SlideShare a Scribd company logo
By 
Mina Alaa Hussein 
Supervisor: 
Assist. Prof. Dr. Mohammed A. Abdala 
Dr. Ali Al-Sherbaz 
9/12/2014 11:24 PM 1
 Aim of Project 
 Introduction 
 Background of multi-channel protocol 
 The problems 
 Simulation 
 Results 
 Conclusion 
9/12/2014 11:24 
PM 2
Aim of Project 
 Introduction 
 Background of multi-channel protocol 
 The problems 
 Simulation 
 Results 
 Conclusion 
9/12/2014 11:24 
PM 3
 The project aims to evaluate and analyse of Medium Access Control 
(MAC) protocol for Vehicular Ad hoc Networks (VANETs) to achieve 
high reliability and low delay delivery of safety related messages as 
well as provide QoS requirements for non-safety messages. 
9/12/2014 11:24 
PM 4
9/12/2014 11:24 
PM 5 
Wish to know about 
traffic jam condition 
at next turn or road 
condition ahead 
Wish to avoid accidents or 
have advance information 
if any met with an 
accidents on the road 
ahead
9/12/2014 11:24 
PM 6 
Wish to have prior 
alert, of vehicle in 
front of you is 
applying breaks
 Aim of Project 
 Introduction 
 Background of multi-channel protocol 
 The problems 
 Simulation 
 Results 
 Conclusion 
9/12/2014 11:24 
PM 7
 VANET (Vehicular Ad-Hoc Networks): is the technology of building a 
robust Ad-Hoc network between mobile vehicles and between 
mobile vehicle and roadside units 
 VANETs are classified as an application of Mobile Ad Hoc Network 
(MANET) that has the potential in improving road safety and in 
providing travelers comfort. 
 VANET applications are classified into two types, safety application 
and non-safety applications. 
 Compared with MANET, VANET has more frequent path loss, a shorter 
link life-time, and lower packet throughput as a result of high 
mobility, road environment, and volume of traffic. 
9/12/2014 11:24 
PM 8
9/12/2014 11:24 PM 9
 Predictable mobility 
 Providing safe driving, improving passenger comfort and enhancing 
traffic efficiency 
 No power constraints 
 Variable network density 
 Rapid changes in network topology 
 Large scale network 
 High computational ability 
9/12/2014 11:24 
PM 10
 Aim of Project 
 Introduction 
 Background of multi-channel protocol 
 The problems 
 Simulation 
 Results 
 Conclusion 
9/12/2014 11:24 PM 11
 IEEE WAVE MAC Protocol (IEEE 
802.11p+IEEE 1609.4) 
 IEEE 802.11p uses CSMA/CA 
 provide data rate from 3 to 27 mbps and bandwidth with 10 MHz 
and communication distance from 300-1000 m distance. 
 uses EDCA QoS extension defined in IEEE 802.11e. 
 IEEE 1609.4 standard enhances the operation of IEEE802.11P by 
supporting multi-channel operation 
Figure 1. Channel allocation for WAVE according to FCC 
9/12/2014 11:24 PM 12
Data rates : 6 to 54Mbps 
signal bandwidth : 20 MHz 
Symbol duration: 4 ㎲ 
Guard Time: 0.8 ㎲ 
FFT period: 3.2 ㎲ 
Preamble duration: 16 ㎲ 
CW min: 15 
CW max: 1023 
9/12/2014 11:24 PM 
13 
Wi-Fi 
802.11 a/b/g 
WAVE 
802.11P 
Data rates : 3 to 27 Mbps 
Signal bandwidth : 10 MHz 
Symbol duration : 8㎲ 
Guard Time : 1.6 ㎲ 
FFT period: 6.4 ㎲ 
Preamble duration: 32 ㎲ 
CW min: 15 
CW max: 1023
9/12/2014 11:24 PM 14 
Implemented 
part
 Aim of Project 
 Introduction 
 Background of multi-channel protocol 
The problems 
 Simulation 
 Results 
 Conclusion 
9/12/2014 11:24 PM 15
9/12/2014 11:24 PM 16
 Aim of Project 
 Introduction 
 Background of multi-channel protocol 
 The problems 
Simulation 
 Results 
 Conclusion 
9/12/2014 11:24 PM 17
OMNeT++ is a popular open source simulator 
SUMO (Simulation of Urban Mobility) 
Veins is an open source framework for running vehicular 
network simulations. 
9/12/2014 11:24 PM 18
Scenarios: Multi-channel & Single-channel 
9/12/2014 11:24 PM 19 
highway 
Low density 
Queue size=1 
A B 
Only Safety messages 
Queue size=2 
Safety & non-safety 
A B 
Implemented 
Using 
Queue size=5 
Or 
A B 
High density 
Queue size=1 
A B 
Queue size=2 
A B 
Queue size=5 
A B 
messages 
Case A: Beacon length=100, packet length= 800 
Case B: Beacon length=400, packet length= 1000
 M1 junction 14 
to junction 15 
 Street length: 2 Km 
 Number of lanes=3 
 Speed range: 80 km/h 
(50 m/h) to 160 km/h 
(100 m/h) 
 acceleration=2.6 m/s² 
 Length of vehicle=5,10 m 
 Min. Gap=2.5 m 
 Krauss Mobility Model 
 Number of vehicle: 
 Low density: ~12vehicle/km/lane 
 High density: ~25vehicle/km/lane 
9/12/2014 11:24 PM 20
9/12/2014 11:24 PM 21
9/12/2014 11:24 PM 22
 Aim of Project 
 Introduction 
 Background of multi-channel protocol 
 The problems 
 Simulation 
Results 
 Conclusion 
9/12/2014 11:24 PM 23
Beacon Delay -msec 
4.183 
4.183 
3.939 
3.655 
3.655 
2.681 2.564 
2.73 2.79 3.655 
2.659 2.79 3.602 
3.65 
9/12/2014 11:24 PM 24 
 Only safety messages used 
2.687 2.56 
2.863 2.77 
4.37 
4.936 
2.711 2.601 4.232 3.602 
30 
25 
20 
15 
10 
5 
0 
low density, single channel high density, single channel low density,multi channel high density, multi channel 
Q=1,B=100,P=800 Q=2,B=100,P=800 Q=5, ,B=100,P=800 
Q=1,B=400, P=1000 Q=2,B=400, P=1000 Q=5,B=400, P=1000
Beacon Throughput- Mbps 
0.127 
0.4985 
0.4985 
0.511 
0.47006 
0.47 
0.47 
0.12084 
0.074 
0.289 
0.296 
0.0716 
0.0716 
0.2741 
0.159 0.13 
9/12/2014 11:24 PM 25 
 Only safety messages used 
0.138 
0.1514 
0.0809 
0.0728 0.126 0.073319 0.082 0.1203 
2 
1.8 
1.6 
1.4 
1.2 
1 
0.8 
0.6 
0.4 
0.2 
0 
low density, single channel high density, single channel low density,multi channel high density, multi channel 
Q=1,B=100,P=800 Q=2,B=100,P=800 Q=5, ,B=100,P=800 
Q=1,B=400, P=1000 Q=2,B=400, P=1000 Q=5,B=400, P=1000
9/12/2014 11:24 PM 26 
 Only safety messages used 
low density, 
single channel 
Lost Packet 
high density, 
single channel 
low 
density,multi 
channel 
high density, 
multi channel 
35000 
30000 
25000 
20000 
15000 
10000 
5000 
0 
Q=5,B=400, P=1000 540 2579 1298 5486 
Q=2,B=400, P=1000 1095 3228.9 1298 5486 
Q=1,B=400, P=1000 742.3 3228.9 1987 5486 
Q=5, ,B=100,P=800 1204.7 2579 3079 4689 
Q=2,B=100,P=800 832.2 2483 1306 4820 
Q=1,B=100,P=800 900 2272 8908 4689
 both safety and non-safety messages used 
Beacon Delay- msec 
4.509 
3.7013 
4.5453 
3.39 4.348 
4.265 
4.868 
3.23 3.987 4.681 4.066 
9/12/2014 11:24 PM 27 
3.399 
4.095 
4.761 4.121 
3.316 
4.275 
4.584 
4.368 
3.23 
4.006 
4.925 
3.2405 4.261 
30 
25 
20 
15 
10 
5 
0 
low density, single channel high density, single channel low density,multi channel high density, multi channel 
Q=1,B=100,P=800 Q=2,B=100,P=800 Q=5, ,B=100,P=800 
Q=1,B=400, P=1000 Q=2,B=400, P=1000 Q=5,B=400, P=1000
 both safety and non-safety messages used 
9/12/2014 11:24 PM 28 
350 Data Delay- msec 
low density, single 
channel 
high density, single 
channel 
low density,multi 
channel 
high density, multi 
channel 
300 
250 
200 
150 
100 
50 
0 
Q=5,B=400, P=1000 5.462 7.4603 53.579 58.181 
Q=2,B=400, P=1000 4.316 5.3594 52.98 53.83 
Q=1,B=400, P=1000 4.128 4.347 51.879 51.6 
Q=5, ,B=100,P=800 4.69 6.897 55.08 57.37 
Q=2,B=100,P=800 4.128 4.927 52.928 53.7 
Q=1,B=100,P=800 3.814 4.174 51.531 51.28
 both safety and non-safety messages used 
9/12/2014 11:24 PM 29 
Lost Packet 
low density, single 
channel 
high density, single 
channel 
low density,multi 
channel 
high density, multi 
channel 
3500000 
3000000 
2500000 
2000000 
1500000 
1000000 
500000 
0 
Q=5,B=400, P=1000 289075 629671 104445 205710 
Q=2,B=400, P=1000 258173 535779 46743 85325 
Q=1,B=400, P=1000 270792 412153 21503 45313 
Q=5, ,B=100,P=800 360661 707406 183571 20568 
Q=2,B=100,P=800 322750 579715 49288 93207 
Q=1,B=100,P=800 263108.9 449010 21361 42883
 both safety and non-safety messages used 
Throughput of Beacon- Mbps 
9/12/2014 11:24 PM 30 
low density, single 
channel 
high density, single 
channel 
low density,multi 
channel 
high density, multi 
channel 
2 
1.8 
1.6 
1.4 
1.2 
1 
0.8 
0.6 
0.4 
0.2 
0 
Q=5,B=400, P=1000 0.1259 0.142 0.2871 0.475 
Q=2,B=400, P=1000 0.128 0.0383 0.2689 0.463 
Q=1,B=400, P=1000 0.1339 0.171 0.285 0.466 
Q=5, ,B=100,P=800 0.0349 0.0394 0.147 0.1186 
Q=2,B=100,P=800 0.036 0.041429 0.0798 0.128 
Q=1,B=100,P=800 0.0386 0.0437 0.06923 0.122
 both safety and non-safety messages used 
9/12/2014 11:24 PM 31 
Throughput of Data - Mbps 
low density, single 
channel 
high density, single 
channel 
low density,multi 
channel 
high density, multi 
channel 
0.35 
0.3 
0.25 
0.2 
0.15 
0.1 
0.05 
0 
Q=5,B=400, P=1000 0.0559 0.03265 0.0144 0.006415 
Q=2,B=400, P=1000 0.055 0.06511 0.008599 0.00435 
Q=1,B=400, P=1000 0.0626 0.0369 0.005599 0.003005 
Q=5, ,B=100,P=800 0.0462 0.0291 0.01085 0.00537 
Q=2,B=100,P=800 0.0454 0.02928 0.00627 0.00349 
Q=1,B=100,P=800 0.05131 0.02905 0.00505 0.00236 
Q=1,B=100,P=800 Q=2,B=100,P=800 Q=5, ,B=100,P=800 
Q=1,B=400, P=1000 Q=2,B=400, P=1000 Q=5,B=400, P=1000
 By setting CWmin=500 
Improved 
58% 
9/12/2014 11:24 PM 32 
21361 
8951 
25000 
20000 
15000 
10000 
5000 
0 
lost packet 
CWmin=15 CWmin=255
 By setting CWmin=500 
9/12/2014 11:24 PM 33 
Beacon Throughput- Mbps 
0.06923 
0.073108 
0.074 
0.073 
0.072 
0.071 
0.07 
0.069 
0.068 
0.067 
Increased 
CWmin=15 CWmin=255 
5%
 By setting CWmin=500 
Decreased 
5% 
9/12/2014 11:24 PM 34 
4.68 
4.473 
4.7 
4.65 
4.6 
4.55 
4.5 
4.45 
4.4 
4.35 
Beacon Delay- msec 
CWmin=15 CWmin=255
 By setting CWmin=500 
9/12/2014 11:24 PM 35 
Increased 
51.531 
55.43 
56 
55 
54 
53 
52 
51 
50 
49 
Data Delay- msec 
5% 
CWmin=15 CWmin=255
 By setting CWmin=500 
9/12/2014 11:24 PM 36 
Data Throughput- Mbps 
Increased 
0.00505 
0.012266 
0.014 
0.012 
0.01 
0.008 
0.006 
0.004 
0.002 
0 
CWmin=15 CWmin=255 
58%
 Aim of Project 
 Introduction 
 Background of multi-channel protocol 
 The problems 
 Simulation 
 Results 
 Conclusion 
9/12/2014 11:24 PM 37
For safety messages 
scenario: 
Throughput of beacon: 
 For both safety and 
non-safety messages 
scenario: 
9/12/2014 11:24 PM 38 
Single-channel>Multi-channel 
• For low density [25.6%] 
• For high density [6%] 
Single-channel 
low density< high 
density [67%] 
Multi-channel 
low density< high 
density [59%] 
Single-channel<Multi-channel 
• For low density [56%] 
• For high density [73%] 
Single-channel 
low density> high 
density [4%] 
Multi-channel 
low density< high 
density [35.8%]
For safety messages 
scenario: 
Delay of beacon: 
 For both safety and 
non-safety messages 
scenario: 
9/12/2014 11:24 PM 39 
Single-channel<Multi-channel 
• For low density [36%] 
• For high density [26%] 
Single-channel 
low density≈ high 
density 
Multi-channel 
low density> high 
density [15.5%] 
• For low density 
Single-channel<Multi-channel[28%] 
• For high density 
Single-channel ≈ Multi-channel 
Single-channel 
low density< high 
density [21.4%] 
Multi-channel 
low density> high 
density [6%]
For safety messages 
scenario: 
Lost Packets: 
 For both safety and 
non-safety messages 
scenario: 
9/12/2014 11:24 PM 40 
Single-channel<Multi-channel 
• For low density [70%] 
• For high density [46%] 
Single-channel 
low density< high 
density [67%] 
Multi-channel 
low density< high 
density [41%] 
Single-channel>Multi-channel 
• For low density [75%] 
• For high density [85%] 
Single-channel 
low density< high 
density [46.7%] 
Multi-channel 
low density< high 
density [13%]
9/12/2014 11:24 PM 41 
 For both safety and non-safety 
messages scenario: 
 Data Delay: 
 Data Throughput: 
Single-channel<Multi-channel 
• For low density [91%] 
• For high density [89%] 
Single-channel 
low density< high 
density [21%] 
Multi-channel 
low density< high 
density [2%] 
Single-channel>Multi-channel 
• For low density [83%] 
• For high density [88%] 
Single-channel 
low density> high 
density [29.7%] 
Multi-channel 
low density>high 
density [50%]
 For only safety messages 
single-channel protocol better than multi-channel protocol 
 For both safety and non-safety messages 
multi-channel protocol better than single-channel protocol 
9/12/2014 11:24 PM 42
 Enhancing IEEE 802.11p single-cahnnel 
protocol by using CWmin= 500. 
 Develop the protocol for multi-hop system. 
 Test the protocol performance in urban 
scenario and investigate the effect of obstacles. 
9/12/2014 11:24 PM 43
9/12/2014 11:24 PM 44

More Related Content

PDF
Employing non-orthogonal multiple access scheme in UAV-based wireless networks
PDF
Determination of optimum fft for wi max under different fading
PDF
802.11-2012 Update
PPTX
Performance Evaluation Of IEEE 802.11p For Vehicular Communication Networks
PDF
Hands-On Networking Fundamentals 2nd Edition Michael Palmer Test Bank
PDF
Hands-On Networking Fundamentals 2nd Edition Michael Palmer Test Bank
PDF
Hands-On Networking Fundamentals 2nd Edition Michael Palmer Test Bank
PDF
Link Planner Proposal Report, Estudio de Enlace Inalambrico 5.8 GHz
Employing non-orthogonal multiple access scheme in UAV-based wireless networks
Determination of optimum fft for wi max under different fading
802.11-2012 Update
Performance Evaluation Of IEEE 802.11p For Vehicular Communication Networks
Hands-On Networking Fundamentals 2nd Edition Michael Palmer Test Bank
Hands-On Networking Fundamentals 2nd Edition Michael Palmer Test Bank
Hands-On Networking Fundamentals 2nd Edition Michael Palmer Test Bank
Link Planner Proposal Report, Estudio de Enlace Inalambrico 5.8 GHz

Similar to Evaluate and Analysis of MAC Protocols for VANET (20)

PPTX
Long-Range Low-power Radio (LoRa).pptx
PPT
Business Model Concepts for Dynamically Provisioned Optical Networks
PDF
Capacity dimension for planning and commissioning
PPTX
Commscope-Andrew SBNHH-1D65A
PDF
6850 product-line-card-extreme wireless
PDF
6850 product-line-card-extreme wireless
PDF
Hands-On Networking Fundamentals 2nd Edition Michael Palmer Test Bank
PDF
Intelligent transportation systems
PDF
Admission control for multihop wireless backhaul networks with qo s
PDF
SOMPA_Wireless_and_WiFi_solutions(E)_rev.1.3_082016
PDF
Project report_new_pdf
PPTX
Michalr
PDF
Low-Loss and High-Bandwidth Multimode Polymer Waveguide Components Using Refr...
PPTX
WiOpt2015_v1.0
PDF
Understand water laser communication using Arduino laser and solar panel
PPTX
Interference-Aware Multipath Routing In Wireless Sensor NetworksMinor projr...
PPTX
Commscope-Andrew LDF12-50
PPTX
Kaelus DBC2037F1V1-1
PPTX
Andrew 641280-DF-9-DCB
PDF
Ihab Eltahan's C.V.
Long-Range Low-power Radio (LoRa).pptx
Business Model Concepts for Dynamically Provisioned Optical Networks
Capacity dimension for planning and commissioning
Commscope-Andrew SBNHH-1D65A
6850 product-line-card-extreme wireless
6850 product-line-card-extreme wireless
Hands-On Networking Fundamentals 2nd Edition Michael Palmer Test Bank
Intelligent transportation systems
Admission control for multihop wireless backhaul networks with qo s
SOMPA_Wireless_and_WiFi_solutions(E)_rev.1.3_082016
Project report_new_pdf
Michalr
Low-Loss and High-Bandwidth Multimode Polymer Waveguide Components Using Refr...
WiOpt2015_v1.0
Understand water laser communication using Arduino laser and solar panel
Interference-Aware Multipath Routing In Wireless Sensor NetworksMinor projr...
Commscope-Andrew LDF12-50
Kaelus DBC2037F1V1-1
Andrew 641280-DF-9-DCB
Ihab Eltahan's C.V.
Ad

More from Scott Turner (20)

PPTX
AI Data Engineering for SMEs - some tricks and tools
PPTX
Practical ways to analyse twitter data - new challenges
PPTX
Socmedhe more than a conference
PPTX
Computing and HealthCare Activity at CCCU - computing Team
PPT
Problem solving and programming
PPTX
Benevolent machine learning and ai
PPTX
Benevolent machine learning sgs
PPTX
You too can analyse social media - well twitter
PPT
Demystifying Blockchain for businesses
PPTX
Benevolent machine learning
PPTX
Volunteering, It is good for the students, communities and the University : R...
PPTX
Code club talk 18 7 2018 - Robots
PPTX
Games in Teaching Programming: HE Perspective
PPTX
Robots Talk British Computer Society Northampton_17_4_2018
PPTX
Blockchain
PPT
Blinking leds
PPTX
The answer's not on the screen
PPTX
Experience of using Spreadsheets as a bridge in the understanding of AI techn...
PPTX
Junkbots 2017
PDF
Pyconuk16 junkbots
AI Data Engineering for SMEs - some tricks and tools
Practical ways to analyse twitter data - new challenges
Socmedhe more than a conference
Computing and HealthCare Activity at CCCU - computing Team
Problem solving and programming
Benevolent machine learning and ai
Benevolent machine learning sgs
You too can analyse social media - well twitter
Demystifying Blockchain for businesses
Benevolent machine learning
Volunteering, It is good for the students, communities and the University : R...
Code club talk 18 7 2018 - Robots
Games in Teaching Programming: HE Perspective
Robots Talk British Computer Society Northampton_17_4_2018
Blockchain
Blinking leds
The answer's not on the screen
Experience of using Spreadsheets as a bridge in the understanding of AI techn...
Junkbots 2017
Pyconuk16 junkbots
Ad

Recently uploaded (20)

PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
Construction Project Organization Group 2.pptx
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
Artificial Intelligence
PPTX
UNIT 4 Total Quality Management .pptx
PDF
PPT on Performance Review to get promotions
PPTX
Geodesy 1.pptx...............................................
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
Sustainable Sites - Green Building Construction
PPTX
OOP with Java - Java Introduction (Basics)
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPT
Mechanical Engineering MATERIALS Selection
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
web development for engineering and engineering
PPTX
Foundation to blockchain - A guide to Blockchain Tech
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Construction Project Organization Group 2.pptx
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
CYBER-CRIMES AND SECURITY A guide to understanding
Artificial Intelligence
UNIT 4 Total Quality Management .pptx
PPT on Performance Review to get promotions
Geodesy 1.pptx...............................................
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
Automation-in-Manufacturing-Chapter-Introduction.pdf
Sustainable Sites - Green Building Construction
OOP with Java - Java Introduction (Basics)
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
Mechanical Engineering MATERIALS Selection
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
web development for engineering and engineering
Foundation to blockchain - A guide to Blockchain Tech

Evaluate and Analysis of MAC Protocols for VANET

  • 1. By Mina Alaa Hussein Supervisor: Assist. Prof. Dr. Mohammed A. Abdala Dr. Ali Al-Sherbaz 9/12/2014 11:24 PM 1
  • 2.  Aim of Project  Introduction  Background of multi-channel protocol  The problems  Simulation  Results  Conclusion 9/12/2014 11:24 PM 2
  • 3. Aim of Project  Introduction  Background of multi-channel protocol  The problems  Simulation  Results  Conclusion 9/12/2014 11:24 PM 3
  • 4.  The project aims to evaluate and analyse of Medium Access Control (MAC) protocol for Vehicular Ad hoc Networks (VANETs) to achieve high reliability and low delay delivery of safety related messages as well as provide QoS requirements for non-safety messages. 9/12/2014 11:24 PM 4
  • 5. 9/12/2014 11:24 PM 5 Wish to know about traffic jam condition at next turn or road condition ahead Wish to avoid accidents or have advance information if any met with an accidents on the road ahead
  • 6. 9/12/2014 11:24 PM 6 Wish to have prior alert, of vehicle in front of you is applying breaks
  • 7.  Aim of Project  Introduction  Background of multi-channel protocol  The problems  Simulation  Results  Conclusion 9/12/2014 11:24 PM 7
  • 8.  VANET (Vehicular Ad-Hoc Networks): is the technology of building a robust Ad-Hoc network between mobile vehicles and between mobile vehicle and roadside units  VANETs are classified as an application of Mobile Ad Hoc Network (MANET) that has the potential in improving road safety and in providing travelers comfort.  VANET applications are classified into two types, safety application and non-safety applications.  Compared with MANET, VANET has more frequent path loss, a shorter link life-time, and lower packet throughput as a result of high mobility, road environment, and volume of traffic. 9/12/2014 11:24 PM 8
  • 10.  Predictable mobility  Providing safe driving, improving passenger comfort and enhancing traffic efficiency  No power constraints  Variable network density  Rapid changes in network topology  Large scale network  High computational ability 9/12/2014 11:24 PM 10
  • 11.  Aim of Project  Introduction  Background of multi-channel protocol  The problems  Simulation  Results  Conclusion 9/12/2014 11:24 PM 11
  • 12.  IEEE WAVE MAC Protocol (IEEE 802.11p+IEEE 1609.4)  IEEE 802.11p uses CSMA/CA  provide data rate from 3 to 27 mbps and bandwidth with 10 MHz and communication distance from 300-1000 m distance.  uses EDCA QoS extension defined in IEEE 802.11e.  IEEE 1609.4 standard enhances the operation of IEEE802.11P by supporting multi-channel operation Figure 1. Channel allocation for WAVE according to FCC 9/12/2014 11:24 PM 12
  • 13. Data rates : 6 to 54Mbps signal bandwidth : 20 MHz Symbol duration: 4 ㎲ Guard Time: 0.8 ㎲ FFT period: 3.2 ㎲ Preamble duration: 16 ㎲ CW min: 15 CW max: 1023 9/12/2014 11:24 PM 13 Wi-Fi 802.11 a/b/g WAVE 802.11P Data rates : 3 to 27 Mbps Signal bandwidth : 10 MHz Symbol duration : 8㎲ Guard Time : 1.6 ㎲ FFT period: 6.4 ㎲ Preamble duration: 32 ㎲ CW min: 15 CW max: 1023
  • 14. 9/12/2014 11:24 PM 14 Implemented part
  • 15.  Aim of Project  Introduction  Background of multi-channel protocol The problems  Simulation  Results  Conclusion 9/12/2014 11:24 PM 15
  • 17.  Aim of Project  Introduction  Background of multi-channel protocol  The problems Simulation  Results  Conclusion 9/12/2014 11:24 PM 17
  • 18. OMNeT++ is a popular open source simulator SUMO (Simulation of Urban Mobility) Veins is an open source framework for running vehicular network simulations. 9/12/2014 11:24 PM 18
  • 19. Scenarios: Multi-channel & Single-channel 9/12/2014 11:24 PM 19 highway Low density Queue size=1 A B Only Safety messages Queue size=2 Safety & non-safety A B Implemented Using Queue size=5 Or A B High density Queue size=1 A B Queue size=2 A B Queue size=5 A B messages Case A: Beacon length=100, packet length= 800 Case B: Beacon length=400, packet length= 1000
  • 20.  M1 junction 14 to junction 15  Street length: 2 Km  Number of lanes=3  Speed range: 80 km/h (50 m/h) to 160 km/h (100 m/h)  acceleration=2.6 m/s²  Length of vehicle=5,10 m  Min. Gap=2.5 m  Krauss Mobility Model  Number of vehicle:  Low density: ~12vehicle/km/lane  High density: ~25vehicle/km/lane 9/12/2014 11:24 PM 20
  • 23.  Aim of Project  Introduction  Background of multi-channel protocol  The problems  Simulation Results  Conclusion 9/12/2014 11:24 PM 23
  • 24. Beacon Delay -msec 4.183 4.183 3.939 3.655 3.655 2.681 2.564 2.73 2.79 3.655 2.659 2.79 3.602 3.65 9/12/2014 11:24 PM 24  Only safety messages used 2.687 2.56 2.863 2.77 4.37 4.936 2.711 2.601 4.232 3.602 30 25 20 15 10 5 0 low density, single channel high density, single channel low density,multi channel high density, multi channel Q=1,B=100,P=800 Q=2,B=100,P=800 Q=5, ,B=100,P=800 Q=1,B=400, P=1000 Q=2,B=400, P=1000 Q=5,B=400, P=1000
  • 25. Beacon Throughput- Mbps 0.127 0.4985 0.4985 0.511 0.47006 0.47 0.47 0.12084 0.074 0.289 0.296 0.0716 0.0716 0.2741 0.159 0.13 9/12/2014 11:24 PM 25  Only safety messages used 0.138 0.1514 0.0809 0.0728 0.126 0.073319 0.082 0.1203 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 low density, single channel high density, single channel low density,multi channel high density, multi channel Q=1,B=100,P=800 Q=2,B=100,P=800 Q=5, ,B=100,P=800 Q=1,B=400, P=1000 Q=2,B=400, P=1000 Q=5,B=400, P=1000
  • 26. 9/12/2014 11:24 PM 26  Only safety messages used low density, single channel Lost Packet high density, single channel low density,multi channel high density, multi channel 35000 30000 25000 20000 15000 10000 5000 0 Q=5,B=400, P=1000 540 2579 1298 5486 Q=2,B=400, P=1000 1095 3228.9 1298 5486 Q=1,B=400, P=1000 742.3 3228.9 1987 5486 Q=5, ,B=100,P=800 1204.7 2579 3079 4689 Q=2,B=100,P=800 832.2 2483 1306 4820 Q=1,B=100,P=800 900 2272 8908 4689
  • 27.  both safety and non-safety messages used Beacon Delay- msec 4.509 3.7013 4.5453 3.39 4.348 4.265 4.868 3.23 3.987 4.681 4.066 9/12/2014 11:24 PM 27 3.399 4.095 4.761 4.121 3.316 4.275 4.584 4.368 3.23 4.006 4.925 3.2405 4.261 30 25 20 15 10 5 0 low density, single channel high density, single channel low density,multi channel high density, multi channel Q=1,B=100,P=800 Q=2,B=100,P=800 Q=5, ,B=100,P=800 Q=1,B=400, P=1000 Q=2,B=400, P=1000 Q=5,B=400, P=1000
  • 28.  both safety and non-safety messages used 9/12/2014 11:24 PM 28 350 Data Delay- msec low density, single channel high density, single channel low density,multi channel high density, multi channel 300 250 200 150 100 50 0 Q=5,B=400, P=1000 5.462 7.4603 53.579 58.181 Q=2,B=400, P=1000 4.316 5.3594 52.98 53.83 Q=1,B=400, P=1000 4.128 4.347 51.879 51.6 Q=5, ,B=100,P=800 4.69 6.897 55.08 57.37 Q=2,B=100,P=800 4.128 4.927 52.928 53.7 Q=1,B=100,P=800 3.814 4.174 51.531 51.28
  • 29.  both safety and non-safety messages used 9/12/2014 11:24 PM 29 Lost Packet low density, single channel high density, single channel low density,multi channel high density, multi channel 3500000 3000000 2500000 2000000 1500000 1000000 500000 0 Q=5,B=400, P=1000 289075 629671 104445 205710 Q=2,B=400, P=1000 258173 535779 46743 85325 Q=1,B=400, P=1000 270792 412153 21503 45313 Q=5, ,B=100,P=800 360661 707406 183571 20568 Q=2,B=100,P=800 322750 579715 49288 93207 Q=1,B=100,P=800 263108.9 449010 21361 42883
  • 30.  both safety and non-safety messages used Throughput of Beacon- Mbps 9/12/2014 11:24 PM 30 low density, single channel high density, single channel low density,multi channel high density, multi channel 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 Q=5,B=400, P=1000 0.1259 0.142 0.2871 0.475 Q=2,B=400, P=1000 0.128 0.0383 0.2689 0.463 Q=1,B=400, P=1000 0.1339 0.171 0.285 0.466 Q=5, ,B=100,P=800 0.0349 0.0394 0.147 0.1186 Q=2,B=100,P=800 0.036 0.041429 0.0798 0.128 Q=1,B=100,P=800 0.0386 0.0437 0.06923 0.122
  • 31.  both safety and non-safety messages used 9/12/2014 11:24 PM 31 Throughput of Data - Mbps low density, single channel high density, single channel low density,multi channel high density, multi channel 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 Q=5,B=400, P=1000 0.0559 0.03265 0.0144 0.006415 Q=2,B=400, P=1000 0.055 0.06511 0.008599 0.00435 Q=1,B=400, P=1000 0.0626 0.0369 0.005599 0.003005 Q=5, ,B=100,P=800 0.0462 0.0291 0.01085 0.00537 Q=2,B=100,P=800 0.0454 0.02928 0.00627 0.00349 Q=1,B=100,P=800 0.05131 0.02905 0.00505 0.00236 Q=1,B=100,P=800 Q=2,B=100,P=800 Q=5, ,B=100,P=800 Q=1,B=400, P=1000 Q=2,B=400, P=1000 Q=5,B=400, P=1000
  • 32.  By setting CWmin=500 Improved 58% 9/12/2014 11:24 PM 32 21361 8951 25000 20000 15000 10000 5000 0 lost packet CWmin=15 CWmin=255
  • 33.  By setting CWmin=500 9/12/2014 11:24 PM 33 Beacon Throughput- Mbps 0.06923 0.073108 0.074 0.073 0.072 0.071 0.07 0.069 0.068 0.067 Increased CWmin=15 CWmin=255 5%
  • 34.  By setting CWmin=500 Decreased 5% 9/12/2014 11:24 PM 34 4.68 4.473 4.7 4.65 4.6 4.55 4.5 4.45 4.4 4.35 Beacon Delay- msec CWmin=15 CWmin=255
  • 35.  By setting CWmin=500 9/12/2014 11:24 PM 35 Increased 51.531 55.43 56 55 54 53 52 51 50 49 Data Delay- msec 5% CWmin=15 CWmin=255
  • 36.  By setting CWmin=500 9/12/2014 11:24 PM 36 Data Throughput- Mbps Increased 0.00505 0.012266 0.014 0.012 0.01 0.008 0.006 0.004 0.002 0 CWmin=15 CWmin=255 58%
  • 37.  Aim of Project  Introduction  Background of multi-channel protocol  The problems  Simulation  Results  Conclusion 9/12/2014 11:24 PM 37
  • 38. For safety messages scenario: Throughput of beacon:  For both safety and non-safety messages scenario: 9/12/2014 11:24 PM 38 Single-channel>Multi-channel • For low density [25.6%] • For high density [6%] Single-channel low density< high density [67%] Multi-channel low density< high density [59%] Single-channel<Multi-channel • For low density [56%] • For high density [73%] Single-channel low density> high density [4%] Multi-channel low density< high density [35.8%]
  • 39. For safety messages scenario: Delay of beacon:  For both safety and non-safety messages scenario: 9/12/2014 11:24 PM 39 Single-channel<Multi-channel • For low density [36%] • For high density [26%] Single-channel low density≈ high density Multi-channel low density> high density [15.5%] • For low density Single-channel<Multi-channel[28%] • For high density Single-channel ≈ Multi-channel Single-channel low density< high density [21.4%] Multi-channel low density> high density [6%]
  • 40. For safety messages scenario: Lost Packets:  For both safety and non-safety messages scenario: 9/12/2014 11:24 PM 40 Single-channel<Multi-channel • For low density [70%] • For high density [46%] Single-channel low density< high density [67%] Multi-channel low density< high density [41%] Single-channel>Multi-channel • For low density [75%] • For high density [85%] Single-channel low density< high density [46.7%] Multi-channel low density< high density [13%]
  • 41. 9/12/2014 11:24 PM 41  For both safety and non-safety messages scenario:  Data Delay:  Data Throughput: Single-channel<Multi-channel • For low density [91%] • For high density [89%] Single-channel low density< high density [21%] Multi-channel low density< high density [2%] Single-channel>Multi-channel • For low density [83%] • For high density [88%] Single-channel low density> high density [29.7%] Multi-channel low density>high density [50%]
  • 42.  For only safety messages single-channel protocol better than multi-channel protocol  For both safety and non-safety messages multi-channel protocol better than single-channel protocol 9/12/2014 11:24 PM 42
  • 43.  Enhancing IEEE 802.11p single-cahnnel protocol by using CWmin= 500.  Develop the protocol for multi-hop system.  Test the protocol performance in urban scenario and investigate the effect of obstacles. 9/12/2014 11:24 PM 43

Editor's Notes

  • #27: In the WAVE model application data was sent over a Service Channel (SCH) while beacon messages were only sent on the Control Channel (CCH). We furthermore analyzed the beacon delay, that is the time from the generation of a beacon message at one vehicle to its actual reception at another vehicle under different beacon generation rates the delay for all implemented protocols starts low and increases with an increasing number of vehicles. For 802.11p, we can see that at the beginning it was performing well however when the number of vehicles increases, the interference increases degrading the performance