F Lp G Lq
Part 4 — “Entangled” + cont. kernel | |||| |||| |||| |||| |||| ||||
General bipartite graphs G
How to obtain boundedness of
Λ (Fi,j )(i,j)∈E :=
Rm+n
K(x1, . . . , xm, y1, . . . , yn)
(i,j)∈E
Fi,j (xi , yj ) dx1 . . . dxmdy1 . . . dyn
at least for some continuous singular kernels K?
Part 4 — “Entangled” + cont. kernel | |||| |||| |||| |||| |||| ||||
General bipartite graphs G
How to obtain boundedness of
Λ (Fi,j )(i,j)∈E :=
Rm+n
K(x1, . . . , xm, y1, . . . , yn)
(i,j)∈E
Fi,j (xi , yj ) dx1 . . . dxmdy1 . . . dyn
at least for some continuous singular kernels K?
We can average “entangled” dyadic operators from Part 3 over
translated, dilated, and rotated dyadic grids
Partial results: One can recover some very special kernels K
Possibly all sufficiently smooth translation-invariant kernels
This is still far from a complete T(1)-type theorem
Currently open problems || |||| |||| |||| |||| |||| ||||
Further directions:
Currently open problems || |||| |||| |||| |||| |||| ||||
Further directions:
Translating the results to the case of more general continuous
C-Z kernels K
Ultimately obtaining a “real” (i.e. non-dyadic) T(1)-type
theorem
Currently open problems || |||| |||| |||| |||| |||| ||||
Further directions:
Translating the results to the case of more general continuous
C-Z kernels K
Ultimately obtaining a “real” (i.e. non-dyadic) T(1)-type
theorem
Forms corresponding to non-bipartite graphs (such as odd
cycles, recall a triangle)
Currently open problems || |||| |||| |||| |||| |||| ||||
Further directions:
Translating the results to the case of more general continuous
C-Z kernels K
Ultimately obtaining a “real” (i.e. non-dyadic) T(1)-type
theorem
Forms corresponding to non-bipartite graphs (such as odd
cycles, recall a triangle)
More singular kernels K, like K(x, y, z) = 1
x+y+z
Thank you! ||| |||| |||| |||| |||| |||| ||||
Thank you!

More Related Content

PDF
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
PDF
Bellman functions and Lp estimates for paraproducts
PDF
Trilinear embedding for divergence-form operators
PDF
On Twisted Paraproducts and some other Multilinear Singular Integrals
PDF
Boundedness of the Twisted Paraproduct
PDF
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
PDF
Norm-variation of bilinear averages
PDF
Tales on two commuting transformations or flows
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
Bellman functions and Lp estimates for paraproducts
Trilinear embedding for divergence-form operators
On Twisted Paraproducts and some other Multilinear Singular Integrals
Boundedness of the Twisted Paraproduct
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Norm-variation of bilinear averages
Tales on two commuting transformations or flows

What's hot (20)

PDF
Density theorems for Euclidean point configurations
PDF
On maximal and variational Fourier restriction
PDF
A sharp nonlinear Hausdorff-Young inequality for small potentials
PDF
Density theorems for anisotropic point configurations
PDF
Scattering theory analogues of several classical estimates in Fourier analysis
PDF
A Szemeredi-type theorem for subsets of the unit cube
PDF
Multilinear singular integrals with entangled structure
PDF
A Szemerédi-type theorem for subsets of the unit cube
PDF
Some Examples of Scaling Sets
PDF
Multilinear Twisted Paraproducts
PDF
Quantitative norm convergence of some ergodic averages
PDF
Paraproducts with general dilations
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
Internal workshop jub talk jan 2013
PDF
Classification with mixtures of curved Mahalanobis metrics
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
Clustering in Hilbert simplex geometry
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
Density theorems for Euclidean point configurations
On maximal and variational Fourier restriction
A sharp nonlinear Hausdorff-Young inequality for small potentials
Density theorems for anisotropic point configurations
Scattering theory analogues of several classical estimates in Fourier analysis
A Szemeredi-type theorem for subsets of the unit cube
Multilinear singular integrals with entangled structure
A Szemerédi-type theorem for subsets of the unit cube
Some Examples of Scaling Sets
Multilinear Twisted Paraproducts
Quantitative norm convergence of some ergodic averages
Paraproducts with general dilations
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Internal workshop jub talk jan 2013
Classification with mixtures of curved Mahalanobis metrics
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
Clustering in Hilbert simplex geometry
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
Ad

Similar to Estimates for a class of non-standard bilinear multipliers (20)

PDF
Orthogonal_Polynomials
PDF
Generalized Laplace - Mellin Integral Transformation
PDF
Simultaneous triple series equations
PDF
Simultaneous triple series equations
PDF
On Application of Unbounded Hilbert Linear Operators in Quantum Mechanics
PDF
Harmonic Analysis and Deep Learning
PDF
Integral Equations And Operator Theory Volume 49 I Gohberg Chief Editor
PPTX
Functional Analysis Important Definitions ppt.pptx
PDF
Integral Equations And Operator Theory Volume 65 I Gohberg
PDF
Optimization Methods for Machine Learning and Engineering: Optimization in Ve...
PDF
Functional Analysis (Gerald Teschl)
PDF
Amsi International Conference On Harmonic Analysis And Applications 1st Editi...
PDF
Hyers ulam rassias stability of exponential primitive mapping
PDF
2.1 Calculus 2.formulas.pdf.pdf
PDF
An Introduction To Functional Analysis 1st Edition James C Robinson
PDF
PDF
07_AJMS_208_19_RA.pdf
PDF
07_AJMS_208_19_RA.pdf
PDF
On Hilbert Space Operator Deformation Analysis in Application to Some Element...
Orthogonal_Polynomials
Generalized Laplace - Mellin Integral Transformation
Simultaneous triple series equations
Simultaneous triple series equations
On Application of Unbounded Hilbert Linear Operators in Quantum Mechanics
Harmonic Analysis and Deep Learning
Integral Equations And Operator Theory Volume 49 I Gohberg Chief Editor
Functional Analysis Important Definitions ppt.pptx
Integral Equations And Operator Theory Volume 65 I Gohberg
Optimization Methods for Machine Learning and Engineering: Optimization in Ve...
Functional Analysis (Gerald Teschl)
Amsi International Conference On Harmonic Analysis And Applications 1st Editi...
Hyers ulam rassias stability of exponential primitive mapping
2.1 Calculus 2.formulas.pdf.pdf
An Introduction To Functional Analysis 1st Edition James C Robinson
07_AJMS_208_19_RA.pdf
07_AJMS_208_19_RA.pdf
On Hilbert Space Operator Deformation Analysis in Application to Some Element...
Ad

Recently uploaded (20)

PPTX
ECG_Course_Presentation د.محمد صقران ppt
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
DOCX
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
PPTX
2. Earth - The Living Planet earth and life
PPTX
The KM-GBF monitoring framework – status & key messages.pptx
PPTX
Introduction to Fisheries Biotechnology_Lesson 1.pptx
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PDF
diccionario toefl examen de ingles para principiante
PPTX
INTRODUCTION TO EVS | Concept of sustainability
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PPT
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
PDF
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PPTX
Cell Membrane: Structure, Composition & Functions
PDF
An interstellar mission to test astrophysical black holes
PDF
MIRIDeepImagingSurvey(MIDIS)oftheHubbleUltraDeepField
PDF
. Radiology Case Scenariosssssssssssssss
PDF
AlphaEarth Foundations and the Satellite Embedding dataset
ECG_Course_Presentation د.محمد صقران ppt
7. General Toxicologyfor clinical phrmacy.pptx
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
2. Earth - The Living Planet earth and life
The KM-GBF monitoring framework – status & key messages.pptx
Introduction to Fisheries Biotechnology_Lesson 1.pptx
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
diccionario toefl examen de ingles para principiante
INTRODUCTION TO EVS | Concept of sustainability
Phytochemical Investigation of Miliusa longipes.pdf
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
Cell Membrane: Structure, Composition & Functions
An interstellar mission to test astrophysical black holes
MIRIDeepImagingSurvey(MIDIS)oftheHubbleUltraDeepField
. Radiology Case Scenariosssssssssssssss
AlphaEarth Foundations and the Satellite Embedding dataset

Estimates for a class of non-standard bilinear multipliers

  • 1. Estimates for a class of non-standard bilinear multipliers Vjekoslav Kovaˇc (University of Zagreb) Joint work with Fr´ed´eric Bernicot (Universit´e de Nantes) and Christoph Thiele (Universit¨at Bonn) Joint CRM-ISAAC Conference on Fourier Analysis and Approximation Theory Bellaterra, November 6, 2013
  • 2. Talk outline | Part 1 — Introduction Motivation for multilinear estimates Concrete examples and some results
  • 3. Talk outline | Part 1 — Introduction Motivation for multilinear estimates Concrete examples and some results Part 2 — The “entangled” structure The scope of our techniques
  • 4. Talk outline | Part 1 — Introduction Motivation for multilinear estimates Concrete examples and some results Part 2 — The “entangled” structure The scope of our techniques Part 3 — Dyadic model operators Formulating a T(1)-type theorem Setting up the Bellman function scheme
  • 5. Talk outline | Part 1 — Introduction Motivation for multilinear estimates Concrete examples and some results Part 2 — The “entangled” structure The scope of our techniques Part 3 — Dyadic model operators Formulating a T(1)-type theorem Setting up the Bellman function scheme Part 4 — Transition to continuous-type operators Back to bilinear multipliers “Entangled” operators with continuous kernels
  • 6. Part 1 — Multilinear estimates || T = a multilinear integral operator T is “singular” in some sense
  • 7. Part 1 — Multilinear estimates || T = a multilinear integral operator T is “singular” in some sense We are interested in Lp estimates: T(F1, F2, . . . , Fk) Lp(Rn) ≤ Cp,p1,...,pk k j=1 Fj L pj (R nj ) in a subrange of 0 < p, p1, . . . , pk < ∞ Possibly also some Sobolev norm estimates, etc.
  • 8. Part 1 — Multilinear estimates, motivation ||| Motivation for multilinear estimates:
  • 9. Part 1 — Multilinear estimates, motivation ||| Motivation for multilinear estimates: paraproducts J.-M. Bony (1981) — paradifferential operators G. David and J.-L. Journ´e (1984) — T(1) theorem
  • 10. Part 1 — Multilinear estimates, motivation ||| Motivation for multilinear estimates: paraproducts J.-M. Bony (1981) — paradifferential operators G. David and J.-L. Journ´e (1984) — T(1) theorem multilinear expansions of nonlinear/“curved” operators A. Calder´on (1960s) — Cauchy integral on Lipschitz curves M. Christ and A. Kiselev (2001) — Hausdorff-Young inequalities for the Dirac scattering transform J. Bourgain and L. Guth (2010) — restriction estimates, oscillatory integrals
  • 11. Part 1 — Multilinear estimates, motivation ||| Motivation for multilinear estimates: paraproducts J.-M. Bony (1981) — paradifferential operators G. David and J.-L. Journ´e (1984) — T(1) theorem multilinear expansions of nonlinear/“curved” operators A. Calder´on (1960s) — Cauchy integral on Lipschitz curves M. Christ and A. Kiselev (2001) — Hausdorff-Young inequalities for the Dirac scattering transform J. Bourgain and L. Guth (2010) — restriction estimates, oscillatory integrals recurrence in ergodic theory J. Bourgain (1988) — return times theorem C. Demeter, M. Lacey, T. Tao, and C. Thiele (2008) — extending the exponent range
  • 12. Part 1 — A basic example |||| Bilinear case only (for simplicity)
  • 13. Part 1 — A basic example |||| Bilinear case only (for simplicity) From the viewpoint of bilinear singular integrals: T(F, G)(x) = p.v. (Rn)2 K(s, t)F(x − s)G(x − t) ds dt K = translation-invariant Calder´on-Zygmund kernel Generalized by L. Grafakos and R. H. Torres (2002): multilinear C-Z operators Take m = K
  • 14. Part 1 — A basic example |||| Bilinear case only (for simplicity) From the viewpoint of bilinear multipliers: Coifman-Meyer multipliers, R. Coifman and Y. Meyer (1978) T(F, G)(x) = (Rn)2 m(ξ, η)e2πix·(ξ+η) F(ξ)G(η)dξdη m∈C∞ R2{(0, 0)} ∂α1 ξ ∂α2 η m(ξ, η) ≤ Cα1,α2,n(|ξ| + |η|)−α1−α2 Note: m(ξ, η) is singular only at the origin ξ = η = 0
  • 15. Part 1 — More singular examples, 1D |||| 1D example: bilinear Hilbert transform Suggested by A. Calderon (Cauchy integral on Lipschitz curves) Bounded by M. Lacey and C. Thiele (1997)
  • 16. Part 1 — More singular examples, 1D |||| 1D example: bilinear Hilbert transform Suggested by A. Calderon (Cauchy integral on Lipschitz curves) Bounded by M. Lacey and C. Thiele (1997) As a singular integral: T(f , g)(x) = p.v. R f (x − t)g(x + t) dt t
  • 17. Part 1 — More singular examples, 1D |||| 1D example: bilinear Hilbert transform Suggested by A. Calderon (Cauchy integral on Lipschitz curves) Bounded by M. Lacey and C. Thiele (1997) As a singular integral: T(f , g)(x) = p.v. R f (x − t)g(x + t) dt t As a multiplier: T(f , g)(x) = R2 πi sgn(η − ξ)e2πix(ξ+η) f (ξ)g(η)dξdη Note: m(ξ, η) = πi sgn(η − ξ) is singular along the line ξ = η
  • 18. Part 1 — More singular examples, 2D | |||| 2D example: a variant of the 2D bilinear Hilbert transform Introduced by Demeter and Thiele and bounded for “most” cases of A, B ∈ M2(R) (2008)
  • 19. Part 1 — More singular examples, 2D | |||| 2D example: a variant of the 2D bilinear Hilbert transform Introduced by Demeter and Thiele and bounded for “most” cases of A, B ∈ M2(R) (2008) As a singular integral: T(F, G)(x, y) = p.v. R2 K(s, t)F (x, y)−A(s, t) G (x, y)−B(s, t) ds dt
  • 20. Part 1 — More singular examples, 2D | |||| 2D example: a variant of the 2D bilinear Hilbert transform Introduced by Demeter and Thiele and bounded for “most” cases of A, B ∈ M2(R) (2008) As a singular integral: T(F, G)(x, y) = p.v. R2 K(s, t)F (x, y)−A(s, t) G (x, y)−B(s, t) ds dt Essentially the only case that was left out: A = 1 0 0 0 and B = 0 0 0 1
  • 21. Part 1 — More singular examples, 2D | |||| 2D example: a variant of the 2D bilinear Hilbert transform As a multiplier: T(F, G)(x, y) = R4 µ(ξ1, ξ2, η1, η2)e2πi(x(ξ1+η1)+y(ξ2+η2)) F(ξ1, ξ2)G(η1, η2) dξ1dξ2dη1dη2 µ(ξ1, ξ2, η1, η2) = m Aτ (ξ1, ξ2) + Bτ (η1, η2) , m = K m ∈ C∞ R2{(0, 0)} ∂α1 τ1 ∂α2 τ2 m(τ1, τ2) ≤ Cα1,α2 (|τ1| + |τ2|)−α1−α2 Note: µ(ξ1, ξ2, η1, η2) is singular along the 2-plane Aτ (ξ1, ξ2) + Bτ (η1, η2) = (0, 0)
  • 22. Part 1 — Remaining case of 2D BHT || |||| T(F, G)(x, y) = R4 m(ξ1, η2)e2πi(x(ξ1+η1)+y(ξ2+η2)) F(ξ1, ξ2)G(η1, η2)dξ1dξ2dη1dη2
  • 23. Part 1 — Remaining case of 2D BHT || |||| T(F, G)(x, y) = R4 m(ξ1, η2)e2πi(x(ξ1+η1)+y(ξ2+η2)) F(ξ1, ξ2)G(η1, η2)dξ1dξ2dη1dη2 Theorem. Lp estimate — F. Bernicot (2010), V. K. (2010) T(F, G) Lr ≤ Cp,q,r F Lp G Lq for 1 < p, q < ∞, 0 < r < 2, 1 p + 1 q = 1 r .
  • 24. Part 1 — Remaining case of 2D BHT || |||| T(F, G)(x, y) = R4 m(ξ1, η2)e2πi(x(ξ1+η1)+y(ξ2+η2)) F(ξ1, ξ2)G(η1, η2)dξ1dξ2dη1dη2 Theorem. Lp estimate — F. Bernicot (2010), V. K. (2010) T(F, G) Lr ≤ Cp,q,r F Lp G Lq for 1 < p, q < ∞, 0 < r < 2, 1 p + 1 q = 1 r . Theorem. Sobolev estimate — F. Bernicot and V. K. (2013) If supp m ⊆ (ξ1, η2) : |ξ1| ≤ c |η2| , then T(F, G) Lr y (Ws,r x ) ≤ Cp,q,r,s F Lp G Ws,q for s ≥ 0, 1 < p, q < ∞, 1 < r < 2, 1 p + 1 q = 1 r .
  • 25. Part 1 — A warning example ||| |||| Bi-parameter bilinear Hilbert transform
  • 26. Part 1 — A warning example ||| |||| Bi-parameter bilinear Hilbert transform T(F, G)(x, y) = p.v. R2 F(x − s, y − t) G(x + s, y + t) ds s dt t
  • 27. Part 1 — A warning example ||| |||| Bi-parameter bilinear Hilbert transform T(F, G)(x, y) = p.v. R2 F(x − s, y − t) G(x + s, y + t) ds s dt t T(F, G)(x, y) = R4 π2 sgn(ξ1 + ξ2)sgn(η1 + η2) e2πi(x(ξ1+η1)+y(ξ2+η2)) F(ξ1, ξ2)G(η1, η2) dξ1dξ2dη1dη2
  • 28. Part 1 — A warning example ||| |||| Bi-parameter bilinear Hilbert transform T(F, G)(x, y) = p.v. R2 F(x − s, y − t) G(x + s, y + t) ds s dt t T(F, G)(x, y) = R4 π2 sgn(ξ1 + ξ2)sgn(η1 + η2) e2πi(x(ξ1+η1)+y(ξ2+η2)) F(ξ1, ξ2)G(η1, η2) dξ1dξ2dη1dη2 Satisfies no Lp estimates! C. Muscalu, J. Pipher, T. Tao, and C. Thiele (2004) Note: the symbol is singular along the union of two 3-planes, ξ1 + ξ2 = 0 and η1 + η2 = 0
  • 29. Part 1 — Open problem #1 |||| |||| Triangular Hilbert transform
  • 30. Part 1 — Open problem #1 |||| |||| Triangular Hilbert transform T(F, G)(x, y) = p.v. R F(x−t, y)G(x, y −t) dt t
  • 31. Part 1 — Open problem #1 |||| |||| Triangular Hilbert transform T(F, G)(x, y) = p.v. R F(x−t, y)G(x, y −t) dt t T(F, G)(x, y) = R4 −πisgn(ξ1 + η2) e2πi(x(ξ1+η1)+y(ξ2+η2)) F(ξ1, ξ2)G(η1, η2) dξ1dξ2dη1dη2
  • 32. Part 1 — Open problem #1 |||| |||| Triangular Hilbert transform T(F, G)(x, y) = p.v. R F(x−t, y)G(x, y −t) dt t T(F, G)(x, y) = R4 −πisgn(ξ1 + η2) e2πi(x(ξ1+η1)+y(ξ2+η2)) F(ξ1, ξ2)G(η1, η2) dξ1dξ2dη1dη2 Still no Lp estimates are known Note: the symbol is singular along the 3-plane ξ1 + η2 = 0 Probably not the right way of looking at the operator
  • 33. Part 1 — Open problem #1 |||| |||| Triangular Hilbert transform A singular integral approach to bilinear ergodic averages (suggested by C. Demeter and C. Thiele): 1 N N−1 k=0 f (Sk ω)g(Tk ω), ω ∈ Ω S, T : Ω → Ω are commuting measure preserving transformations L2 norm convergence as N → ∞ was shown by J.-P. Conze and E. Lesigne (1984) a.e. convergence as N → ∞ is still an open problem
  • 34. Part 1 — Open problem #2 |||| |||| Trilinear Hilbert transform
  • 35. Part 1 — Open problem #2 |||| |||| Trilinear Hilbert transform T(f , g, h)(x) = p.v. R f (x−t)g(x+t)h(x+2t) dt t
  • 36. Part 1 — Open problem #2 |||| |||| Trilinear Hilbert transform T(f , g, h)(x) = p.v. R f (x−t)g(x+t)h(x+2t) dt t T(f , g, h)(x) = R3 πi sgn(−ξ + η + 2ζ)e2πix(ξ+η+ζ) f (ξ)g(η)h(ζ)dξdηdζ
  • 37. Part 1 — Open problem #2 |||| |||| Trilinear Hilbert transform T(f , g, h)(x) = p.v. R f (x−t)g(x+t)h(x+2t) dt t T(f , g, h)(x) = R3 πi sgn(−ξ + η + 2ζ)e2πix(ξ+η+ζ) f (ξ)g(η)h(ζ)dξdηdζ Note: the symbol is singular along the 2-plane −ξ + η + 2ζ = 0 A complete mystery! Only some negative results are known: C. Demeter (2008)
  • 38. Part 2 — Entangled structure | |||| |||| k-linear operator (k+1)-linear form Object of study: Multilinear singular integral forms with functions that partially share variables
  • 39. Part 2 — Entangled structure | |||| |||| k-linear operator (k+1)-linear form Object of study: Multilinear singular integral forms with functions that partially share variables Schematically: Λ(F1, F2, . . .) = Rn F1(x1, x2) F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn K = singular kernel F1, F2, . . . = functions on R2
  • 40. Part 2 — Generalized modulation invariance || |||| |||| An alternative viewpoint: generalized modulation invariances
  • 41. Part 2 — Generalized modulation invariance || |||| |||| An alternative viewpoint: generalized modulation invariances Rn F1(x1, x2) F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn
  • 42. Part 2 — Generalized modulation invariance || |||| |||| An alternative viewpoint: generalized modulation invariances Rn F1(x1, x2) F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn = Rn e2πiax1 F1(x1, x2) e−2πiax1 F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn
  • 43. Part 2 — Generalized modulation invariance || |||| |||| An alternative viewpoint: generalized modulation invariances Rn F1(x1, x2) F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn = Rn e2πiax1 F1(x1, x2) e−2πiax1 F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn = Rn ϕ(x1)F1(x1, x2) 1 ϕ(x1) F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn
  • 44. Part 2 — Estimates ||| |||| |||| Goal: Lp estimates |Λ(F1, F2, . . . , Fk)| F1 Lp1 F2 Lp2 . . . Fk Lpk in a nonempty open subrange of 1 p1 + 1 p2 + . . . + 1 pk = 1
  • 45. Part 2 — Estimates ||| |||| |||| Goal: Lp estimates |Λ(F1, F2, . . . , Fk)| F1 Lp1 F2 Lp2 . . . Fk Lpk in a nonempty open subrange of 1 p1 + 1 p2 + . . . + 1 pk = 1 Desired results: characterizations of Lp boundedness T(1)-type theorems
  • 46. Part 2 — Back to examples, rem. case of 2D BHT|||| |||| |||| T(F, G)(x, y) = R2 F(x − s, y) G(x, y − t) K(s, t) ds dt
  • 47. Part 2 — Back to examples, rem. case of 2D BHT|||| |||| |||| T(F, G)(x, y) = R2 F(x − s, y) G(x, y − t) K(s, t) ds dt Substitute u = x − s, v = y − t: Λ(F, G, H) = T(F, G), H = R4 F(u, y)G(x, v)H(x, y)K(x − u, y − v) dudvdxdy
  • 48. Part 2 — Back to examples, rem. case of 2D BHT|||| |||| |||| T(F, G)(x, y) = R2 F(x − s, y) G(x, y − t) K(s, t) ds dt Substitute u = x − s, v = y − t: Λ(F, G, H) = T(F, G), H = R4 F(u, y)G(x, v)H(x, y)K(x − u, y − v) dudvdxdy Non-translation-invariant generalization: Λ(F, G, H) = R4 F(u, y)G(x, v)H(x, y)K(u, v, x, y) dudvdxdy
  • 49. Part 2 — Back to examples, rem. case of 2D BHT|||| |||| |||| Λ(F, G, H) = R4 F(u, y)G(x, v)H(x, y)K(u, v, x, y) dudvdxdy Graph associated with its structure: x ◦ H G ◦ F y v ◦ ◦ u
  • 50. Part 2 — Back to examples, triangular HT |||| |||| |||| T(F, G)(x, y) := p.v. R F(x + t, y)G(x, y + t) dt t
  • 51. Part 2 — Back to examples, triangular HT |||| |||| |||| T(F, G)(x, y) := p.v. R F(x + t, y)G(x, y + t) dt t Substitute: z = −x − y − t, F1(x, y) = H(x, y), F2(y, z) = F(−y −z, y), F3(z, x) = G(x, −x−z) Λ(F, G, H) = T(F, G), H = R3 F1(x, y) F2(y, z) F3(z, x) −1 x + y + z dxdydz We do not know how to proceed in this example
  • 52. Part 2 — Back to examples, triangular HT |||| |||| |||| Λ(F1, F2, F3) = R3 F1(x, y) F2(y, z) F3(z, x) −1 x + y + z dxdydz Associated graph: x ◦ F3F1 y ◦ F2 ◦ z Note: this graph is not bipartite
  • 53. Part 2 — A manageable modification | |||| |||| |||| Quadrilinear variant: Λ(F1, F2, F3, F4) = R4 F1(u, v)F2(u, y)F3(x, y)F4(x, v) K(u, v, x, y) dudvdxdy
  • 54. Part 2 — A manageable modification | |||| |||| |||| Quadrilinear variant: Λ(F1, F2, F3, F4) = R4 F1(u, v)F2(u, y)F3(x, y)F4(x, v) K(u, v, x, y) dudvdxdy Associated graph: x ◦ F3 F4 ◦ F2 y v ◦ F1 ◦ u
  • 55. Part 2 — A manageable modification | |||| |||| |||| Quadrilinear variant: Λ(F1, F2, F3, F4) = R4 F1(u, v)F2(u, y)F3(x, y)F4(x, v) K(u, v, x, y) dudvdxdy Associated graph: x ◦ F3 F4 ◦ F2 y v ◦ F1 ◦ u x ◦ F3 F2 ◦ F4 y u ◦ F1 ◦ v Note: this graph is bipartite
  • 56. Part 3 — Dyadic model operators || |||| |||| |||| Scope of our techniques
  • 57. Part 3 — Dyadic model operators || |||| |||| |||| Scope of our techniques We specialize to: bipartite graphs multilinear Calder´on-Zygmund kernels K “perfect” dyadic models
  • 58. Part 3 — Perfect dyadic conditions ||| |||| |||| |||| m, n = positive integers D := (x, . . . , x m , y, . . . , y n ) : x, y ∈ R the “diagonal” in Rm+n
  • 59. Part 3 — Perfect dyadic conditions ||| |||| |||| |||| m, n = positive integers D := (x, . . . , x m , y, . . . , y n ) : x, y ∈ R the “diagonal” in Rm+n Perfect dyadic Calder´on-Zygmund kernel K : Rm+n → C, Auscher, Hofmann, Muscalu, Tao, Thiele (2002): |K(x1, . . . , xm, y1, . . . , yn)| i1<i2 |xi1 − xi2 | + j1<j2 |yj1 − yj2 | 2−m−n K is constant on (m+n)-dimensional dyadic cubes disjoint from D K is bounded and compactly supported
  • 60. Part 3 — Bipartite structure |||| |||| |||| |||| E ⊆ {1, . . . , m}×{1, . . . , n} G = simple bipartite undirected graph on {x1, . . . , xm} and {y1, . . . , yn} xi —yj ⇔ (i, j) ∈ E
  • 61. Part 3 — Bipartite structure |||| |||| |||| |||| E ⊆ {1, . . . , m}×{1, . . . , n} G = simple bipartite undirected graph on {x1, . . . , xm} and {y1, . . . , yn} xi —yj ⇔ (i, j) ∈ E |E|-linear singular form: Λ (Fi,j )(i,j)∈E := Rm+n K(x1, . . . , xm, y1, . . . , yn) (i,j)∈E Fi,j (xi , yj ) dx1 . . . dxmdy1 . . . dyn Assume: there are no isolated vertices in G avoids degeneracy
  • 62. Part 3 — Adjoints |||| |||| |||| |||| There are |E| mutually adjoint (|E|−1)-linear operators Tu,v , (u, v) ∈ E: Λ (Fi,j )(i,j)∈E = R2 Tu,v (Fi,j )(i,j)=(u,v) Fu,v
  • 63. Part 3 — Adjoints |||| |||| |||| |||| There are |E| mutually adjoint (|E|−1)-linear operators Tu,v , (u, v) ∈ E: Λ (Fi,j )(i,j)∈E = R2 Tu,v (Fi,j )(i,j)=(u,v) Fu,v Explicitly: Tu,v (Fi,j )(i,j)∈E{(u,v)} (xu, yv ) = Rm+n−2 K(x1, . . . , xm, y1, . . . , yn) (i,j)∈E{(u,v)} Fi,j (xi , yj ) i=u dxi j=v dyj
  • 64. Part 3 — A T(1)-type theorem | |||| |||| |||| |||| Theorem. “Entangled” T(1) — V. K. and C. Thiele (2013) (a) For m, n ≥ 2 and a graph G there exist positive integers di,j such that (i,j)∈E 1 di,j > 1 and the following holds. If |Λ(1Q, . . . , 1Q)| |Q|, Q dyadic square, Tu,v (1R2 , . . . , 1R2 ) BMO(R2) 1, (u, v) ∈ E, then Λ (Fi,j )(i,j)∈E (i,j)∈E Fi,j L pi,j (R2) for exponents pi,j s.t. (i,j)∈E 1 pi,j = 1, di,j < pi,j ≤ ∞.
  • 65. Part 3 — A T(1)-type theorem | |||| |||| |||| |||| Theorem. “Entangled” T(1) — V. K. and C. Thiele (2013) (a) For m, n ≥ 2 and a graph G there exist positive integers di,j such that (i,j)∈E 1 di,j > 1 and the following holds. If |Λ(1Q, . . . , 1Q)| |Q|, Q dyadic square, Tu,v (1R2 , . . . , 1R2 ) BMO(R2) 1, (u, v) ∈ E, then Λ (Fi,j )(i,j)∈E (i,j)∈E Fi,j L pi,j (R2) for exponents pi,j s.t. (i,j)∈E 1 pi,j = 1, di,j < pi,j ≤ ∞. (b) Conversely, the estimate for some choice of exponents implies the conditions.
  • 66. Part 3 — A T(1)-type theorem, reformulation|| |||| |||| |||| |||| Theorem. “Entangled” T(1) — V. K. and C. Thiele (2013) For m, n ≥ 2 and a graph G there exist positive integers di,j such that (i,j)∈E 1 di,j > 1 and the following holds. If Tu,v (1Q, . . . , 1Q) L1 (Q) |Q|, Q dyadic square, (u, v) ∈ E, then Λ (Fi,j )(i,j)∈E (i,j)∈E Fi,j L pi,j (R2) for exponents pi,j s.t. (i,j)∈E 1 pi,j = 1, di,j < pi,j ≤ ∞.
  • 67. Part 3 — Proof outline ||| |||| |||| |||| |||| The only nonstandard part — sufficiency of the testing conditions
  • 68. Part 3 — Proof outline ||| |||| |||| |||| |||| The only nonstandard part — sufficiency of the testing conditions Scheme of the proof:
  • 69. Part 3 — Proof outline ||| |||| |||| |||| |||| The only nonstandard part — sufficiency of the testing conditions Scheme of the proof: decomposition into paraproducts
  • 70. Part 3 — Proof outline ||| |||| |||| |||| |||| The only nonstandard part — sufficiency of the testing conditions Scheme of the proof: decomposition into paraproducts a stopping time argument for reducing global estimates to local estimates
  • 71. Part 3 — Proof outline ||| |||| |||| |||| |||| The only nonstandard part — sufficiency of the testing conditions Scheme of the proof: decomposition into paraproducts a stopping time argument for reducing global estimates to local estimates cancellative paraproducts with ∞ coefficients “most” cases of graphs G di,j related to sizes of connected components of G stuctural induction + Bellman function technique exceptional cases of graphs G
  • 72. Part 3 — Proof outline ||| |||| |||| |||| |||| The only nonstandard part — sufficiency of the testing conditions Scheme of the proof: decomposition into paraproducts a stopping time argument for reducing global estimates to local estimates cancellative paraproducts with ∞ coefficients “most” cases of graphs G di,j related to sizes of connected components of G stuctural induction + Bellman function technique exceptional cases of graphs G non-cancellative paraproducts with BMO coefficients reduction to cancellative paraproducts
  • 73. Part 3 — Proof outline ||| |||| |||| |||| |||| The only nonstandard part — sufficiency of the testing conditions Scheme of the proof: decomposition into paraproducts a stopping time argument for reducing global estimates to local estimates cancellative paraproducts with ∞ coefficients “most” cases of graphs G di,j related to sizes of connected components of G stuctural induction + Bellman function technique exceptional cases of graphs G non-cancellative paraproducts with BMO coefficients reduction to cancellative paraproducts counterexample for m = 1 or n = 1
  • 74. Part 3 — Multilinear Bellman functions |||| |||| |||| |||| |||| Bellman functions in harmonic analysis Invented by Burkholder (1980s) Developed by Nazarov, Treil, Volberg, etc. (1990s) We only keep the “induction on scales” idea
  • 75. Part 3 — Multilinear Bellman functions |||| |||| |||| |||| |||| Bellman functions in harmonic analysis Invented by Burkholder (1980s) Developed by Nazarov, Treil, Volberg, etc. (1990s) We only keep the “induction on scales” idea A broad class of interesting dyadic objects can be reduced to bounding expressions of the form ΛT (F1, . . . , F ) = Q∈T |Q| AQ(F1, . . . , F ) T = a finite convex tree of dyadic squares AQ(F1, . . . , F ) = some “scale-invariant” quantity depending on F1, . . . , F and Q ∈ T
  • 76. Part 3 — Calculus of finite differences |||| |||| |||| |||| |||| B = BQ(F1, . . . , F ) First order difference of B: B = BQ(F1, . . . , F ) BI×J := 1 4BIleft×Jleft + 1 4BIleft×Jright + 1 4BIright×Jleft + 1 4BIright×Jright − BI×J
  • 77. Part 3 — Calculus of finite differences |||| |||| |||| |||| |||| B = BQ(F1, . . . , F ) First order difference of B: B = BQ(F1, . . . , F ) BI×J := 1 4BIleft×Jleft + 1 4BIleft×Jright + 1 4BIright×Jleft + 1 4BIright×Jright − BI×J Suppose: |A| ≤ B, i.e. |AQ(F1, . . . , F )| ≤ BQ(F1, . . . , F ) for all Q ∈ T and nonnegative bounded measurable F1, . . . , F
  • 78. Part 3 — Calculus of finite differences |||| |||| |||| |||| |||| |AQ(F1, . . . , F )| ≤ BQ(F1, . . . , F ) |Q| |AQ(F1, . . . , F )| ≤ Q is a child of Q |Q| BQ (F1, . . . , F ) − |Q| BQ(F1, . . . , F )
  • 79. Part 3 — Calculus of finite differences |||| |||| |||| |||| |||| |AQ(F1, . . . , F )| ≤ BQ(F1, . . . , F ) |Q| |AQ(F1, . . . , F )| ≤ Q is a child of Q |Q| BQ (F1, . . . , F ) − |Q| BQ(F1, . . . , F ) |ΛT (F1, . . . , F )| ≤ Q∈L(T ) |Q| BQ(F1, . . . , F ) − |QT | BQT (F1, . . . , F ) B = a Bellman function for ΛT
  • 80. Part 4 — Ordinary paraproduct | |||| |||| |||| |||| |||| Dyadic version Td(f , g) := k∈Z (Ekf )(∆kg) Ekf := |I|=2−k 1 |I| I f 1I , ∆kg := Ek+1g − Ekg
  • 81. Part 4 — Ordinary paraproduct | |||| |||| |||| |||| |||| Dyadic version Td(f , g) := k∈Z (Ekf )(∆kg) Ekf := |I|=2−k 1 |I| I f 1I , ∆kg := Ek+1g − Ekg Continuous version Tc(f , g) := k∈Z (Pϕk f )(Pψk g) Pϕk f := f ∗ ϕk, Pψk g := g ∗ ψk ϕ, ψ Schwartz, supp( ˆψ) ⊆ {ξ ∈ R : 1 2 ≤|ξ| ≤ 2} ϕk(t) := 2kϕ(2kt), ψk(t) := 2kψ(2kt)
  • 82. Part 4 — Twisted paraproduct || |||| |||| |||| |||| |||| Dyadic version Td(F, G) := k∈Z (E (1) k F)(∆ (2) k G) E (1) k martingale averages in the 1st variable ∆ (2) k martingale differences in the 2nd variable
  • 83. Part 4 — Twisted paraproduct || |||| |||| |||| |||| |||| Dyadic version Td(F, G) := k∈Z (E (1) k F)(∆ (2) k G) E (1) k martingale averages in the 1st variable ∆ (2) k martingale differences in the 2nd variable Continuous version Tc(F, G) := k∈Z (P(1) ϕk F)(P (2) ψk G) P (1) ϕk , P (2) ψk L-P projections in the 1st and the 2nd variable (P (1) ϕk F)(x, y) := R F(x−t, y)ϕk(t)dt (P (2) ψk G)(x, y) := R G(x, y −t)ψk(t)dt
  • 84. Part 4 — Twisted paraproduct || |||| |||| |||| |||| |||| Dyadic version Td(F, G) := k∈Z (E (1) k F)(∆ (2) k G) Continuous version Tc(F, G) := k∈Z (P(1) ϕk F)(P (2) ψk G) Bilinear multipliers from our theorems reduce to these using cone decomposition of the symbol: m = j m[j] from the Fourier series m[j] (ξ1, η2) = k∈Z ϕ [j] k (ξ1) ψ [j] k (η2)
  • 85. Part 4 — Twisted paraproduct, estimates ||| |||| |||| |||| |||| |||| B( ), _ 2 1 C( )_ 2 1 , _ 2 1 1 2 _,1 4 _ )(E D( )_ 2 1 , 0 0,1 2 _ )(A _ 4 1 _1 q p 1_ 1 0 10 the shaded region – the strong estimate two solid sides of the square – the weak estimate two dashed sides of the square – no estimates the white region – unresolved
  • 86. Part 4 — Proof outline |||| |||| |||| |||| |||| |||| B( ), _ 2 1 C( )_ 2 1 , _ 2 1 1 2 _,1 4 _ )(E D( )_ 2 1 , 0 0,1 2 _ )(A _ 4 1 _1 q p 1_ 1 0 10 Dyadic version Td ABC – a very special case of the technique in Part 3 the rest of the shaded region – conditional proof, F. Bernicot (2010) dashed segments – counterexamples D, E – an alternative purely Bellman function proof Continuous version Tc transition using the Jones-Seeger-Wright square function
  • 87. Part 4 — Transition to cont. version |||| |||| |||| |||| |||| |||| Assume: ψk = φk+1 − φk for some φ Schwartz, R φ = 1 The general case is then obtained by composing with a bounded Fourier multiplier in the second variable
  • 88. Part 4 — Transition to cont. version |||| |||| |||| |||| |||| |||| Assume: ψk = φk+1 − φk for some φ Schwartz, R φ = 1 The general case is then obtained by composing with a bounded Fourier multiplier in the second variable A. Calder´on (1960s), R. L. Jones, A. Seeger and J. Wright (2008) If ϕ is Schwartz and R ϕ = 1, then the square function SF := k∈Z Pϕk F − EkF 2 1/2 satisfies SF Lp (R) p F Lp (R) for 1 < p < ∞.
  • 89. Part 4 — Transition to cont. version |||| |||| |||| |||| |||| |||| Assume: ψk = φk+1 − φk for some φ Schwartz, R φ = 1 The general case is then obtained by composing with a bounded Fourier multiplier in the second variable A. Calder´on (1960s), R. L. Jones, A. Seeger and J. Wright (2008) If ϕ is Schwartz and R ϕ = 1, then the square function SF := k∈Z Pϕk F − EkF 2 1/2 satisfies SF Lp (R) p F Lp (R) for 1 < p < ∞. Proposition Tc(F, G) − Td(F, G) Lpq/(p+q) p,q F Lp G Lq
  • 90. Part 4 — “Entangled” + cont. kernel | |||| |||| |||| |||| |||| |||| General bipartite graphs G How to obtain boundedness of Λ (Fi,j )(i,j)∈E := Rm+n K(x1, . . . , xm, y1, . . . , yn) (i,j)∈E Fi,j (xi , yj ) dx1 . . . dxmdy1 . . . dyn at least for some continuous singular kernels K?
  • 91. Part 4 — “Entangled” + cont. kernel | |||| |||| |||| |||| |||| |||| General bipartite graphs G How to obtain boundedness of Λ (Fi,j )(i,j)∈E := Rm+n K(x1, . . . , xm, y1, . . . , yn) (i,j)∈E Fi,j (xi , yj ) dx1 . . . dxmdy1 . . . dyn at least for some continuous singular kernels K? We can average “entangled” dyadic operators from Part 3 over translated, dilated, and rotated dyadic grids Partial results: One can recover some very special kernels K Possibly all sufficiently smooth translation-invariant kernels This is still far from a complete T(1)-type theorem
  • 92. Currently open problems || |||| |||| |||| |||| |||| |||| Further directions:
  • 93. Currently open problems || |||| |||| |||| |||| |||| |||| Further directions: Translating the results to the case of more general continuous C-Z kernels K Ultimately obtaining a “real” (i.e. non-dyadic) T(1)-type theorem
  • 94. Currently open problems || |||| |||| |||| |||| |||| |||| Further directions: Translating the results to the case of more general continuous C-Z kernels K Ultimately obtaining a “real” (i.e. non-dyadic) T(1)-type theorem Forms corresponding to non-bipartite graphs (such as odd cycles, recall a triangle)
  • 95. Currently open problems || |||| |||| |||| |||| |||| |||| Further directions: Translating the results to the case of more general continuous C-Z kernels K Ultimately obtaining a “real” (i.e. non-dyadic) T(1)-type theorem Forms corresponding to non-bipartite graphs (such as odd cycles, recall a triangle) More singular kernels K, like K(x, y, z) = 1 x+y+z
  • 96. Thank you! ||| |||| |||| |||| |||| |||| |||| Thank you!