The document discusses few-shot learning approaches. It begins with an introduction explaining that current deep learning models require large datasets but humans can learn from just a few examples. It then discusses the problem of few-shot learning, where models must perform classification, detection, or regression on novel categories represented by only a few samples. Popular approaches discussed include meta-learning methods like MAML and prototypical networks, metric learning methods like relation networks, and data augmentation methods. The document provides an overview of the goals and techniques of few-shot learning.
Related topics: