SlideShare a Scribd company logo
THEORY OF ELASTICITY & PLASTICITY
NUMERICAL PROBLEM
Done by: Ashwani Jha
Question: Find the approximate deflection of a simply supported beam carrying
a symmetrical Triangular load P using Rayleigh Ritz method.
Solution:
Let w(x) denote the deflection of the beam(field variable).The differential
equation formulation leads to following statement of the problem:
i.e it satisfies the governing equation
. /
And the boundary conditions
{
( ) ( )
( ) ( ) ( ) ( )
}
P
Total energy i.e. potential energy of the system is given below:
Π= ∫ [ ( ) ( )]
Replace P=8
( )
( )
( )
9
Π= [∫ { ( ) ( )} ∫ { ( ) (
( )
)} ]
Where E=Young’s Modulus
I=Moment of inertia, l=length of beam, P=load on beam
Now we are integrating above equation denoted in different color
separately.
Let here w(x)=
( ) ( ) , where C1 and C2 are constant
After using the value of and w in above equation we have,
∫ 0 ( ( ) ( ) ) .
( )
/1
∫ 6 2 ( ) ( ) ( ) ( ) ( ) ( ) 3
4
( )
57 ( )
We know that, ∫ 2 3
∫
Therefore, equation (1) becomes
2 ( ) ( ) 3 ∫ 64
( )
57
2 ( ) ( ) 3 ∫ 64
( )
57 ( )
∫ [ ∫ ∫ ( ) ]
[ ∫ ( ) ]
0 ( ) ( )1
0( ) 1
Similarly
∫ ( )
Now equation (2) becomes
2 ( ) ( ) 3 0 ( ) ( ) 1 ( )
∫ * ( ) (
( )
)+ = ∫ * ( ) ( )+
∫ 6 . / 8 ( )
( )
97
∫ [ ∫ ∫ ( ) ]
[ ∫ ( ) ]
[ ∫ ( ) ]
[ ( ) ]
Similarly,
∫ 0 ( ) 1
Therefore, I2 now becomes after substituting the value
{ ( ) ( ) } , - 0 2 ( ) 3
{ ( ) }1…… (4)
Therefore, Π= [ ]
i.e. Π= 0 , ( ) ( ) - * ( ) ( ) + , ( )
( ) - , - * , ( ) - , ( ) -+1
where C1 and C2 are independent constant. For the minimum of π we have
{ ( ) } , - =0
{ ( ) }=0
Therefore,
( ) , which is the deflection of beam.
The deflection of beam at the middle point of beam(i.e. at l/2) is given by
( ) ( )
which compare with the exact solution
( ) ( )

More Related Content

PDF
Solucion semana 16
PDF
WDL - Hướng dẫn sử dụng phần mềm tính toán tải trọng Gió
PDF
2-D formulation Plane theory of elasticity Att 6672
PPT
Engineering Mechanice Lecture 02
PDF
Bài giảng nền móng_ thầy Nguyễn Sĩ Hùng_Sư phạm kĩ thuật TP.HCM_2015
PDF
TÍNH TOÁN CỐT ĐAI DẦM THEO TCVN 5574-2018
PDF
Unit 6- Plate Bending Theory.pdf
PDF
BÀI TẬP CÓ LỜI GIẢI - ĐỘNG LỰC HỌC CÔNG TRÌNH
Solucion semana 16
WDL - Hướng dẫn sử dụng phần mềm tính toán tải trọng Gió
2-D formulation Plane theory of elasticity Att 6672
Engineering Mechanice Lecture 02
Bài giảng nền móng_ thầy Nguyễn Sĩ Hùng_Sư phạm kĩ thuật TP.HCM_2015
TÍNH TOÁN CỐT ĐAI DẦM THEO TCVN 5574-2018
Unit 6- Plate Bending Theory.pdf
BÀI TẬP CÓ LỜI GIẢI - ĐỘNG LỰC HỌC CÔNG TRÌNH

What's hot (20)

PDF
Axial member
PDF
Solution manual for introduction to finite element analysis and design nam ...
PDF
Strength of materials
PDF
Giáo trình Kỹ Thuật Thi Công Tập 2 - Đỗ Đình Đức
PDF
Mechanics of materials 9th edition goodno solutions manual
PDF
Lecture3
PPSX
Estados de Tensión y Deformación - Ejercicio N° 13 (V).ppsx
PDF
Đề tài: Tính toán sàn, dầm bê tông cốt thép ứng lực trước căng sau
PDF
Cơ học kết cấu t.1 - hệ tĩnh định - lều thọ trình
PDF
Tính toán độ võng của Dầm theo TCVN
PDF
KCS KTV - Phần mềm kiểm tra cốt thép Vách
PDF
Thuyet minh be nuoc ngam
PPTX
Kane/DeAlbert dynamics for multibody system
PDF
Tính toán Thực hành Cấu kiện Bê tông cốt thép - Tập 1 - Nguyễn Đình Cống
PDF
Kết cấu bê tông cốt thép võ bá tầm. t.3 , các cấu kiện đặc biệt.- đại học quố...
PDF
Tinh toan dien tich cot thep san tu noi luc cua etabs
DOCX
Unsymmetrical bending and shear centre
PDF
Giáo trình Thi công Nhà cao tầng - Nguyễn Xuân Trọng
PDF
Hệ thống công thức cơ học đất
PPTX
Analysis of Thin Plates
Axial member
Solution manual for introduction to finite element analysis and design nam ...
Strength of materials
Giáo trình Kỹ Thuật Thi Công Tập 2 - Đỗ Đình Đức
Mechanics of materials 9th edition goodno solutions manual
Lecture3
Estados de Tensión y Deformación - Ejercicio N° 13 (V).ppsx
Đề tài: Tính toán sàn, dầm bê tông cốt thép ứng lực trước căng sau
Cơ học kết cấu t.1 - hệ tĩnh định - lều thọ trình
Tính toán độ võng của Dầm theo TCVN
KCS KTV - Phần mềm kiểm tra cốt thép Vách
Thuyet minh be nuoc ngam
Kane/DeAlbert dynamics for multibody system
Tính toán Thực hành Cấu kiện Bê tông cốt thép - Tập 1 - Nguyễn Đình Cống
Kết cấu bê tông cốt thép võ bá tầm. t.3 , các cấu kiện đặc biệt.- đại học quố...
Tinh toan dien tich cot thep san tu noi luc cua etabs
Unsymmetrical bending and shear centre
Giáo trình Thi công Nhà cao tầng - Nguyễn Xuân Trọng
Hệ thống công thức cơ học đất
Analysis of Thin Plates
Ad

Viewers also liked (13)

PPT
6002 notes 07_l7
PPTX
Final Bachelor thesis Presentation
PPT
Chapter4
PDF
Engineering materials related terms .
PPTX
PDF
A review on stress analysis and weight reduction of automobile chassis
PPTX
Two wheeler and its chassis
PPTX
Baja vehicle chasis design & analysis
PPTX
Stress Analysis of a heavy duty vehicle chassis by using FEA
PDF
Beam theory
PPTX
DESIGN & STRUCTURAL PERFORMANCE ANALYSIS OF SUPRA SAE CAR CHASSIS
PPTX
Finite Element Analysis for stress calculations and safety
PDF
3 automotive chassis-design-v2
6002 notes 07_l7
Final Bachelor thesis Presentation
Chapter4
Engineering materials related terms .
A review on stress analysis and weight reduction of automobile chassis
Two wheeler and its chassis
Baja vehicle chasis design & analysis
Stress Analysis of a heavy duty vehicle chassis by using FEA
Beam theory
DESIGN & STRUCTURAL PERFORMANCE ANALYSIS OF SUPRA SAE CAR CHASSIS
Finite Element Analysis for stress calculations and safety
3 automotive chassis-design-v2
Ad

Similar to FEM problem of elasticity (20)

PPTX
Direct integration method
PDF
Structural Mechanics: Deflections of Beams in Bending
PPT
6. deflection
PPTX
Lec5 total potential_energy_method
PPTX
Lec5 total potential_energy_method
PDF
Chapter 9 98
PDF
Tính tần số riêng của dầm
PDF
30120140505003
PDF
STATIC ANALYSIS OF COMPLEX STRUCTURE OF BEAMS BY INTERPOLATION METHOD APPROAC...
PPT
Deflection
PDF
Static analysis of thin beams by interpolation method approach
PDF
Beams on Elastic Foundation2.pdf
PPTX
LECT_01.pptx
PDF
Finite Element Approach to the Solution of Fourth order Beam Equation:
PPTX
Laplace transform and its application
PDF
Deflection 2
PPTX
FEM of Beams.pptx
PDF
cantilever_elas_P.pdf
PPTX
Elastic beams
Direct integration method
Structural Mechanics: Deflections of Beams in Bending
6. deflection
Lec5 total potential_energy_method
Lec5 total potential_energy_method
Chapter 9 98
Tính tần số riêng của dầm
30120140505003
STATIC ANALYSIS OF COMPLEX STRUCTURE OF BEAMS BY INTERPOLATION METHOD APPROAC...
Deflection
Static analysis of thin beams by interpolation method approach
Beams on Elastic Foundation2.pdf
LECT_01.pptx
Finite Element Approach to the Solution of Fourth order Beam Equation:
Laplace transform and its application
Deflection 2
FEM of Beams.pptx
cantilever_elas_P.pdf
Elastic beams

More from Ashwani Jha (7)

PDF
MATHEMATICS XI TEST PAPER SOL.pdf
PDF
PHY XII TEST PAPER.pdf
PDF
PHY XII TEST PAPERQ.pdf
PDF
MATHEMATICS XI TEST PAPER.pdf
PDF
Advanced Support Vector Machine for classification in Neural Network
PPT
PPTX
Dataset ii ia
MATHEMATICS XI TEST PAPER SOL.pdf
PHY XII TEST PAPER.pdf
PHY XII TEST PAPERQ.pdf
MATHEMATICS XI TEST PAPER.pdf
Advanced Support Vector Machine for classification in Neural Network
Dataset ii ia

FEM problem of elasticity

  • 1. THEORY OF ELASTICITY & PLASTICITY NUMERICAL PROBLEM Done by: Ashwani Jha
  • 2. Question: Find the approximate deflection of a simply supported beam carrying a symmetrical Triangular load P using Rayleigh Ritz method. Solution: Let w(x) denote the deflection of the beam(field variable).The differential equation formulation leads to following statement of the problem: i.e it satisfies the governing equation . / And the boundary conditions { ( ) ( ) ( ) ( ) ( ) ( ) } P
  • 3. Total energy i.e. potential energy of the system is given below: Π= ∫ [ ( ) ( )] Replace P=8 ( ) ( ) ( ) 9 Π= [∫ { ( ) ( )} ∫ { ( ) ( ( ) )} ] Where E=Young’s Modulus I=Moment of inertia, l=length of beam, P=load on beam Now we are integrating above equation denoted in different color separately. Let here w(x)= ( ) ( ) , where C1 and C2 are constant After using the value of and w in above equation we have, ∫ 0 ( ( ) ( ) ) . ( ) /1 ∫ 6 2 ( ) ( ) ( ) ( ) ( ) ( ) 3 4 ( ) 57 ( )
  • 4. We know that, ∫ 2 3 ∫ Therefore, equation (1) becomes 2 ( ) ( ) 3 ∫ 64 ( ) 57 2 ( ) ( ) 3 ∫ 64 ( ) 57 ( ) ∫ [ ∫ ∫ ( ) ] [ ∫ ( ) ] 0 ( ) ( )1 0( ) 1 Similarly ∫ ( ) Now equation (2) becomes
  • 5. 2 ( ) ( ) 3 0 ( ) ( ) 1 ( ) ∫ * ( ) ( ( ) )+ = ∫ * ( ) ( )+ ∫ 6 . / 8 ( ) ( ) 97 ∫ [ ∫ ∫ ( ) ] [ ∫ ( ) ] [ ∫ ( ) ] [ ( ) ] Similarly, ∫ 0 ( ) 1 Therefore, I2 now becomes after substituting the value { ( ) ( ) } , - 0 2 ( ) 3 { ( ) }1…… (4)
  • 6. Therefore, Π= [ ] i.e. Π= 0 , ( ) ( ) - * ( ) ( ) + , ( ) ( ) - , - * , ( ) - , ( ) -+1 where C1 and C2 are independent constant. For the minimum of π we have { ( ) } , - =0 { ( ) }=0 Therefore, ( ) , which is the deflection of beam. The deflection of beam at the middle point of beam(i.e. at l/2) is given by ( ) ( ) which compare with the exact solution
  • 7. ( ) ( )