SlideShare a Scribd company logo
• Decision making environment
• Under uncertainty and
• Under Risk
• Numerical solution
• Dr.Ammara Omer Khakwani
Monthly copy costs for business analytics department
10,000 copies per
month
20,000 copies per
month
30,000 copies per
month
Machine A 950 1,050 1,150
Machine B 850 1,100 1,350
Machine C 700 1,000 1,300
Decision making under uncertainty
• optimistic
• Pessimistic
• Criterion of realism (Hurwicz)
• Equally likely (laplace)
• Minimax Regret
Maximax (optimistic)
10,000 copies per
month
20,000 copies per
month
30,000 copies
per month
Best payoff
maximum
Machine A 950 1,050 1,150 1,150
Machine B 850 1,100 1,350 1,350
Machine C 700 1,000 1,300 1,300
Maximin (Pessimistic)
10,000 copies per
month
20,000 copies per
month
30,000 copies
per month
Worst payoff
Maximin
Machine A 950 1,050 1,150 950
Machine B 850 1,100 1,350 850
Machine C 700 1,000 1,300 700
Hurwicz criterion (criterion of realism)
Weighted average
= α(best in row) +
(1-α)(worst in row)
+ 10,000
copies per
month
20,000
copies per
month
30,000
copies per
month
Weighted average
Machine A 950 1,050 1,150 =(0.5)(1,150)+(1-0.5)(950)
=575+475=
1050
Machine B 850 1,100 1,350 =(0.5)(1,350)+(1-0.5)(850)
=675+425=1100
1100 (Decision)
Machine C 700 1,000 1,300 =(0.5)(1,300)+(1-0.5)(700)
=650+350=
1000
Hurwicz criterion (criterion of realism) (α=0.5)
10,000
copies
per
month
20,000
copies per
month
30,000
copies per
month
average
Machine A 950 1,050 1,150 950+1050+1150/3=1050
Machine B 850 1,100 1,350 850+1100+1350/3=1100
Machine C 700 1,000 1,300 700+1000+1300/3=1000
Lowest cost
Equally Likely (Laplace ) approach
10,000 copies per
month
20,000 copies per
month
30,000 copies
per month
Maximum
regret
Machine A 950
1150-950=200
1,050
1150-1050=100
1,150
1150-1150=0
200
Lowest value
Choose machine
Machine B 850
1350-850=500
1,100
1350-1100=250
1,350
1350-1350=0
500
Machine C 700
1300-700=600
1,000
1300-1000=300
1,300
1300-1300=0
600
Minimax Regret
Decision making under risk
•Expected monetary value. EMV=∑XP(X)
•Expected value of perfect information.
(EVPI=EVwPI – Best EMV)
•Expected opportunity loss.
(Opportunity loss X Probability )+(Opportunity loss X probability)
•Sensitivity analysis
10,000
copies
per
month
20,000
copies per
month
30,000
copies per
month
EMV
Machine A 950 1,050 1,150 =0.4x(950)+0.3x(1050)+0.3x(1150)
=1040
Machine B 850 1,100 1,350 =0.4x(850)+0.3x(1100)+0.3x(1350)
=1075
Machine C 700 1,000 1,300 =0.4x(700)+0.3x(1000)+0.3x(1300)
=970
Expected monetary value. EMV=∑XP(X)
probabilities 0.4
10,000
copies
per
month
0.3
20,000
copies per
month
0.3
30,000
copies
per
month
EMV=
EVwPI=$925
Best EMV without perfect
information=$970
EVPI=970-925=$45
Perfect information would
lower the expected value
by $45
Machine A 950 1,050 1,150 =0.4x(950)+0.3x(1050)+0.3x(1150)=1040
Machine B 850 1,100 1,350 =0.4x(850)+0.3x(1100)+0.3x(1350)=1075
Machine C 700 1,000 1,300 =0.4x(700)+0.3x(1000)+0.3x(1300)=970
With perfect
information
700 1000 1150 Best payoff with lowest information
(0.4x700)+(0.3x1000)+(1150x0.3)
=280+300+345=925
Expected value of perfect information)
Probabilities 0.4
10,000 copies
per month
0.3
20,000 copies per
month
0.3
30,000 copies
per month
EOL
Machine A 950
250 Max
1,050
50
1,150
0
250x0.4+0.3x50
+0.3x0=115
Machine B
Best
decision
850
150
1,100
100
1,350
200 Max
0.4x150+0.3x10
0+0.3x200=150
Machine C 700
0
1,000
0
1,300
150Max
0.4x0+0.3x0+0.3
x150=45
minimum
Expected opportunity loss (Min EOL decision=Max EMV decision)
Sensitivity analysis
• P= probability of favorable market
• Express EMV in terms of P
• Mi P- (1-P)mi
• Find range of p values
Best alternatives Range of P values
Machine A 1150P- 950(1-P)
=2100P-950=0
P1 = 0.45
Machine B 1350P-850(1-P)
=2200P-850=0
P2 = 0.38
Machine C 1150P- 700(1-P)
1850P-700=0
P3 = 0.378

More Related Content

PDF
Transportation problem
DOC
Exercise 7 30
PPTX
Operations management - Airline Scheduling
PDF
Total costs
DOCX
Supply Chain Optimization Projects
PDF
Equal percentage calculation
PPTX
Standard Costing and Variance Analysis Problems and solutions.pptx
DOCX
Operations research: An Introduction to Management Science, Quantative Appro...
Transportation problem
Exercise 7 30
Operations management - Airline Scheduling
Total costs
Supply Chain Optimization Projects
Equal percentage calculation
Standard Costing and Variance Analysis Problems and solutions.pptx
Operations research: An Introduction to Management Science, Quantative Appro...

More from Dr.ammara khakwani (10)

PDF
1.A New Ridge-Type Estimator for the Linear Regression Model.pdf
PPTX
Decision tree in decision analysis
PPT
Qualitative Research methods
DOCX
Example of decision making steps
PPTX
Presentation lecture 2nd quantitative techniques
PPTX
Decision analysis
PPTX
data analysis techniques and statistical softwares
PPTX
Statistics and agricultural
DOCX
Statistics and agricultural lecture 1
PPTX
Regression analysis
1.A New Ridge-Type Estimator for the Linear Regression Model.pdf
Decision tree in decision analysis
Qualitative Research methods
Example of decision making steps
Presentation lecture 2nd quantitative techniques
Decision analysis
data analysis techniques and statistical softwares
Statistics and agricultural
Statistics and agricultural lecture 1
Regression analysis
Ad

Recently uploaded (20)

PDF
ORGANIZATIONAL communication -concepts and importance._20250806_112132_0000.pdf
PDF
The Plan: Save the Palestinian Nation Now
PDF
Features of Effective decision making in Management
PPTX
Consulting on marketing-The needs wants and demands are a very important comp...
PDF
Contemporary management and it's content
PPTX
Supervisory Styles and When to Use Them!
PDF
CHAPTER 14 Manageement of Nursing Educational Institutions- planing and orga...
PDF
Leveraging Intangible Assets Through Campus Entrepreneurship and Tech Transfer
PDF
Human resources management is a best management
PPTX
Course Overview of the Course Titled.pptx
PPTX
Press Release Importance & Structure.pptx
PDF
CHAPTER 14 Manageement of Nursing Educational Institutions- planing and orga...
PDF
MANAGEMENT LESSONS FROM ANCIENT KNOWLEDGE SYSTEM-ARTHASHASTRA AND THIRUKKURAL...
PDF
Timeless Leadership Principles from History’s Greatest Figures by Alfonso Ken...
PPTX
TCoE_IT_Concrete industry.why is it required
PDF
Phillips model training for evaluation pdf
PPT
Claims and Adjustment Business_Communication.pptx.ppt
PPTX
Human Resources management _HR structure
PPTX
Psychological_Contract_Presentation.pptx
PDF
Case study -Uber strategic plan and management
ORGANIZATIONAL communication -concepts and importance._20250806_112132_0000.pdf
The Plan: Save the Palestinian Nation Now
Features of Effective decision making in Management
Consulting on marketing-The needs wants and demands are a very important comp...
Contemporary management and it's content
Supervisory Styles and When to Use Them!
CHAPTER 14 Manageement of Nursing Educational Institutions- planing and orga...
Leveraging Intangible Assets Through Campus Entrepreneurship and Tech Transfer
Human resources management is a best management
Course Overview of the Course Titled.pptx
Press Release Importance & Structure.pptx
CHAPTER 14 Manageement of Nursing Educational Institutions- planing and orga...
MANAGEMENT LESSONS FROM ANCIENT KNOWLEDGE SYSTEM-ARTHASHASTRA AND THIRUKKURAL...
Timeless Leadership Principles from History’s Greatest Figures by Alfonso Ken...
TCoE_IT_Concrete industry.why is it required
Phillips model training for evaluation pdf
Claims and Adjustment Business_Communication.pptx.ppt
Human Resources management _HR structure
Psychological_Contract_Presentation.pptx
Case study -Uber strategic plan and management
Ad

Example of enivornment decisions

  • 1. • Decision making environment • Under uncertainty and • Under Risk • Numerical solution • Dr.Ammara Omer Khakwani
  • 2. Monthly copy costs for business analytics department 10,000 copies per month 20,000 copies per month 30,000 copies per month Machine A 950 1,050 1,150 Machine B 850 1,100 1,350 Machine C 700 1,000 1,300
  • 3. Decision making under uncertainty • optimistic • Pessimistic • Criterion of realism (Hurwicz) • Equally likely (laplace) • Minimax Regret
  • 4. Maximax (optimistic) 10,000 copies per month 20,000 copies per month 30,000 copies per month Best payoff maximum Machine A 950 1,050 1,150 1,150 Machine B 850 1,100 1,350 1,350 Machine C 700 1,000 1,300 1,300
  • 5. Maximin (Pessimistic) 10,000 copies per month 20,000 copies per month 30,000 copies per month Worst payoff Maximin Machine A 950 1,050 1,150 950 Machine B 850 1,100 1,350 850 Machine C 700 1,000 1,300 700
  • 6. Hurwicz criterion (criterion of realism) Weighted average = α(best in row) + (1-α)(worst in row)
  • 7. + 10,000 copies per month 20,000 copies per month 30,000 copies per month Weighted average Machine A 950 1,050 1,150 =(0.5)(1,150)+(1-0.5)(950) =575+475= 1050 Machine B 850 1,100 1,350 =(0.5)(1,350)+(1-0.5)(850) =675+425=1100 1100 (Decision) Machine C 700 1,000 1,300 =(0.5)(1,300)+(1-0.5)(700) =650+350= 1000 Hurwicz criterion (criterion of realism) (α=0.5)
  • 8. 10,000 copies per month 20,000 copies per month 30,000 copies per month average Machine A 950 1,050 1,150 950+1050+1150/3=1050 Machine B 850 1,100 1,350 850+1100+1350/3=1100 Machine C 700 1,000 1,300 700+1000+1300/3=1000 Lowest cost Equally Likely (Laplace ) approach
  • 9. 10,000 copies per month 20,000 copies per month 30,000 copies per month Maximum regret Machine A 950 1150-950=200 1,050 1150-1050=100 1,150 1150-1150=0 200 Lowest value Choose machine Machine B 850 1350-850=500 1,100 1350-1100=250 1,350 1350-1350=0 500 Machine C 700 1300-700=600 1,000 1300-1000=300 1,300 1300-1300=0 600 Minimax Regret
  • 10. Decision making under risk •Expected monetary value. EMV=∑XP(X) •Expected value of perfect information. (EVPI=EVwPI – Best EMV) •Expected opportunity loss. (Opportunity loss X Probability )+(Opportunity loss X probability) •Sensitivity analysis
  • 11. 10,000 copies per month 20,000 copies per month 30,000 copies per month EMV Machine A 950 1,050 1,150 =0.4x(950)+0.3x(1050)+0.3x(1150) =1040 Machine B 850 1,100 1,350 =0.4x(850)+0.3x(1100)+0.3x(1350) =1075 Machine C 700 1,000 1,300 =0.4x(700)+0.3x(1000)+0.3x(1300) =970 Expected monetary value. EMV=∑XP(X)
  • 12. probabilities 0.4 10,000 copies per month 0.3 20,000 copies per month 0.3 30,000 copies per month EMV= EVwPI=$925 Best EMV without perfect information=$970 EVPI=970-925=$45 Perfect information would lower the expected value by $45 Machine A 950 1,050 1,150 =0.4x(950)+0.3x(1050)+0.3x(1150)=1040 Machine B 850 1,100 1,350 =0.4x(850)+0.3x(1100)+0.3x(1350)=1075 Machine C 700 1,000 1,300 =0.4x(700)+0.3x(1000)+0.3x(1300)=970 With perfect information 700 1000 1150 Best payoff with lowest information (0.4x700)+(0.3x1000)+(1150x0.3) =280+300+345=925 Expected value of perfect information)
  • 13. Probabilities 0.4 10,000 copies per month 0.3 20,000 copies per month 0.3 30,000 copies per month EOL Machine A 950 250 Max 1,050 50 1,150 0 250x0.4+0.3x50 +0.3x0=115 Machine B Best decision 850 150 1,100 100 1,350 200 Max 0.4x150+0.3x10 0+0.3x200=150 Machine C 700 0 1,000 0 1,300 150Max 0.4x0+0.3x0+0.3 x150=45 minimum Expected opportunity loss (Min EOL decision=Max EMV decision)
  • 14. Sensitivity analysis • P= probability of favorable market • Express EMV in terms of P • Mi P- (1-P)mi • Find range of p values
  • 15. Best alternatives Range of P values Machine A 1150P- 950(1-P) =2100P-950=0 P1 = 0.45 Machine B 1350P-850(1-P) =2200P-850=0 P2 = 0.38 Machine C 1150P- 700(1-P) 1850P-700=0 P3 = 0.378