SlideShare a Scribd company logo
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
CamScanner
Concept of Magnetic Circuits
What are magnetic circuits ?
They are basically ferromagnetic
structures (mostly iron) with coils wound
around them.
Because of the material high permeability, most of the
magnetic flux is confined inside the
magnetic circuit.
Examples: Transformers,
Actuators, Electromagnets and
Electric machines.
1
Concept of Magnetic Circuits
2
It’s an approximate technique to compute magnetic
flux.
2
NI
H
a
π
=
2
NI
B
a
µ
π
=
2
( )
2
NI
b
a
µ
φ π
π
=
BA
φ =
2
2
( )
NI
a
b
φ
π
µ π
=
Concept of Magnetic Circuits
3
V
I
R
=
l
R
A
σ
=
2
2
( )
a
R
b
π
σ π
=
2
2
( )
V
I
a
b
π
σ π
=
Concept of Magnetic Circuits
4
2
2
( )
V
I
a
b
π
σ π
=
2
2
( )
NI
a
b
φ
π
µ π
=
Concept of Magnetic Circuits
5
I φ
( )
V EMF ( )
NI MMF
σ µ
l
R
A
σ
= mc
l
A
µ
ℜ =
Mean core
length
Reluctance
5
Concept of Magnetic Circuits
6
V IR
= NI φ
= ℜ
V
R
I
NI
ℜ
φ
Concept of Magnetic Circuits
7
DC Magnetic Circuits: the supply is DC, magnetic circuit
laws can be used directly.
1
DC
coil
V
i
R
= 2
DC
coil
V
i
R
=
Concept of Magnetic Circuits
8
DC Magnetic Circuits
1 2
i i
=
1 2
1 2
mc mc
c c
l l
A A
φ φ
µ µ
=
1 2
Ni Ni
=
1 1
2 2
φ µ
φ µ
=
1
Ni 1
ℜ
1
φ
2
Ni 2
ℜ
2
φ
1 1 2 2
φ φ
ℜ = ℜ
Example
Sheet (3), Prob. (1):
Find the value of the current that will produce a flux
of 0.0025 Wb.
5000
r
µ =
NI φ
= ℜ
mc
c
l
A
µ
ℜ =
4(30 2 2.5) 140
mc
l cm
= + × =
50
N =
10cm
2
5*10 50
c
A cm
= =
9
Example
Sheet (3), Prob. (1):
Find the value of the current that will produce a flux
of 0.0025 Wb.
5000
r
µ =
7 4
1.4
(5000)(4 10 )(50 10 )
π − −
ℜ =
× ×
50
N =
10cm
1
44563.38 H−
ℜ =
NI φ
= ℜ
2.228
I A
=
10
Concept of Magnetic Circuits
11
AC Magnetic Circuits: the supply is AC, Faraday’s law
must be considered first.
Concept of Magnetic Circuits
12
AC Magnetic Circuits:
AC
v e zero
− =
AC
v e
=
(Neglecting Coil Resistance)
V zero
∑ =
d
e N
dt
φ
= −
Concept of Magnetic Circuits
13
AC Magnetic Circuits
AC
d
v N
dt
φ
=
sin( )
m
d
V t N
dt
φ
ω =
By Integration
cos( ) sin( )
2
m m
V V
t t
N N
π
φ ω ω
ω ω
=− = −
Ф is dependent on V and f
Concept of Magnetic Circuits
14
AC Magnetic Circuits
1 2
φ φ φ
= =
1 2
2 1
i
i
µ
µ
=
1
1
mc
c
l
Ni
A
φ
µ
= 2
2
mc
c
l
Ni
A
φ
µ
=
1 1 2 2
c c
mc mc
Ni A Ni A
l l
µ µ
=
1
Ni 1
ℜ
1
φ
2
Ni 2
ℜ
2
φ
Concept of Magnetic Circuits
15
AC Magnetic Circuits
To get the current
sin( )
2
mc m
c
l V
i t
N A N
π
ω
µ ω
 

 
= −
 
 

 
mc
c
l
i
N A
φ
µ
=
2
sin( )
2
m
c
mc
V
i t
N A
l
π
ω
µ
ω
= −
 

 
 
 

 
Concept of Magnetic Circuits
16
AC Magnetic Circuits
2
c
mc
V
I
N A
j
l
µ
ω
=
 

 
 
 

 
core
V
I
j L
ω
=
2
core
mc
c
N
L
l
A
µ
= mc
c
l
A
µ
ℜ =
2
N
L =
ℜ
Self Inductance
Example
Sheet (3), Prob. (1):
Find the inductance of the coil.
5000
r
µ =
50
N =
10cm
1
44563.38 H−
ℜ =
2
N
L =
ℜ
0.056
L H
=
17
Magnetic Circuits: Electric Machines
18
Electrical machines have generally two basic parts named
"Stator" and "Rotor".
The stator is the stationary member. The rotor is the
rotating member.
A small air gap exists between the two member.
Magnetic Circuits: Electric Machines
19
Magnetic Circuits: Electric Machines
Salient Poles Stator
20
N
S
Magnetic Circuits: Electric Machines
21
φ
φ
f
g
M
φ =
ℜ
2
2
f f
g
N I
φ =
ℜ
Neglecting the reluctance of the steel parts
g
o c
g
A
µ
ℜ =
f
o c
M
A
g
φ µ
= f
g o
M
B
g
µ
=
f f f
M N I
=
Faraday’s Law Applications
1
1. Inductors.
2. Transformers.
3. Electrical Generators.
4. Electrical Motors.
5. Transmission Lines.
Inductors
2
Inductors
3
Toroid Solenoid
Inductors
4
d
v N
dt
f
=
Ni
Â
f
Ni f
= Â
Ni
f =
Â
2
N di
v
dt
=
Â
di
v L
dt
=
2
N
L =
Â
Inductors
5
( )
V j L I
w
=
L
V jX I
=
sin( )
2
m
V
i t
L
p
w
w
= -
By Integration
V
I
j L
w
=
Inductors: Introduction to Inductor Design
6
Objective:
Design an inductor having a given inductance L, which
carries worst-case current Imax without saturating the core
(Bmax), and which has a given winding resistance R, or,
equivalently, exhibits a worst-case copper loss of Im
2R
Transformer
7
Single-phase transformer
Transformer
Single-phase transformer
8
Transformer
9
Transformer
10
Ideal Transformer
- Rcoil = zero - µ → ∞
- No leakage flux - No core losses
1
1 1
d
v N
dt
f
= 2
2 2
d
v N
dt
f
=
1 2
f f
=
1 1
2 2
v N
v N
= 1 1
2 2
e N
e N
=
Since no leakage
Transformer
11
Ideal Transformer
1 1 2 2
N i N i f
- = Â
Since µ → ∞
zero
 =
1 2
2 1
N i
N i
=
1 1
N i 2 2
N i
Â
f
Transformer
12
Ideal Transformer
1 1
2 2
v N
v N
= 1 1
2 2
e N
e N
=
2 1
1 2
i N
i N
=
1 1 2 2
v i v i
=
Transformer: Applications
13
Transformer: Equivalent Circuit
14
Case A: Ideal Transformer
1 1
2 2
v N
v N
= 1 1
2 2
e N
e N
=
2 1
1 2
i N
i N
=
1 1 2 2
v i v i
=
Transformer: Equivalent Circuit
15
Case B: - Rcoil = zero - µ ≠ ∞
- No leakage flux - No core losses
At No-load: (i2 = zero)
1
N im f
= Â
1
2
1
sin( )
2
m
V
i t
N
m
p
w
w
= Â -
1
1
sin( )
2
m
V
t
N
p
f w
w
= -
From Faraday’s Law
1
N im
Â
f
Transformer: Equivalent Circuit
16
If the transformer is loaded:
core
X L
m w
=
1
sin( )
2
m
core
V
i t
L
m
p
w
w
= -
1
core
V
I
j L
m
w
=
1 1
N i 2 2
N i
Â
f
1 1 2 2
N i N i f
- = Â
1 1 2 2 1
N i N i N im
- =
Transformer: Equivalent Circuit
17
2
1 2
1
N
i i i
N
m = -
2
' 2
2
1
N
i i
N
=
2
1 2
1
N
i i i
N
m
= +
Transformer: Equivalent Circuit
18
Case C: - Rcoil = zero - µ ≠ ∞
- No leakage flux - core losses exist.
Core (iron) losses
1. Eddy Current Losses
2 2 2
( )
e m
P B f thickness
µ
2 2 2
( )
e e m
P k B f thickness
= W/m3
Transformer: Equivalent Circuit
19
Case C:
2. Hysteresis Losses
Transformer: Equivalent Circuit
20
Case C:
2. Hysteresis Losses
BH Curve (Magnetization Curve)
Transformer: Equivalent Circuit
21
Case C:
2. Hysteresis Losses
B
H
Transformer: Equivalent Circuit
22
Case C:
2. Hysteresis Losses
1 .
m
r
B
B
w H dB
-
= ò
2 .
r
m
B
B
w H dB
= ò
1 1 2 3
(A.m ) ( . . ) .
H B T J A m J m
- - - -
´ = =
Energy lost /unit volume/cycle = 2(w1 – w2)= area inside the loop
Transformer: Equivalent Circuit
23
Case C:
2. Hysteresis Losses
n depends on the material (1.6 – 2.4)
Total core losses:
n
h
P B f
µ n
h h
P k B f
= W/m3
2 2 2
( ) n
c e h
P k B f thickness k B f
= +
2
c
P B
µ
W/m3
Since f is usually constant
2
c
P V
µ
2
c
P f
µ
Transformer: Equivalent Circuit
24
Case C:
2
1
c
c
V
P
R
=
Transformer: Equivalent Circuit
25
Case D: - Rcoil = zero - µ ≠ ∞
- Leakage flux exists. - core losses exist.
Transformer: Equivalent Circuit
Case D:
1 1
N i 2 2
N i
Â
f
1
l
Â
2
l
Â
1
f 2
f
1
l
f 2
l
f
1 1
l
f f f
= +
2 2
l
f f f
= -
1 1 1 1
l l
N i f
= Â 2 2 2 2
l l
N i f
= Â
(1)
(2)
(3) (4)
From (1) & (3)
1 1
1 1 1
l
d d
d
N N N
dt dt dt
f f
f
= +
2
1 1 1
1 1
1
l
l
l
d N di
v N
dt R dt
f
= =
26
Transformer: Equivalent Circuit
Case D:
1 1
N i 2 2
N i
Â
f
1
l
Â
2
l
Â
1
f 2
f
1
l
f 2
l
f
From (2) & (4)
2 2
2 2 2
l
d d
d
N N N
dt dt dt
f f
f
= -
2
2 2 2
2 2
2
l
l
l
d N di
v N
dt R dt
f
= =
2 2
l
f f f
= -
2 2 2 2
l l
N i f
= Â
(2)
(4)
27
Transformer: Equivalent Circuit
Case D:
let
1 1
d
e N
dt
f
= 2 2
d
e N
dt
f
=
1 1 1
l
v e v
= + 2 2 2
l
v e v
= -
1
v
1
l
v
1
e 2
e
2
l
v
2
v
1 1
1 1 1
l
d d
d
N N N
dt dt dt
f f
f
= + 2 2
2 2 2
l
d d
d
N N N
dt dt dt
f f
f
= -
1
1 1
d
v N
dt
f
= 2
2 2
d
v N
dt
f
=
28
Transformer: Equivalent Circuit
Case D:
2
1 1
1
1
l
l
N di
v
R dt
=
2
2 2
2
2
l
l
N di
v
R dt
=
1
1 1
l l
di
v L
dt
=
2
2 2
l l
di
v L
dt
=
1 1 1
l l
V j L I
w
= 2 2 2
l l
V j L I
w
=
1 1 1
l l
V jX I
= 2 2 2
l l
V jX I
=
1
v
1 1
l
jX I
1
e 2
e
2 2
l
jX I
2
v
29
Transformer: Equivalent Circuit
Case D:
30
Transformer: Equivalent Circuit
Case E: - Rcoil ≠ zero - µ ≠ ∞
- Leakage flux exists. - core losses exist.
Exact Equivalent Circuit of the Transformer
31
FARADAY’S LAW APPLICATIONS
1. Inductors.
2. Transformers.
3. Electrical Generators.
4. Electrical Motors.
5. Transmission Lines.
1
GENERATORS
 Faraday’s Disk Generator (1831)
2
GENERATORS
 Faraday’s Rotating Rectangle (1831)
3
GENERATORS
4
𝑒 = − න
𝑆
𝜕𝐵
𝜕𝑡
. 𝑑𝑆
+ ර
𝑐
(𝑣 × 𝐵) . 𝑑𝑙
𝐵 = 𝐵𝑜𝑢𝑦
𝑒 = ර
𝑐
(𝑣 × 𝐵) . 𝑑𝑙 𝑒 = න
1
2
+ න
2
3
+ න
3
4
+ න
4
1
= is the velocity in the direction normal to the loop
𝑣
dl = unit length along the extension of the loop
x
y
z
GENERATORS
5
𝑒12 = න
1=0
2=−ℎ
ӈ
𝑣 × 𝐵𝑜𝑢𝑦 . 𝑑𝑥 (−𝑢𝑥)
𝑎𝑛
𝑢𝑦
𝛼
𝑒12 = 𝑢𝐵𝑜ℎ sin 𝛼
𝑢𝑧
an normal to the loop
𝜈 = u 𝑎𝑛 = u cos(𝛼) 𝑢𝑦 − u sin(𝛼) 𝑢𝑧
ӈ
𝑣 × 𝐵𝑜𝑢𝑦 = u 𝐵𝑜 sin(𝛼) 𝑢𝑥
x
y
z
GENERATORS
6
𝑒23 = න
2=0
3=𝑤
(𝜈 × 𝐵𝑜𝑢𝑦 . 𝑑𝑦 (𝑢𝑦) = u 𝐵𝑜 sin(𝛼) 𝑢𝑥 . 𝑑𝑦 (𝑢𝑦) 𝑒23 = 𝑧𝑒𝑟𝑜
x
y
z
GENERATORS
7
𝑒34 = න
3=−ℎ
4=0
ӈ
𝑣 × 𝐵𝑜𝑢𝑦 . 𝑑𝑥 (𝑢𝑥)
𝑒34 = 𝑢𝐵𝑜ℎ sin 𝛼
x
y
z
𝑒34 = න
3=−ℎ
4=0
ӈ
𝑣 × 𝐵𝑜𝑢𝑦 . 𝑑𝑥 (𝑢𝑥)
ӈ
𝑣 × 𝐵𝑜𝑢𝑦 = u 𝐵𝑜 sin(𝛼) 𝑢𝑥
GENERATORS
8
𝑒41 = න
4
1
= 𝑧𝑒𝑟𝑜
𝑢 = 𝜔
𝑤
2
𝑒 = 2𝑢𝐵𝑜ℎ sin 𝛼
𝑒 = 𝜔𝐵𝑜(𝑤ℎ) sin 𝛼
𝛼 = 𝜔𝑡 + 𝜃𝑜
𝑒 = 𝜔𝐵𝑜(𝑤ℎ) sin( 𝜔𝑡 + 𝜃𝑜)
x
y
z
Radial speed w to linear speed u
GENERATORS
AC Generator (Alternator)
9
𝑒 = 𝜔𝐵𝑜𝐴 sin( 𝜔𝑡 + 𝜃𝑜)
𝑇 =
1
𝑓
𝑓 =
𝜔
2𝜋
𝐴 = ℎ𝑤
GENERATORS: AC GENERATOR
10
Field direction
The field lines has to perpendicularly cross
the loop
That is why there is a “sine” in the
expression
𝑒 = 𝜔𝐵𝑜𝐴 sin( 𝜔𝑡 + 𝜃𝑜)
GENERATORS: AC GENERATOR
11
Realistically the field lines are usually curved or more circular due to the use of
cylindrical magnetic poles to fit rotational motion
GENERATORS: AC GENERATOR
12
𝑒 = ර
𝑐
(𝑣 × 𝐵) . 𝑑𝑙
𝑒12 = න
1=0
2=ℎ
𝑢 𝑢𝜙 × 𝐵𝑜 𝑢𝑟 . 𝑑𝑧 (−𝑢𝑧) 𝑒12 = 𝑢𝐵𝑜ℎ
𝑢𝑟
𝑢𝜙
𝑢𝑧
𝑒 = න
1
2
+ න
2
3
+ න
3
4
+ න
4
1
N S
No field region
GENERATORS: AC GENERATOR
13
𝑒34 = න
3=ℎ
4=0
𝑢 𝑢𝜙 × 𝐵𝑜(−𝑢𝑟) . 𝑑𝑧 𝑢𝑧
𝑒34 = 𝑢𝐵𝑜ℎ
𝑒23 = 𝑧𝑒𝑟𝑜
𝑒41 = 𝑧𝑒𝑟𝑜
𝑢𝑟
𝑢𝜙
𝑢𝑧
GENERATORS: AC GENERATOR
14
𝑢 = 𝜔𝑟
𝑒 = 2𝑢𝐵𝑜ℎ
𝑒 = 2𝜔𝐵𝑜(𝑟ℎ)
Under the pole faces
𝑒 = 0
Beyond the pole edges B0=0
𝑒 =
2
𝜋
𝐴𝑝𝐵𝑜𝜔 𝑒 =
2
𝜋
𝜙𝜔 Ф = Total flux under one
pole
𝑢𝑟
𝑢𝜙
𝑢𝑧
GENERATORS: AC GENERATOR
15
𝑒 = 𝐾𝜙𝜔
GENERATORS: DC GENERATOR (DYNAMO)
16
GENERATORS: DC GENERATOR
17
GENERATORS: DC GENERATOR
18
GENERATORS: DC GENERATOR
19
GENERATORS: 3-PHASE AC GENERATOR
20
GENERATORS: 3-PHASE AC GENERATOR
21
Faraday’s Law Applications
1
1. Inductors.
2. Transformers.
3. Electrical Generators.
4. Electrical Motors.
5. Transmission Lines.
Generators
2
 Faraday’s Disk Generator (1831)
Generators
3
 Faraday’s Disk Generator (1831)
Generators
4
 Faraday’s Rotating Rectangle (1831)
Generators
5
 Faraday’s Rotating Rectangle (1831)
Generators
6
.
.
S
c
B
e dS
t
v B dl
¶
=-
¶
+ ´
ò
ò

y
o
B B u
=
.
c
e v B dl
= ´
ò

2 3 4 1
1 2 3 4
e = + + +
ò ò ò ò
Generators
7
( )
2
12
1 0
( ) . ( )
h
n y x
o
e u a B u dx u
=
=
= - ´ -
ò
n
a
y
u
a
12 sin
o
e uB h a
=
(1)(1)sin ( )
n y x
a u u
a
´ =
Generators
8
( )
3
23
2 0
( ) . ( )
w
n y y
o
e u a B u dy u
=
=
= - ´
ò 23
e zero
=
Generators
9
( )
4
34
3 0
( ) . ( )
h
n y x
o
e u a B u dx u
=
=
= ´
ò
n
a
y
u
a
34 sin
o
e uB h a
=
(1)(1)sin ( )
n y x
a u u
a
´ =
Generators
10
1
41
4
e zero
= =
ò
2
w
u w
=
2 sin
o
e uB h a
=
( )sin
o
e B wh
w a
=
o
t
a w q
= +
( )sin( )
o o
e B wh t
w w q
= +
Generators
11
AC Generator (Alternator)
sin( )
o o
e B A t
w w q
= +
1
T
f
=
2
f
w
p
=
A hw
=
Generators: AC Generator
12
Generators: AC Generator
13
Generators: AC Generator
14
.
c
e v B dl
= ´
ò

( )
2
12
1 0
( ) ( ) . ( )
h
r z
o
e u u B u dz u
f
=
=
= ´ -
ò 12 o
e uB h
=
r
u
u f
z
u
2 3 4 1
1 2 3 4
e = + + +
ò ò ò ò
Generators: AC Generator
15
( )
4
34
3 0
( ) ( ) . ( )
h
r z
o
e u u B u dz u
f
=
=
= ´ -
ò 34 o
e uB h
=
23
e zero
=
41
e zero
=
r
u
u f
z
u
Generators: AC Generator
16
u r
w
=
2 o
e uB h
=
2 ( )
o
e B rh
w
=
Under the pole faces
0
e =
Beyond the pole edges
r
u
u f
z
u
2
p o
e A B w
p
=
2
e fw
p
=
Ф = Total flux under one
pole
Generators: AC Generator
17
2
e fw
p
=
2
e fw
p
=
Generators: DC Generator (Dynamo)
18
Generators: DC Generator
19
Generators: DC Generator
20
e K fw
=
2
e fw
p
=
Under the pole faces
0
e =
Beyond the pole edges
Generators: DC Generator
21
Generators: 3-phase AC Generator
22
Generators: 3-phase AC Generator
23
Generators: 3-phase AC Generator
24
MOTORS: DC MOTOR
1
MOTORS: DC MOTOR
2
MOTORS: DC MOTOR
3
𝑇 = 𝑚 × 𝐵
𝑚 = 𝐼𝑆
𝑚 = 𝐼(ℎ𝑤)𝑎𝑛
𝑃𝑚 = 𝑇𝜔 𝑃𝑚 = 𝜔𝐼𝐵𝑜𝐴 sin 𝛼
𝐴 = ℎ𝑤
𝑇 = 𝐼(ℎ𝑤)𝑎𝑛 × 𝐵𝑜𝑢𝑦
𝑇 = 𝐼𝐵𝑜𝐴 sin 𝛼 (𝑢𝑥)
𝑎𝑛 = cos(𝛼) 𝑢𝑦 − sin(𝛼) 𝑢𝑧
MOTORS: DC MOTOR
4
𝜔
𝜔
MOTORS: DC MOTOR
5
MOTORS: DC MOTOR
6
𝐹12 = 𝐼 න
1=0
2=−ℎ
𝑑𝑧(−𝑢𝑧) × 𝐵𝑜𝑢𝑟
𝐹12 = 𝐼𝐵𝑜ℎ(𝑢𝜙)
𝐹𝑚 = 𝐼 න 𝑑𝑙 × 𝐵
𝐵 = 𝐵𝑜𝑢𝑟
𝐹12 = 𝐼 න
1
2
𝑑𝑙 × 𝐵
𝑢𝑟
𝑢𝜙
𝑢𝑧
𝑒 = න
1
2
+ න
2
3
+ න
3
4
+ න
4
1
dl = in the direction of the current carrying conductor
MOTORS: DC MOTOR
7
𝐹34 = 𝐼 න
3=−ℎ
4=0
𝑑𝑧(𝑢𝑧) × 𝐵𝑜(−𝑢𝑟) 𝐹34 = 𝐼𝐵𝑜ℎ(𝑢𝜙)
𝐵 = 𝐵𝑜(−𝑢𝑟)
𝐹34 = 𝐼 න
3
4
𝑑𝑙 × 𝐵
𝑢𝑟
𝑢𝜙
𝑢𝑧
MOTORS: DC MOTOR
8
MOTORS: DC MOTOR
9
𝑇 = 𝑟 × 𝐹
𝑇 = 𝐹𝐿
𝑇 = (2𝑟)𝐼𝐵𝑜ℎ
𝑇 = 2𝐼𝐵𝑜(𝑟ℎ)
Under the pole faces
𝑇 = 0
𝑇 =
2
𝜋
𝐴𝑝𝐵𝑜𝐼 𝑇 =
2
𝜋
𝜙𝐼 Ф = Total flux under one
pole
Beyond the pole edges
MOTORS: AC MOTOR
10
𝐵 = 𝐵𝑜 sin 𝜔1 𝑡
𝜔1 = 2𝜋𝑓
MOTORS: AC MOTOR
11
𝑒 = − න
𝑆
𝜕𝐵
𝜕𝑡
. 𝑑𝑆
+ ර
𝑐
(𝑣 × 𝐵) . 𝑑𝑙
𝐵 = 𝐵𝑜 sin 𝜔1 𝑡𝑢𝑦
𝑒1 = − න
𝑆
𝜕𝐵
𝜕𝑡
. 𝑑𝑆
𝑒 = 𝑒1 + 𝑒2
𝑒1 = − න
𝑆=ℎ𝑤
𝜔1𝐵𝑜 cos( 𝜔1𝑡)𝑢𝑦. 𝑑𝑆 𝑎𝑛
MOTORS: AC MOTOR
12
𝑒1 = − න
𝑆=𝑤ℎ
𝜔1𝐵𝑜 cos( 𝜔1𝑡)𝑢𝑦. 𝑑𝑆 𝑎𝑛
𝑎𝑛 ⋅ 𝑢𝑦 = (1)(1) cos 𝛼
𝑒1 = −𝜔1𝐵𝑜(𝑤ℎ) cos( 𝜔1𝑡) cos( 𝛼)
𝑒1 = −𝜔1𝐵𝑜(𝑤ℎ) cos( 𝜔1𝑡) cos( 𝜔𝑡 + 𝜃𝑜)
𝑒1 = −𝜔1𝐵𝑜
𝐴
2
[cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜) + cos( (𝜔1 + 𝜔)𝑡 + 𝜃𝑜)]
MOTORS: AC MOTOR
13
𝑒2 = 𝜔𝐵𝑜(𝑤ℎ) sin( 𝜔1𝑡) sin( 𝜔𝑡 + 𝜃𝑜)
𝑒2 = ර
𝑐
𝑣 × 𝐵. 𝑑𝑙
𝑒2 = 𝜔𝐵𝑜
(𝑤ℎ)
2
[cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜) − cos( (𝜔1 + 𝜔)𝑡 + 𝜃𝑜)]
MOTORS: AC MOTOR
14
𝑒 = 𝑒1 + 𝑒2
𝑒 = −𝐵𝑜
𝐴
2
[(𝜔1 − 𝜔) cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜)
+(𝜔1 + 𝜔) cos( (𝜔1 + 𝜔)𝑡 + 𝜃𝑜)]
𝑒1 = −𝜔1𝐵𝑜
𝐴
2
[cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜) + cos( (𝜔1 + 𝜔)𝑡 + 𝜃𝑜)]
𝑒2 = 𝜔𝐵𝑜
𝐴
2
[cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜) − cos( (𝜔1 + 𝜔)𝑡 + 𝜃𝑜)]
𝑒 = 𝑒𝑓 + 𝑒𝑏
MOTORS: AC MOTOR
15
𝑒𝑓
𝑒𝑏
𝑖𝑓
𝑖𝑏
𝑖𝑓 =
𝐵𝑜𝐴
2 𝑍𝑓
[(𝜔1 − 𝜔) cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜 − 𝜙𝑓)]
𝑖𝑓
𝑖𝑏
𝑒𝑓
𝑍𝑓
𝑒𝑏
𝑍𝑏
𝑅 + 𝑗(𝜔1 − 𝜔)𝐿
𝑅 + 𝑗(𝜔1 + 𝜔)𝐿
𝑖𝑏 =
𝐵𝑜𝐴
2 𝑍𝑏
[(𝜔1 + 𝜔) cos( (𝜔1 + 𝜔)𝑡 + 𝜃𝑜 − 𝜙𝑏)]
MOTORS: AC MOTOR
Torque
16
𝑖𝑓 = 𝐼𝑓𝑚 cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜 − 𝜙𝑓)
𝑖𝑏 = 𝐼𝑏𝑚 cos( (𝜔1 + 𝜔)𝑡 + 𝜃𝑜 − 𝜙𝑏)
𝑇𝑓 = 𝑚 × 𝐵 𝑚 = 𝑖𝑓𝑆
𝑇𝑓 = 𝐼𝑓𝑚 cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜 − 𝜙𝑓)(𝐴𝑎𝑛) × 𝐵𝑜 sin 𝜔1 𝑡𝑢𝑦
𝐵 = 𝐵𝑜 sin 𝜔1 𝑡𝑢𝑦
𝑇𝑓 = 𝐼𝑓𝑚𝐵𝑜𝐴 cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜 − 𝜙𝑓) sin 𝜔1 𝑡 sin( 𝜔𝑡 + 𝜃𝑜)
sin 𝜔1 𝑡 sin( 𝜔𝑡 + 𝜃𝑜) =
1
2
[cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜) − cos( (𝜔1 + 𝜔)𝑡 + 𝜃𝑜)]
MOTORS: AC MOTOR
Torque
17
𝑇𝑓 =
𝐼𝑓𝑚𝐵𝑜𝐴
2
cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜 − 𝜙𝑓)
∗ [cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜) − cos( (𝜔1 + 𝜔)𝑡 + 𝜃𝑜)]
cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜 − 𝜙𝑓) ∗ cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜) =
1
2
cos 𝜙𝑓 + cos[ 2((𝜔1 − 𝜔)𝑡 − 𝜃𝑜) − 𝜙𝑓)]
cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜 − 𝜙𝑓) ∗ cos( (𝜔1 + 𝜔)𝑡 + 𝜃𝑜) =
1
2
cos[ 2(𝜔𝑡 + 𝜃𝑜) + 𝜙𝑓) cos( 2𝜔1 − 𝜙𝑓)]
MOTORS: AC MOTOR
Torque
18
𝑇𝑓 =
𝐼𝑓𝑚𝐵𝑜𝐴
4
∗
cos 𝜙𝑓 + cos[ 2((𝜔1 − 𝜔)𝑡 − 𝜃𝑜) − 𝜙𝑓)]
− cos( 2𝜔1 − 𝜙𝑓) − cos[ 2(𝜔𝑡 + 𝜃𝑜) + 𝜙𝑓)]
𝑇𝑓𝑎𝑣𝑔 =
𝐼𝑓𝑚𝐵𝑜𝐴
4
cos 𝜙𝑓 Similarly 𝑇𝑏𝑎𝑣𝑔 = −
𝐼𝑏𝑚𝐵𝑜𝐴
4
cos 𝜙𝑏
𝑇𝑛𝑒𝑡 =
𝐵𝑜𝐴
4
𝐼𝑓𝑚 cos 𝜙𝑓 − 𝐼𝑏𝑚 cos 𝜙𝑏
MOTORS: AC MOTOR
19
For ω = 0
𝑇𝑛𝑒𝑡 =
𝐵𝑜𝐴
4
𝐼𝑓𝑚 cos 𝜙𝑓 − 𝐼𝑏𝑚 cos 𝜙𝑏
𝜙𝑓 = 𝜙𝑏
𝐼𝑓𝑚 = 𝐼𝑏𝑚
𝑇𝑛𝑒𝑡 = 𝑧𝑒𝑟𝑜
This motor cannot start from rest by its own developed torque
For any speed ω
𝐼𝑓𝑚 ≠ 𝐼𝑏𝑚 𝜙𝑓 ≠ 𝜙𝑏
𝑇𝑛𝑒𝑡 ≠ 𝑧𝑒𝑟𝑜
MOTORS: AC MOTOR
The motor needs an external method to start-up
It is called Induction Motor
Single Phase
Induction Motor
20
Faraday’s Law Applications
1
1. Inductors.
2. Transformers.
3. Electrical Generators.
4. Electrical Motors.
5. Transmission Lines.
Motors: DC Motor
2
Motors: DC Motor
3
Motors: DC Motor
4
o
B B
=
DC
N S
Motors: DC Motor
5
Motors: DC Motor
6
2
12
1 0
( )
h
x y
o
F I dx u B u
=
=
= - ´
ò 12 ( )
z
o
F IB h u
= -
m
F I dl B
= ´
ò
y
o
B B u
=
2
12
1
F I dl B
= ´
ò
12
F
Motors: DC Motor
7
4
34
3 0
( )
h
x y
o
F I dx u B u
=
=
= ´
ò 12 ( )
z
o
F IB h u
=
4
34
3
F I dl B
= ´
ò
12
F
34
F
Motors: DC Motor
8
w
34
F
12
F
w
T r F
= ´
T FL
=
L
sin
L w a
=
( )sin
o
T IB hw a
=
o
F IB h
=
( )sin( )
o
T IB hw t
w
=
a
Motors: DC Motor
9
Motors: DC Motor
10
T m B
= ´
m I S
=
( ) n
m I hw a
=
m
P T w
= sin
m o
P IB A
w a
=
A hw
=
(1)(1)sin ( )
n y x
a u u
a
´ =
( ) n y
o
T I hw a B u
= ´
sin ( )
x
o
T IB A u
a
=
Motors: DC Motor
11
Motors: DC Motor
12
2
12
1 0
( )
h
z r
o
F I dz u B u
=
=
= ´
ò 12 ( )
o
F IB h uf
=
m
F I dl B
= ´
ò
r
o
B B u
=
2
12
1
F I dl B
= ´
ò
r
u
u f
z
u
Motors: DC Motor
13
4
34
3 0
( ) ( )
h
z r
o
F I dz u B u
=
=
= - ´ -
ò 34 ( )
o
F IB h uf
=
( )
r
o
B B u
= -
4
34
3
F I dl B
= ´
ò
r
u
u f
z
u
Motors: DC Motor
14
Motors: DC Motor
15
T r F
= ´
T FL
=
(2 ) o
T r IB h
=
2 ( )
o
T IB rh
=
Under the pole faces
0
T =
2
p o
T A B I
p
=
2
T I
f
p
=
Ф = Total flux under one
pole
Beyond the pole edges
Motors: AC Motor
16
1
sin
o
B B t
w
=
1 2 f
w p
=
Motors: AC Motor
17
.
.
S
c
B
e dS
t
v B dl
¶
=-
¶
+ ´
ò
ò

1
sin y
o
B B tu
w
=
1 .
S
B
e dS
t
¶
=-
¶
ò
1 2
e e e
= +
1 1 1
cos( ) .
y n
o
S hw
e B t u dS a
w w
=
=- ò
Motors: AC Motor
18
1 1 1
( )cos( )cos( )
o o
e B wh t t
w w w q
=- +
1 1 1 1
[cos(( ) ) cos(( ) )]
2
o o o
A
e B t t
w w w q w w q
=- - - + + +
1 1 1
cos( ) .
y n
o
S wh
e B t u dS a
w w
=
=- ò
(1)(1)cos
n y
a u a
⋅ =
1 1 1
( )cos( )cos( )
o
e B wh t
w w a
=-
Motors: AC Motor
19
2 1
( )sin( )sin( )
o o
e B wh t t
w w w q
= +
2 .
c
e v B dl
= ´
ò

2 1 1
[cos(( ) ) cos(( ) )]
2
o o o
A
e B t t
w w w q w w q
= - - - + +
Motors: AC Motor
20
1 2
e e e
= +
1 1
1 1
[( )cos(( ) )
2
( )cos(( ) )]
o o
o
A
e B t
t
w w w w q
w w w w q
=- - - -
+ + + +
1 1 1 1
[cos(( ) ) cos(( ) )]
2
o o o
A
e B t t
w w w q w w q
=- - - + + +
2 1 1
[cos(( ) ) cos(( ) )]
2
o o o
A
e B t t
w w w q w w q
= - - - + +
f b
e e e
= +
Motors: AC Motor
21
f
e
b
e
f
i
b
i
1 1
[( ) cos(( ) )]
2
o
f o f
f
B A
i t
Z
w w w w q f
= - - - -
f
i
b
i
f
f
e
Z
b
b
e
Z
1 1
[( ) cos(( ) )]
2
o
b o b
b
B A
i t
Z
w w w w q f
= + + + -
1
( )
R j L
w w
+ -
1
( )
R j L
w w
+ +
Motors: AC Motor
22
Torque
1
cos(( ) )
f fm o f
i I t
w w q f
= - - -
1
cos(( ) )
b bm o b
i I t
w w q f
= + + -
f
T m B
= ´ f
m i S
=
1 1
cos(( ) )( ) sin
n y
f fm o f o
T I t Aa B tu
w w q f w
= - - - ´
1
sin y
o
B B tu
w
=
1 1
cos(( ) )sin sin( )
f fm o o f o
T I B A t t t
w w q f w w q
= - - - +
1 1 1
1
sin sin( ) [cos(( ) ) cos(( ) )]
2
o o o
t t t t
w w q w w q w w q
+ = - - - + +
Motors: AC Motor
23
Torque
1
1 1
cos(( ) )
2
*[cos(( ) ) cos(( ) )]
fm o
f o f
o o
I B A
T t
t t
w w q f
w w q w w q
= - - -
- - - + +
[ ]
1 1
1
cos(( ) )*cos(( ) )
1
cos cos[2(( ) ) )]
2
o f o
f o f
t t
t
w w q f w w q
f w w q f
- - - - - =
+ - - -
1 1
1
cos(( ) )*cos(( ) )
1
cos[2( ) )] cos(2 )
2
o f o
o f f
t t
t t
w w q f w w q
w q f w f
- - - + + =
é ù
+ + + -
ê ú
ë û
Motors: AC Motor
24
Torque
1
1
cos cos[2(( ) ) )]
*
cos(2 ) cos[2( ) )]
4
f o f
fm o
f
f o f
t
I B A
T
t t
f w w q f
w f w q f
é ù
+ - - -
ê ú
= ê ú
- - - + +
ê ú
ë û
cos
4
fm o
favg f
I B A
T f
= Similarly cos
4
bm o
bavg b
I B A
T f
=-
[ ]
cos cos
4
o
net fm f bm b
B A
T I I
f f
= -
Motors: AC Motor
25
For ω = 0
[ ]
cos cos
4
o
net fm f bm b
B A
T I I
f f
= -
f b
f f
=
fm bm
I I
=
net
T zero
=
This motor cannot start from rest by its own developed torque
For any speed ω
fm bm
I I
¹ f b
f f
¹
net
T zero
¹
Motors: AC Motor
26
The motor needs an external method to start-up
It is called Induction Motor
Single Phase
Induction Motor
Maxwell’s equations
1
Static Fields (ρ & J are constants)
Electrostatics Magnetostatics
Steady Current Flow
E zero
´ =
.D r
 =
H J
´ =
.B zero
 =
D E
e
= B H
m
=
E zero
´ =
.J zero
 = J E
s
=
Maxwell’s equations
2
Time varying fields: Faraday’s Law
for a single turn
d
e
dt
f
=-
.
S
B dS
f = ò
.
c
emf E dl
= ò

. .
c S
d
E dl B dS
dt
=-
ò ò

Maxwell’s equations
3
Time varying fields: Faraday’s Law
for a stationary loop
Using Stoke’s theorem
B
E
t
¶
´ =-
¶
. .
c S
B
E dl dS
t
¶
=-
¶
ò ò

. .
cons non cons
E E E -
= +
S c
( A).dS A.dl
´ =
ò ò

Maxwell’s equations
4
Time varying fields
. .
cons non cons
D D D -
= +
.
. cons
D r
 =
.
. non cons
D zero
-
 =
.D r
 =
Maxwell’s equations
5
Time varying fields: Law of conservation of charge
net
dQ
I
dt
=-
.
S
dQ
J dS
dt
=-
ò
 v
Q dv
r
= ò
.
S v
d
J dS dv
dt
r
=-
ò ò

Maxwell’s equations
6
Time varying fields: Law of conservation of charge
Using Divergence theorem
.
S v
J dS dv
t
r
¶
=-
¶
ò ò

.J
t
r
¶
 =-
¶ V S
( .A)dv A.dS
 =
ò ò

Maxwell’s equations
7
Time varying fields: Modified Ampere’s Law
Contradicts with the law of conservation of charge
.J zero
t
r
¶
 + =
¶
H J
´ =
.( )
H zero
 ´ = .J zero
 =
.D r
 =
Maxwell’s equations
8
Time varying fields: Modified Ampere’s Law
( . )
.
D
J zero
t
¶ 
 + =
¶
.( )
H zero
 ´ =
.( ) .( )
D
H J
t
¶
 ´ =  +
¶
D
H J
t
¶
´ = +
¶
Maxwell’s equations
9
B, H , D, E are field quantities
ρ , J are source quantities
D
H J
t
¶
´ = +
¶
.D r
 =
B
E
t
¶
´ =-
¶
.B zero
 =
Maxwell’s equations
10
Integral form (using Divergence and Stoke’s)
. .
C S
B
E dl dS
t
¶
=-
¶
ò ò

. ( ).
C S
D
H dl J dS
t
¶
= +
¶
ò ò

.
S V
D dS dv
r
=
ò ò

.
S
B dS zero
=
ò

Maxwell’s equations
11
Explanatory example:
For path 1
For path 2
Applying Ampere’s law will give B = zero since there is no
conduction current passing in the capacitor.
. en
c
H dl I
=
ò

2
o c
i
B u
r
f
m
p
=
Maxwell’s equations
12
Explanatory example:
For path 2
Applying modified Ampere’s law
For parallel plate capacitor:
. ( ).
c S
D
H dl J dS
t
¶
= +
¶
ò ò

J zero
= o
D E
e
=
V
E
d
=
sin
m
V V t
w
=
sin
m
o
V
D t
d
e w
=
Maxwell’s equations
13
Explanatory example:
For path 2
. .
c S
D
H dl dS
t
¶
=
¶
ò ò

cos
m
o
V
D
t
t d
e w w
¶
=
¶
( cos )
2
m
o o
V
A t
d
B
r
m e w w
p
= 2
o d
i
B u
r
f
m
p
=
Maxwell’s equations
14
Explanatory example:
For path 2
Displacement Current
From circuits equations:
cos
m
d o
V
i A t
d
e w w
=
c
dV
i C
dt
= cos
c m
i CV t
w w
= o A
C
d
e
=
cos
m
c o
V
i A t
d
e w w
= c d
i i
=
dE
dt
J
Maxwell’s equations
15
Boundary Conditions
1 2
2 ( ) 0
n
u E E
  
1 2
t t
E E

1 2
2 ( )
n s
u D D 
  
1 2
2 ( )
n s
u H H J
  
1 2
2.( ) 0
n
u B B
 
1 2
n n s
D D 
 
1 2 s
t t
H H J
 
1 2
n n
B B

Maxwell’s equations: Time-Harmonic
16
Time Harmonic Fields
A time-harmonic field is one that varies periodically or sinusoidally
with time. When the source quantities (ρ , J) vary sinusoidally, all the
field quantities will vary sinusoidally
cos( )
m
v V t
 
 
2 2
j
m m
V V
V e 

  
( )
( , ) Re[ ( )e ]
j t
E r t E r  


( )
( ) Re[ e ]
j t
m
v t V  


( , ) ( )cos( )
E r t E r t
 
 
( ) ( )e ( )
j
h
E r E r E r


  
( )
( , ) Re[ ( )e ]
j t
h
E r t E r 

Maxwell’s equations: Time-Harmonic
17
( )
( , ) Re[ ( )e ]
j t
h
B r t B r 

( ) ( )
( )(Re[e ]) ( ) Re[e ]
j t j t
h h
E r B r
t
w w
¶
´ =-
¶
( )
(Re[e ])
j t
h
E w
´ ( )
(Re[e ])
j t
h
j B w
w
=-
h h
E j B
w
´ =-
( )
( , ) Re[ ( )e ]
j t
h
E r t E r 

B
E
t
¶
´ =-
¶
Maxwell’s equations: Time-Harmonic
18
h h
h
H J j D
w
´ = +
. h h
D r
 =
. h
B zero
 =
h h
E j B
w
´ =-
Poynting’s Theorem
19
V/m * A/m=VA/m2
S E H
= ´
. .( ) . .
S E H H E E H
 =  ´ = ´ - ´
. .( ) .( )
B D
S H E J
t t
¶ ¶
 = - - +
¶ ¶
2 2 2
1 1
. ( ) ( )
2 2
S E E H
t t
s e m
¶ ¶
 =- - -
¶ ¶
2 2 2
1 1
. ( )
2 2
S v v
S dS E dv E H dv
t
s e m
¶
=- - +
¶
ò ò ò

2
d df ( x )
f ( x ) 2 f ( x )
dt dt
=
Poynting’s Theorem
20
For time harmonic fields
complex Poynting vector
. ( )
d e m
S v v
S dS P dv w w dv
t
¶
- = + +
¶
ò ò ò

2
d
P E
s
=
2
1
2
e
w E
e
=
2
1
2
m
w H
m
=
2 2 2
1 1 1
. ( )
2 2 2
h h h
h
S v v
S dS E dv j H E dv
s w m e
- = + -
ò ò ò

*
1
2
h h
h
S E H
= ´
Poynting’s Theorem
21
For time harmonic fields
. ( )
h davg mavg eavg
S v v
S dS P dv j w w dv
w
- = + -
ò ò ò

.
h
S
S dS P jQ
- = +
ò

11/15/2022
1
Time Varying Fields
Applications
Maxwell’s Equations
By:
Emad Fathy Yassin
Faculty of Engineering
Cairo University
Maxwell’s Equations “ Static Fields”
Magnetostatics
Electrostatics
Steady Current Flow
• Static Fields and
1
2
11/15/2022
2
Maxwell’s Equations “ Time Varying Fields”
𝑒𝑚𝑓 = −
𝜕𝜙
𝜕𝑡
As 𝑒𝑚𝑓 = ∮ 𝐸. 𝑑𝑙 , and 𝜙 = ∫ 𝐵. 𝑑𝑠
Then:
𝐸. 𝑑𝑙 = −
𝜕
𝜕𝑡
𝐵. 𝑑𝑠
= −
𝜕𝐵
𝜕𝑡
. 𝑑𝑠
• Time varying Fields: Faraday’s Law
For a single stationary turn
Stokes ‘ Theorem
𝐴̅. 𝑑𝑙 = ∇ × 𝐴̅. 𝑑𝑠
𝑎𝑟𝑒𝑎 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔
𝑡ℎ𝑒 𝑝𝑎𝑡ℎ
𝑐𝑙𝑜𝑠𝑒𝑑 𝑝𝑎𝑡ℎ
𝜵 × 𝑬 = −
𝝏𝑩
𝝏𝒕
−− −(𝟏)
𝐸. 𝑑𝑙 = ∇ × 𝐸. 𝑑𝑠
Maxwell’s Equations “ Time Varying Fields”
𝐷. 𝑑𝑠 = 𝑄
= 𝜌 𝑑𝑣
Then:
𝐷. 𝑑𝑠 = ∇. 𝐷 𝑑𝑣
= 𝜌 𝑑𝑣
• Time varying Fields: Gaussian’s Law
Divergence ‘ Theorem
𝐴̅. 𝑑𝑠 = ∇. 𝐴̅ 𝑑𝑣
𝑣𝑜𝑙𝑢𝑚𝑒
𝑐𝑙𝑜𝑠𝑒𝑑 𝑎𝑟𝑒𝑎
𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔
𝑡ℎ𝑒 𝑣𝑜𝑙𝑢𝑚𝑒
𝜵. 𝑫 = 𝝆𝒗 −− −(𝟐)
3
4
11/15/2022
3
Maxwell’s Equations “ Time Varying Fields”
𝐼 = −
𝑑𝑄
𝑑𝑡
= −
𝝏
𝝏𝑡
𝜌 𝑑𝑣
𝐼 = 𝐽̅. 𝑑𝑠 = ∇. 𝐽̅ 𝑑𝑣
• Time varying Fields: Law of Conservation of Charge
Divergence ‘ Theorem
𝐴̅. 𝑑𝑠 = ∇. 𝐴̅ 𝑑𝑣
𝑣𝑜𝑙𝑢𝑚𝑒
𝑐𝑙𝑜𝑠𝑒𝑑 𝑎𝑟𝑒𝑎
𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔
𝑡ℎ𝑒 𝑣𝑜𝑙𝑢𝑚𝑒
𝜵. 𝑱̅ = −
𝝏𝝆𝒗
𝝏𝒕
This is one of the fundamental postulates of physics, that
electric changes may not be created or destroyed.
𝑸
Maxwell’s Equations “ Time Varying Fields”
𝐻. 𝑑𝑙 = 𝐼
= 𝐽̅. 𝑑𝑠
𝐻. 𝑑𝑙 = ∇ × 𝐻. 𝑑𝑠 = 𝐽. 𝑑𝑠
• Time varying Fields: Ampere's Law
𝜵 × 𝑯 = 𝑱̅
Stokes ‘ Theorem
𝐴̅. 𝑑𝑙 = ∇ × 𝐴̅. 𝑑𝑠
𝑎𝑟𝑒𝑎 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔
𝑡ℎ𝑒 𝑝𝑎𝑡ℎ
𝑐𝑙𝑜𝑠𝑒𝑑 𝑝𝑎𝑡ℎ
𝜵. 𝜵 × 𝑯 = 𝜵. 𝑱̅
Null Identity
𝜵. 𝜵 × 𝑨 = 𝟎
𝜵 × 𝜵𝑽 = 𝟎
𝜵. 𝜵 × 𝑯 = 𝜵. 𝑱̅ = 𝟎
Take divergence
5
6
11/15/2022
4
Maxwell’s Equations “ Time Varying Fields”
• Time varying Fields: Ampere's Law
𝜵 × 𝑯 = 𝑱̅ Stokes ‘ Theorem
𝐴̅. 𝑑𝑙 = ∇ × 𝐴̅. 𝑑𝑠
𝑎𝑟𝑒𝑎 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔
𝑡ℎ𝑒 𝑝𝑎𝑡ℎ
𝑐𝑙𝑜𝑠𝑒𝑑 𝑝𝑎𝑡ℎ
𝜵. 𝜵 × 𝑯 = 𝜵. 𝑱̅
Null Identity
𝜵. 𝜵 × 𝑨 = 𝟎
𝜵 × 𝜵𝑽 = 𝟎
𝜵. 𝜵 × 𝑯 = 𝜵. 𝑱̅ = 𝟎
Take divergence
This contradicts with the continuity equations
𝜵. 𝑱̅ = −
𝝏𝝆𝒗
𝝏𝒕
Then ampere's law has to be modified
𝜵. 𝜵 × 𝑯 = 𝜵. 𝑱̅ +
𝝏𝝆𝒗
𝝏𝒕
= 𝟎
Maxwell’s Equations “ Time Varying Fields”
• Time varying Fields: Modified Ampere's Law
Then ampere's law has to be modified
𝜵. 𝜵 × 𝑯 = 𝜵. 𝑱̅ +
𝝏𝝆𝒗
𝝏𝒕
= 𝟎
From gaussian law sub. with 𝝆𝒗 = 𝜵. 𝑫
𝜵. 𝜵 × 𝑯 = 𝜵. 𝑱̅ +
𝝏
𝝏𝒕
𝜵. 𝑫 = 𝟎
𝜵. 𝜵 × 𝑯 = 𝜵. (𝑱̅ +
𝝏
𝝏𝒕
𝑫) = 𝟎
𝜵. 𝜵 × 𝑯 = 𝜵. (𝑱̅ +
𝝏
𝝏𝒕
𝑫) = 𝟎 𝜵 × 𝑯 = 𝑱̅ +
𝝏𝑫
𝝏𝒕
−− −(𝟑)
Conduction
Current
density
Displacement
Current
density
7
8
11/15/2022
5
Maxwell’s Equations “ Time Varying Fields”
𝐵. 𝑑𝑠 = 0
∇. 𝐵 𝑑𝑣 = 0
• Time varying Fields: The Law of conservation of Magnetic Fields
Divergence Theorem
𝐴̅. 𝑑𝑠 = ∇. 𝐴̅ 𝑑𝑣
𝑣𝑜𝑙𝑢𝑚𝑒
𝑐𝑙𝑜𝑠𝑒𝑑 𝑎𝑟𝑒𝑎
𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔
𝑡ℎ𝑒 𝑣𝑜𝑙𝑢𝑚𝑒
𝜵. 𝑩 = 𝟎 −− −(𝟒)
This equation is one of the fundamental postulates in the magnetic
field. This means that the magnetic flux lines always close upon
themselves and there are no isolated magnetic charges.
Maxwell’s Equations “ Time Varying Fields”
Differential form
𝜵 × 𝑬 = −
𝝏𝑩
𝝏𝒕
−− − 𝟏
𝜵 × 𝑯 = 𝑱̅ +
𝝏𝑫
𝝏𝒕
−− −(𝟐)
𝜵. 𝑫 = 𝝆𝒗 −− −(𝟑)
𝜵. 𝑩 = 𝟎 −− −(𝟒)
Integral form
𝑬. 𝒅𝒍 = −
𝝏𝑩
𝝏𝒕
. 𝒅𝒔 −− − 𝟏
𝑯. 𝒅𝒍 = (𝑱̅ +
𝝏𝑫
𝝏𝒕
). 𝒅𝒔 −− −(𝟐)
𝑫. 𝒅𝒔 = 𝑸𝒆𝒏 −− −(𝟑)
𝑩. 𝒅𝒔 = 𝟎 −− −(𝟒)
𝑩, 𝑯, 𝑫, 𝑬 are field quantities
𝝆𝒗 , 𝑱 are source quantities
Substitutive relations
𝑫 = 𝝐𝑬
𝑩 = 𝝁 𝑯
𝑱̅ = 𝝈 𝑬
9
10
11/15/2022
6
Maxwell’s Equations “ Explanatory Example ”
Maxwell’s 2nd law
𝑯. 𝒅𝒍 = (𝑱̅ +
𝝏𝑫
𝝏𝒕
). 𝒅𝒔
𝒊𝒄
𝒔𝟏
𝒔𝟐
𝒗𝒄(𝒕)
𝑯. 𝒅𝒍 = (𝑱𝒄 +
𝝏𝑫
𝝏𝒕
). 𝒅𝒔
𝑺𝟏
= (𝑱𝒄 +
𝝏𝑫
𝝏𝒕
). 𝒅𝒔
𝑺𝟐
(𝑱𝒄 +
𝝏𝑫
𝝏𝒕
). 𝒅𝒔
𝑺𝟏
= (𝑱𝒄 + 𝟎). 𝒅𝒔
𝑺𝟏
= 𝒊𝒄
Since there is no dielectric over the surface 𝑺𝟏
(𝑱𝒄 +
𝝏𝑫
𝝏𝒕
). 𝒅𝒔
𝑺𝟐
= (𝟎 +
𝝏𝑫
𝝏𝒕
). 𝒅𝒔
𝑺𝟐
= 𝒊𝒅
Since there is no free charges in the dielectric
over the surface 𝑺𝟐, then
𝒊𝒄 = 𝒊𝒅
𝒊𝒅
Maxwell’s Equations “Explanatory Example ”
𝒊𝒄
𝒔𝟏
𝒔𝟐
𝒗𝒄(𝒕)
𝒊𝒄 = 𝒊𝒅
𝒊𝒅
𝑫 = 𝝐𝑬
𝑫 = 𝝐
𝒗𝒄
𝒅
𝒊𝒅 =
𝝏𝑫
𝝏𝒕
. 𝒅𝒔 =
𝝐
𝒅
𝝏𝒗𝒄
𝝏𝒕
. 𝒅𝒔 =
𝝐 𝑨
𝒅
𝝏𝒗𝒄
𝝏𝒕
= 𝑪
𝝏𝒗𝒄
𝝏𝒕
−−− −(𝟐)
𝑨
𝒅
In another method, the capacitance of this capacitor can be given by:
𝑪 =
𝝐 𝑨
𝒅
𝒊𝒄 = 𝑪
𝒅𝒗𝒄
𝒅𝒕
=
𝝐 𝑨
𝒅
𝒅𝒗𝒄
𝒅𝒕
−−− −(𝟏)
Then the capacitor current can be calculated from:
The flux density in the dielectric is given by:
Where 𝐸 =
𝒗𝒄
𝒅
Then,
From (1) and (2)
11
12
11/15/2022
7
Maxwell’s Equations “ Time Harmonic (phasor) Form”
A time-harmonic field is one that varies periodically or sinusoidally
with time. When the source quantities (𝜌 , 𝐽) vary sinusoidally, all the
field quantities will vary sinusoidally
𝑣 𝑡 = 𝑉 cos(𝜔𝑡 + 𝜃) in instantaneous value
𝑉 =
𝑉
2
∠𝜃 =
𝑉
2
𝑒
in phasor value
𝒎
𝒋𝜽
Maxwell’s Equations “ Time Harmonic (phasor) Form”
A time-harmonic field is one that varies periodically or sinusoidally
with time. When the source quantities (𝜌 , 𝐽) vary sinusoidally, all the
field quantities will vary sinusoidally
𝐸 𝑟, 𝑡 = 𝐸 𝑟 cos(𝜔𝑡 + 𝜃)
= ℜ 𝐸 𝑟 e
= ℜ 𝐸 𝑟 e e
= ℜ 𝐸 e 𝑬𝒉 = 𝑬 𝒓 𝒆𝒋𝜽
13
14
11/15/2022
8
Maxwell’s Equations “ Time Harmonic (phasor) Form”
Differential form
𝜵 × 𝑬 = −
𝝏𝑩
𝝏𝒕
−− − 𝟏
𝜵 × 𝑯 = 𝑱̅ +
𝝏𝑫
𝝏𝒕
−− −(𝟐)
𝜵. 𝑫 = 𝝆𝒗 −− −(𝟑)
𝜵. 𝑩 = 𝟎 −− −(𝟒)
𝐸 𝑟, 𝑡 = 𝐸 𝑟 cos(𝜔𝑡 + 𝜃)
= ℜ 𝐸 e 𝐸 = 𝐸 𝑟 e
𝜕
𝜕𝑡
𝐸 𝑟, 𝑡 =
𝜕
𝜕𝑡
ℜ 𝐸 𝑒
= 𝑗𝜔 ℜ 𝐸 𝑒
𝝏
𝝏𝒕
==⇒ 𝒋𝝎
Time harmonic form
𝜵 × 𝑬𝒉 = −𝒋𝝎𝝁𝑯𝒉 −− − 𝟏
𝜵 × 𝑯𝒉 = 𝑱̅ + 𝒋𝝎 𝝐 𝑬𝒉 −− −(𝟐)
𝜵. 𝑫𝒉 = 𝝆𝒗 −− −(𝟑)
𝜵. 𝑩𝒉 = 𝟎 −− −(𝟒)
𝝏𝟐
𝝏𝒕𝟐
==⇒ 𝒋𝝎 𝟐
Poynting Theorem
Poynting vector S is used to calculate the power losses in a medium using
the electric and magnetic field quantities
𝑺 = 𝑬 × 𝑯 𝑉𝐴/𝑚
𝛁. 𝑺 = 𝛁. (𝑬 × 𝑯 )
= 𝑯 . 𝛁 × 𝑬 − 𝑬. 𝛁 × 𝑯
𝜵 × 𝑬 = −
𝝏𝑩
𝝏𝒕
−− − 𝟏
𝜵 × 𝑯 = 𝑱̅ +
𝝏𝑫
𝝏𝒕
−− −(𝟐)
𝜵. 𝑫 = 𝝆𝒗 −− −(𝟑)
𝜵. 𝑩 = 𝟎 −− −(𝟒)
= 𝑯 . (−
𝝏𝑩
𝝏𝒕
) − 𝑬. (𝑱̅ +
𝝏𝑫
𝝏𝒕
)
Substitutive relations
𝑫 = 𝝐𝑬
𝑩 = 𝝁 𝑯
𝑱̅ = 𝝈 𝑬
= −𝝁𝑯 .
𝝏𝑯
𝝏𝒕
− 𝑬. (𝝈𝑬 + 𝝐
𝝏𝑬
𝝏𝒕
)
= −𝝁𝑯 .
𝝏𝑯
𝝏𝒕
− 𝝈𝑬𝟐
− 𝝐 𝑬.
𝝏𝑬
𝝏𝒕
15
16
11/15/2022
9
Poynting Theorem
𝑺 = 𝑬 × 𝑯 𝑉𝐴/𝑚
𝛁. 𝑺 = 𝛁. (𝑬 × 𝑯 )
𝜵 × 𝑬 = −
𝝏𝑩
𝝏𝒕
−− − 𝟏
𝜵 × 𝑯 = 𝑱̅ +
𝝏𝑫
𝝏𝒕
−− −(𝟐)
𝜵. 𝑫 = 𝝆𝒗 −− −(𝟑)
𝜵. 𝑩 = 𝟎 −− −(𝟒)
= −𝝁𝑯 .
𝝏𝑯
𝝏𝒕
− 𝝈𝑬𝟐
− 𝝐 𝑬.
𝝏𝑬
𝝏𝒕
= −𝝈𝑬𝟐
−
𝟏
𝟐
𝝁
𝝏𝑯𝟐
𝝏𝒕
−
𝟏
𝟐
𝝐
𝝏𝑬𝟐
𝝏𝒕
𝛁. 𝑺 = 𝝈𝑬𝟐
+
𝝏
𝝏𝒕
𝟏
𝟐
𝝁𝑯𝟐
+
𝝏
𝝏𝒕
𝟏
𝟐
𝝐𝑬𝟐
− 𝑆̅. 𝑑𝑠 = 𝝈𝑬𝟐
𝑑𝑣 +
𝝏
𝝏𝒕
𝟏
𝟐
𝝁𝑯𝟐
𝑑𝑣 +
𝝏
𝝏𝒕
𝟏
𝟐
𝝐𝑬𝟐
𝑑𝑣
Divergence ‘ Theorem
𝐴̅. 𝑑𝑠 = ∇. 𝐴̅ 𝑑𝑣
− 𝛁. 𝑺 𝑑𝑣 = 𝝈𝑬𝟐
𝑑𝑣 +
𝝏
𝝏𝒕
𝟏
𝟐
𝝁𝑯𝟐
𝑑𝑣 +
𝝏
𝝏𝒕
𝟏
𝟐
𝝐𝑬𝟐
𝑑𝑣
Poynting Theorem
𝜵 × 𝑬 = −
𝝏𝑩
𝝏𝒕
−− − 𝟏
𝜵 × 𝑯 = 𝑱̅ +
𝝏𝑫
𝝏𝒕
−− −(𝟐)
𝜵. 𝑫 = 𝝆𝒗 −− −(𝟑)
𝜵. 𝑩 = 𝟎 −− −(𝟒)
− 𝑆̅. 𝑑𝑠 = 𝝈𝑬𝟐
𝑑𝑣 +
𝝏
𝝏𝒕
𝟏
𝟐
𝝁𝑯𝟐
𝑑𝑣 +
𝝏
𝝏𝒕
𝟏
𝟐
𝝐𝑬𝟐
𝑑𝑣
− 𝑆̅. 𝑑𝑠 = 𝑝 𝑑𝑣 +
𝝏
𝝏𝒕
𝒘𝒎 𝑑𝑣 +
𝝏
𝝏𝒕
𝒘𝒆 𝑑𝑣
𝒑𝒅 = 𝝈𝑬𝟐
, 𝒘𝒎 =
𝟏
𝟐
𝝁𝑯𝟐
, 𝒂𝒏𝒅 𝒘𝒆 =
𝟏
𝟐
𝝐𝑬𝟐
𝑺𝒉 =
1
2
𝑬𝒉 × 𝑯∗
𝒉
− 𝑆̅ . 𝑑𝑠 = 𝝈𝑬𝟐
𝑑𝑣 + 𝒋𝝎
𝟏
𝟐
𝝁𝑯𝟐
𝑑𝑣 + 𝒋𝝎
𝟏
𝟐
𝝐𝑬𝟐
𝑑𝑣
− 𝑆̅ . 𝑑𝑠 = 𝑃 + 𝒋𝑸
17
18
12/7/2022
1
Time Varying Fields
Applications
Wave Equations
By:
Emad Fathy Yassin
Faculty of Engineering
Cairo University
Wave Equations
Differential form
𝜵 × 𝑬 = −
𝝏𝑩
𝝏𝒕
−− − 𝟏
𝜵 × 𝑯 = 𝑱̅ +
𝝏𝑫
𝝏𝒕
−− −(𝟐)
𝜵. 𝑫 = 𝝆𝒗 −− −(𝟑)
𝜵. 𝑩 = 𝟎 −− −(𝟒)
𝜵 × 𝜵 × 𝑬 = −
𝝏
𝝏𝒕
𝜵 × 𝑩
Take curl for maxwell’s 1st equation
𝜵 × 𝜵 × 𝑬 = −
𝝏
𝝏𝒕
𝝁 (𝑱̅ +
𝝏𝑫
𝝏𝒕
)
Sub. using maxwell’s 2nd equation
Substitutive quantities
𝑫 = 𝝐𝑬
𝑩 = 𝝁 𝑯
𝑱̅ = 𝝈 𝑬
𝜵𝜵. 𝑬 − 𝜵𝟐
𝑬 = −
𝝏
𝝏𝒕
𝝁 (𝝈 𝑬 + 𝝐
𝝏𝑬
𝝏𝒕
)
Sub. using maxwell’s 3rd equation
−𝝁𝝈
𝝏
𝝏𝒕
𝑬 − 𝝁𝝐
𝝏𝟐
𝑬
𝝏𝒕𝟐
𝜵
𝝆
𝝐
− 𝜵𝟐
𝑬 =
𝜵𝟐
𝑬 − 𝝁𝝈
𝝏
𝝏𝒕
𝑬 − 𝝁𝝐
𝝏𝟐
𝑬
𝝏𝒕𝟐
=
𝜵𝝆
𝝐
−− −(𝟏)
1
2
12/7/2022
2
Wave Equations
Differential form
𝜵 × 𝑬 = −
𝝏𝑩
𝝏𝒕
−− − 𝟏
𝜵 × 𝑯 = 𝑱̅ +
𝝏𝑫
𝝏𝒕
−− −(𝟐)
𝜵. 𝑫 = 𝝆𝒗 −− −(𝟑)
𝜵. 𝑩 = 𝟎 −− −(𝟒)
𝜵 × 𝜵 × 𝑯 = 𝜵 × (𝑱̅ +
𝝏𝑫
𝝏𝒕
)
Take curl for maxwell’s 2nd equation
Sub. using maxwell’s 1st and 3rd equations
Substitutive quantities
𝑫 = 𝝐𝑬
𝑩 = 𝝁 𝑯
𝑱̅ = 𝝈 𝑬
𝜵𝜵. 𝑯 − 𝜵𝟐
𝑯 = 𝝈 𝜵 × 𝑬 + 𝝐
𝝏
𝝏𝒕
𝜵 × 𝑬
𝟎 − 𝜵𝟐
𝑯 = −𝝁𝝈
𝝏
𝝏𝒕
𝑯 − 𝝁𝝐
𝝏𝟐
𝑯
𝝏𝒕𝟐
𝜵𝟐
𝑯 − 𝝁𝝈
𝝏
𝝏𝒕
𝑯 − 𝝁𝝐
𝝏𝟐
𝑯
𝝏𝒕𝟐
= 𝟎 −− −(𝟐)
𝜵 × 𝜵 × 𝑯 = 𝜵 × (𝝈 𝑬 + 𝝐
𝝏 𝑬
𝝏𝒕
)
Wave Equations
Max. Eqns. (Differential form)
𝜵 × 𝑬 = −
𝝏𝑩
𝝏𝒕
−− − 𝟏
𝜵 × 𝑯 = 𝑱̅ +
𝝏𝑫
𝝏𝒕
−− −(𝟐)
𝜵. 𝑫 = 𝝆𝒗 −− −(𝟑)
𝜵. 𝑩 = 𝟎 −− −(𝟒)
𝜵𝟐
𝑯 − 𝝁𝝈
𝝏
𝝏𝒕
𝑯 − 𝝁𝝐
𝝏𝟐
𝑯
𝝏𝒕𝟐
= 𝟎 −− −(𝟐)
𝜵𝟐
𝑬 − 𝝁𝝈
𝝏
𝝏𝒕
𝑬 − 𝝁𝝐
𝝏𝟐
𝑬
𝝏𝒕𝟐
=
𝜵𝝆
𝝐
−− −(𝟏)
Wave equations in differential form
Wave equations in time harmonic (phasor) form
𝜵𝟐
𝑯 − 𝒋𝝎𝝁𝝈𝑯 + 𝝎𝟐
𝝁𝝐𝑯 = 𝟎 −− −(𝟐)
𝜵𝟐
𝑬 − 𝒋𝝎𝝁𝝈𝑬 + 𝝎𝟐
𝝁𝝐𝑬 =
𝜵𝝆
𝝐
−− −(𝟏)
Max. Eqns. (Time harmonic form)
𝜵 × 𝑬𝒉 = −𝒋𝝎𝝁𝑯𝒉 −− − 𝟏
𝜵 × 𝑯𝒉 = 𝑱̅ + 𝒋𝝎 𝝐 𝑬𝒉 −− −(𝟐)
𝜵. 𝑫𝒉 = 𝝆𝒗 −− −(𝟑)
𝜵. 𝑩𝒉 = 𝟎 −− −(𝟒)
3
4
12/7/2022
3
Wave Equations “Different Media”
Solve the wave equations for different medias as follows:
 Free space, [𝝈 = 𝟎, 𝝁𝒐, 𝝐𝒐] (vacuum, space, dry air)
 Lossless dielectric media , [𝝈 = 𝟎, 𝝁𝒐𝝁𝒓, 𝝐𝒐𝝐𝒓] (dry wood, plastic)
 Lossy dielectric media , [𝝈 ≠ 𝟎, 𝝁𝒐𝝁𝒓, 𝝐𝒐𝝐𝒓] (wet soil, sea water)
 Good conductor, [𝝈 𝒗𝒆𝒓𝒚 𝒉𝒊𝒈𝒉, 𝝁𝒐𝝁𝒓, 𝝐𝒐𝝐𝒓] (Cupper, Aluminum)
𝜵𝟐
𝑯 − 𝒋𝝎𝝁𝝈𝑯 + 𝝎𝟐
𝝁𝝐𝑯 = 𝟎 −− −(𝟐)
𝜵𝟐
𝑬 − 𝒋𝝎𝝁𝝈𝑬 + 𝝎𝟐
𝝁𝝐𝑬 =
𝜵𝝆
𝝐
−− −(𝟏)
Wave Equations “Free space ”
Wifi/WLAN antenna
𝜵𝟐
𝑯 + 𝝎𝟐
𝝁𝒐𝝐𝒐𝑯 = 𝟎 − −(𝟐)
𝜵𝟐
𝑬 + 𝝎𝟐
𝝁𝒐𝝐𝒐𝑬 = 𝟎 − −(𝟏)
TV antenna
Satellite antenna
Military antenna
==⇒ 𝒌𝒐
𝟐 = 𝝎𝟐 𝝁𝒐𝝐𝒐
1) Free space, [𝝈 = 𝟎, 𝝁𝒐, 𝝐𝒐] assume source free 𝝆 = 𝟎
𝜵𝟐
𝑯 − 𝒋𝝎𝝁𝝈𝑯 + 𝝎𝟐
𝝁𝝐𝑯 = 𝟎 − −(𝟐)
𝜵𝟐
𝑬 − 𝒋𝝎𝝁𝝈𝑬 + 𝝎𝟐
𝝁𝝐𝑬 =
𝜵𝝆
𝝐
− − (𝟏)
5
6
12/7/2022
4
Wave Equations “Free space ”
1) Free space, [𝝈 = 𝟎, 𝝁𝒐, 𝝐𝒐] assume source free 𝝆 = 𝟎
𝜵𝟐
𝑯 + 𝝎𝟐
𝝁𝒐𝝐𝒐𝑯 = 𝟎 −− −(𝟐)
𝜵𝟐
𝑬 + 𝝎𝟐
𝝁𝒐𝝐𝒐𝑬 = 𝟎 −− −(𝟏)
𝝏𝟐
𝝏𝒙𝟐
+
𝝏𝟐
𝝏𝒚𝟐
+
𝝏𝟐
𝝏𝒛𝟐
𝑬 + 𝒌𝒐
𝟐
𝑬 = 𝟎
𝒖𝒙
𝒖𝒛
𝒖𝒚
Planner waves
Wave Equations “Free space ”
1) Free space, [𝝈 = 𝟎, 𝝁𝒐, 𝝐𝒐] assume source free 𝝆 = 𝟎
𝜵𝟐
𝑬 + 𝝎𝟐
𝝁𝒐𝝐𝒐𝑬 = 𝟎 −− −(𝟏)
𝝏𝟐
𝝏𝒙𝟐
+
𝝏𝟐
𝝏𝒚𝟐
+
𝝏𝟐
𝝏𝒛𝟐
𝑬 + 𝒌𝒐
𝟐
𝑬 = 𝟎
𝝏𝟐
𝝏𝒛𝟐 𝑬 + 𝒌𝒐
𝟐
𝑬 = 𝟎  ODE
𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛
𝑭𝒐𝒓𝒘𝒂𝒓𝒅 𝒘𝒂𝒗𝒆
+ 𝑬𝒐 𝒆𝒋𝒌𝒐𝒛
𝑩𝒂𝒄𝒌𝒘𝒂𝒓𝒅 𝒘𝒂𝒗𝒆
How to solve ODE
𝝏𝟐
𝝏𝒛𝟐
𝑬 + 𝒌𝒐
𝟐
𝑬 = 𝟎
Let 𝐌 =
𝝏
𝝏𝒛
⇒ 𝑴𝟐
𝑬 + 𝒌𝒐
𝟐
𝑬 = 𝟎
𝑴𝟐
= −𝒌𝒐
𝟐
⇒ 𝑴 = ±𝒋𝒌𝒐
𝑬 𝒛 = 𝑨𝒆 𝒋𝒌𝒐𝒛
+ 𝑪𝒆 𝒋𝒌𝒐𝒛
7
8
12/7/2022
5
𝒖𝒙
𝒖𝒛
𝒖𝒚
1) Free space, [𝝈 = 𝟎, 𝝁𝒐, 𝝐𝒐] assume source free 𝝆 = 𝟎
𝜵𝟐
𝑬 + 𝝎𝟐
𝝁𝒐𝝐𝒐𝑬 = 𝟎 −− −(𝟏)
𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛
𝑭𝒐𝒓𝒘𝒂𝒓𝒅 𝒘𝒂𝒗𝒆
+ 𝑬𝒐 𝒆𝒋𝒌𝒐𝒛
𝑩𝒂𝒄𝒌𝒘𝒂𝒓𝒅 𝒘𝒂𝒗𝒆
Wave Equations “Free space ”
𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛
Direction of propagation
Direction
of oscillation
𝒖𝒙
From Maxwells 1st equation
𝜵 × 𝑬𝒉 = −𝒋𝝎𝝁𝑯𝒉
𝑯𝒉 =
𝟏
−𝒋𝝎𝝁𝒐
𝜵 × 𝑬𝒉
𝒖𝒙
𝒖𝒛
𝒖𝒚
1) Free space, [𝝈 = 𝟎, 𝝁𝒐, 𝝐𝒐] assume source free 𝝆 = 𝟎
𝜵𝟐
𝑬 + 𝝎𝟐
𝝁𝒐𝝐𝒐𝑬 = 𝟎 −− −(𝟏)
Wave Equations “Free space ”
𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛
𝒖𝒙 Direction of propagation
Direction
of oscillation
𝑯𝒉 =
𝟏
−𝒋𝝎𝝁𝒐
𝜵 × 𝑬𝒉
𝐻 =
1
−𝑗𝜔𝜇
𝑢 𝑢 𝑢
𝜕
𝜕𝑥
𝜕
𝜕𝑦
𝜕
𝜕𝑧
𝐸 𝐸 𝐸
𝐻 =
1
−𝑗𝜔𝜇
𝑢 𝑢 𝑢
0 0
𝜕
𝜕𝑧
𝐸 0 0
=
1
−𝑗𝜔𝜇
𝜕𝐸
𝜕𝑧
𝑢
9
10
12/7/2022
6
1) Free space, [𝝈 = 𝟎, 𝝁𝒐, 𝝐𝒐] assume source free 𝝆 = 𝟎
𝜵𝟐
𝑬 + 𝝎𝟐
𝝁𝒐𝝐𝒐𝑬 = 𝟎 −− −(𝟏)
Wave Equations “Free space ”
𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛
𝒖𝒙
𝒖𝒙
𝒖𝒛
𝒖𝒚
𝑯𝒉 =
𝟏
−𝒋𝝎𝝁𝒐
𝜵 × 𝑬𝒉
𝑯 𝒛 =
1
−𝑗𝜔𝜇
𝑢 𝑢 𝑢
0 0
𝜕
𝜕𝑧
𝐸 0 0
=
1
−𝑗𝜔𝜇
𝜕𝐸
𝜕𝑧
𝑢
=
−𝒋𝒌𝒐 𝑬𝒐
−𝑗𝜔𝜇
𝒆 𝒋𝒌𝒐𝒛
𝑢
𝒌𝒐
𝟐
= 𝝎𝟐
𝝁𝒐𝝐𝒐
𝒌𝒐 = 𝝎 𝝁𝒐𝝐𝒐
𝒌𝒐 =
𝝎
𝑪
Speed of light 𝑪 =
𝟏
𝝁𝒐𝝐𝒐
=
𝝎 𝝁𝒐𝝐𝒐 𝑬𝒐
𝜔𝜇
𝒆 𝒋𝒌𝒐𝒛
𝑢
Wave
Number
1) Free space, [𝝈 = 𝟎, 𝝁𝒐, 𝝐𝒐] assume source free 𝝆 = 𝟎
𝜵𝟐
𝑬 + 𝝎𝟐
𝝁𝒐𝝐𝒐𝑬 = 𝟎 −− −(𝟏)
Wave Equations “Free space ”
𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛
𝒖𝒙
𝒖𝒙
𝒖𝒛
𝒖𝒚
𝑯 𝒛 =
𝟏
−𝒋𝝎𝝁𝒐
𝜵 × 𝑬𝒉
𝒌𝒐
𝟐
= 𝝎𝟐
𝝁𝒐𝝐𝒐
𝒌𝒐 = 𝝎 𝝁𝒐𝝐𝒐
𝒌𝒐 =
𝝎
𝑪
Speed of light 𝑪 =
𝟏
𝝁𝒐𝝐𝒐
=
𝝎 𝝁𝒐𝝐𝒐𝑬𝒐
𝜔𝜇
𝒆 𝒋𝒌𝒐𝒛
𝑢
=
𝝐𝒐
𝝁𝒐
𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛
𝑢
=
𝟏
𝜼𝒐
𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛
𝑢
𝜼𝒐 =
𝝁𝒐
𝝐𝒐
= 𝟏𝟐𝟎𝝅 𝛀
Intrinsic impedance
11
12
12/7/2022
7
1) Free space, [𝝈 = 𝟎, 𝝁𝒐, 𝝐𝒐] assume source free 𝝆 = 𝟎
𝜵𝟐
𝑬 + 𝝎𝟐
𝝁𝒐𝝐𝒐𝑬 = 𝟎 −− −(𝟏)
Wave Equations “Free space ”
𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛
𝒖𝒙
𝒖𝒙
𝒖𝒛
𝒖𝒚
𝝀 =
𝒖
𝒇
=
𝟏
𝒇
𝝎
𝒌𝒐
=
𝟐𝝅
𝒌𝒐
𝑯 𝒛 =
𝟏
𝜼𝒐
𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛
𝒖𝒚
𝒌𝒐
𝟐
= 𝝎𝟐
𝝁𝒐𝝐𝒐
𝒌𝒐 = 𝝎 𝝁𝒐𝝐𝒐
𝒌𝒐 =
𝝎
𝑪
Speed of light 𝑪 =
𝟏
𝝁𝒐𝝐𝒐
𝑬 𝒛, 𝒕 = ℜ 𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛
e 𝒖𝒙
= 𝑬𝒐 𝒄𝒐𝒔 (𝝎𝒕 − 𝒌𝒐𝒛) 𝒖𝒙
𝑯 𝒛, 𝒕 =
𝟏
𝜼𝒐
𝑬𝒐 𝒄𝒐𝒔 (𝝎𝒕 − 𝒌𝒐𝒛) 𝒖𝒚
𝝎𝒕 − 𝒌𝒐𝒛 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕
𝝎 − 𝒌𝒐
𝜕𝒛
𝜕𝑡
= 𝟎
𝒖 =
𝝎
𝒌𝒐
𝒖
𝒖 = 𝑪
Wave speed (speed
of light in free space)
1) Free space, [𝝈 = 𝟎, 𝝁𝒐, 𝝐𝒐] assume source free 𝝆 = 𝟎
𝜵𝟐
𝑬 + 𝝎𝟐
𝝁𝒐𝝐𝒐𝑬 = 𝟎
Wave Equations “Free space ”
𝑬 𝒛, 𝒕 = 𝑬𝒐 𝒄𝒐𝒔 (𝝎𝒕 − 𝒌𝒐𝒛) 𝒖𝒙
𝑯 𝒛, 𝒕 =
𝟏
𝜼𝒐
𝑬𝒐 𝒄𝒐𝒔 (𝝎𝒕 − 𝒌𝒐𝒛) 𝒖𝒚
EMANIM: Interactive animation of
electromagnetic waves (szialab.org) File:EM-Wave.gif - Wikimedia Commons
𝒖𝒚 𝒖𝒛
𝒖𝒙
Electromagnetic EM wave
13
14
12/7/2022
8
Wave Equations “Lossless dielectric Medium”
2) Lossless dielectric Medium, [𝝈 = 𝟎, 𝝁 = 𝝁𝒐𝝁𝒓, 𝝐 = 𝝐𝒐 𝝐𝒓] assume source free 𝝆 = 𝟎
𝜵𝟐
𝑯 + 𝝎𝟐
𝝁𝝐𝑯 = 𝟎 −− −(𝟐)
𝜵𝟐
𝑬 + 𝝎𝟐
𝝁𝝐 𝑬 = 𝟎 −− −(𝟏)
𝝏𝟐
𝝏𝒙𝟐
+
𝝏𝟐
𝝏𝒚𝟐
+
𝝏𝟐
𝝏𝒛𝟐
𝑬 + 𝒌𝟐
𝑬 = 𝟎
𝒖𝒙
𝒖𝒛
𝒖𝒚
Planner waves
𝒌𝟐
= 𝝎𝟐
𝝁𝝐
Wave Equations “Lossless dielectric Medium”
𝝏𝟐
𝝏𝒛𝟐 𝑬 + 𝒌𝟐
𝑬 = 𝟎  ODE
𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒛
𝑭𝒐𝒓𝒘𝒂𝒓𝒅 𝒘𝒂𝒗𝒆
+ 𝑬𝒐 𝒆𝒋𝒌𝒛
𝑩𝒂𝒄𝒌𝒘𝒂𝒓𝒅 𝒘𝒂𝒗𝒆
𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒛
𝒖𝒙
From Maxwells 1st equation
𝜵 × 𝑬𝒉 = −𝒋𝝎𝝁𝑯𝒉
𝑯𝒉 =
𝟏
−𝒋𝝎𝝁
𝜵 × 𝑬𝒉
𝒖𝒙
𝒖𝒛
𝒖𝒚
Direction of propagation
Direction
of oscillation
2) Lossless dielectric Medium, [𝝈 = 𝟎, 𝝁 = 𝝁𝒐𝝁𝒓, 𝝐 = 𝝐𝒐 𝝐𝒓] assume source free 𝝆 = 𝟎
𝜵𝟐
𝑬 + 𝝎𝟐
𝝁𝝐 𝑬 = 𝟎 −− −(𝟏)
15
16
12/7/2022
9
Wave Equations “Lossless dielectric Medium”
𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒛
𝒖𝒙
𝑯𝒉 =
𝟏
−𝒋𝝎𝝁
𝜵 × 𝑬𝒉
𝐻 =
𝟏
−𝒋𝝎𝝁
𝑢 𝑢 𝑢
0 0
𝜕
𝜕𝑧
𝐸 0 0
=
𝟏
−𝒋𝝎𝝁
𝜕𝐸
𝜕𝑧
𝑢
=
−𝒋𝒌𝑬𝒐
−𝑗𝜔𝝁
𝒆 𝒋𝒌𝒛
𝑢
𝒌𝟐
= 𝝎𝟐
𝝁𝝐
𝒌 = 𝝎 𝝁𝝐
𝒌 =
𝝎
𝒖
𝒖 =
𝟏
𝝁𝝐
=
𝑪
𝝁𝒓𝝐𝒓
=
𝝎 𝝁𝝐𝑬𝒐
𝜔𝝁
𝒆 𝒋𝒌𝒛
𝑢
2) Lossless dielectric Medium, [𝝈 = 𝟎, 𝝁 = 𝝁𝒐𝝁𝒓, 𝝐 = 𝝐𝒐 𝝐𝒓] assume source free 𝝆 = 𝟎
𝜵𝟐
𝑬 + 𝝎𝟐
𝝁𝝐 𝑬 = 𝟎 −− −(𝟏)
Wave Equations “Lossless dielectric Medium”
𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛
𝒖𝒙
𝒖𝒙
𝒖𝒛
𝒖𝒚
𝑯 𝒛 =
𝟏
−𝒋𝝎𝝁
𝜵 × 𝑬𝒉
=
𝟏
𝜼
𝑬𝒐 𝒆 𝒋𝒌𝒛
𝑢 𝜼 =
𝝁𝒐𝝁𝒓
𝝐𝒓𝝐𝒐
= 𝟏𝟐𝟎𝝅
𝝁𝒓
𝝐𝒓
𝛀
2) Lossless dielectric Medium, [𝝈 = 𝟎, 𝝁 = 𝝁𝒐𝝁𝒓, 𝝐 = 𝝐𝒐 𝝐𝒓] assume source free 𝝆 = 𝟎
𝜵𝟐
𝑬 + 𝝎𝟐
𝝁𝝐 𝑬 = 𝟎 −− −(𝟏)
𝑬 𝒛, 𝒕 = 𝑬𝒐 𝒄𝒐𝒔 (𝝎𝒕 − 𝒌𝒛) 𝒖𝒙
𝑯 𝒛, 𝒕 =
𝟏
𝜼
𝑬𝒐 𝒄𝒐𝒔 (𝝎𝒕 − 𝒌𝒛) 𝒖𝒚
𝝀 =
𝟐𝝅
𝒌
17
18
12/7/2022
10
Wave Equations “Lossy dielectric Medium”
3) Lossy dielectric Medium, [𝝈 ≠ 𝟎, 𝝁 = 𝝁𝒐𝝁𝒓, 𝝐 = 𝝐𝒐 𝝐𝒓] assume source free 𝝆 = 𝟎
𝜵𝟐
𝑬 − 𝒋𝝎𝝁𝝈𝑬 + 𝝎𝟐
𝝁𝝐 𝑬 = 𝟎
𝝏𝟐
𝝏𝒛𝟐
𝑬 + 𝒌𝒄
𝟐
𝑬 = 𝟎
𝜵𝟐
𝑬 + (−𝒋𝝎𝝁𝝈 + 𝝎𝟐
𝝁𝝐) 𝑬 = 𝟎
𝒌𝒄
𝟐
= 𝝎𝟐
𝝁𝝐 −𝒋𝝎𝝁𝝈
𝒌𝒄
𝟐
= 𝝎𝟐
𝝁𝝐(𝟏 −
𝒋𝝈
𝝎𝝐
)
𝒌𝒄 = 𝝎𝟐𝝁𝝐 𝟏 −
𝒋𝝈
𝝎𝝐
𝟏
𝟐
𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒄𝒛
𝒖𝒙
𝑯𝒉 =
𝟏
−𝒋𝝎𝝁
𝜵 × 𝑬𝒉 =
𝟏
−𝒋𝝎𝝁
𝑢 𝑢 𝑢
0 0
𝜕
𝜕𝑧
𝐸 0 0
=
𝟏
−𝒋𝝎𝝁
𝜕𝐸
𝜕𝑧
𝑢 =
𝒌𝒄𝑬𝒐
𝜔𝝁
𝒆 𝒋𝒌𝒄𝒛
𝑢
𝒌𝒄 = 𝒌 𝟏 −
𝒋𝝈
𝝎𝝐
𝟏
𝟐
𝟏 + 𝒙 𝒏 = 𝟏 +
𝒏𝒙
𝟏!
+
𝒏 𝒏 − 𝟏 𝒙𝟐
𝟐!
+ ⋯
Binomial Theory
𝒌𝒄 ≃ 𝑘 (𝟏 −
𝒋𝝈
𝟐𝝎𝝐
)
𝒌 = 𝝎 𝝁𝝐
Wave Equations “Lossy dielectric Medium”
3) Lossy dielectric Medium, [𝝈 ≠ 𝟎, 𝝁 = 𝝁𝒐𝝁𝒓, 𝝐 = 𝝐𝒐 𝝐𝒓] assume source free 𝝆 = 𝟎
𝜵𝟐
𝑬 − 𝒋𝝎𝝁𝝈𝑬 + 𝝎𝟐
𝝁𝝐 𝑬 = 𝟎 𝒌𝒄
𝟐
= 𝝎𝟐
𝝁𝝐 −𝒋𝝎𝝁𝝈
𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒄𝒛
𝒖𝒙
𝑯𝒉 𝒛 =
𝒌𝒄𝑬𝒐
𝝎𝝁
𝒆 𝒋𝒌𝒄𝒛
𝒖𝒚
𝒌𝒄 ≃ 𝑘 (𝟏 −
𝒋𝝈
𝟐𝝎𝝐
)
𝒌𝒄 ≃ 𝒌 − 𝒋𝜶
𝑯𝒉 𝒛 =
(𝒌 − 𝒋𝜶)𝑬𝒐
𝝎𝝁
𝒆 𝒋𝒌𝒄𝒛
𝒖𝒚
𝛼 =
𝑘𝜎
2𝜔𝜖
𝛼 =
𝜎 𝜔 𝜇𝜖
2𝜔𝜖
𝛼 =
𝑬 𝒛, 𝒕 = ℜ 𝑬𝒐 𝒆 𝒋𝒌𝒄𝒛
e 𝒖𝒙
𝑬 𝒛, 𝒕 = ℜ 𝑬𝒐 𝒆 𝜶𝒛
𝒆 𝒋𝒌𝒛
e 𝒖𝒙
= 𝑬𝒐 𝒆 𝜶𝒛
𝒄𝒐𝒔 (𝝎𝒕 − 𝒌𝒛) 𝒖𝒙
= ℜ 𝑬𝒐 𝒆 𝒋(𝒌 𝒋𝜶)𝒛
e 𝒖𝒙
19
20
12/7/2022
11
Wave Equations “Lossy dielectric Medium”
3) Lossy dielectric Medium, [𝝈 ≠ 𝟎,𝝁 = 𝝁𝒐𝝁𝒓, 𝝐 = 𝝐𝒐 𝝐𝒓] assume source free 𝝆 = 𝟎
𝜵𝟐
𝑬 − 𝒋𝝎𝝁𝝈𝑬 + 𝝎𝟐
𝝁𝝐 𝑬 = 𝟎 𝒌𝒄
𝟐
= 𝝎𝟐
𝝁𝝐 −𝒋𝝎𝝁𝝈
𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒄𝒛
𝒖𝒙
𝒌𝒄 ≃ 𝒌 − 𝒋𝜶
𝛼 =
𝑘𝜎
2𝜔𝜖
𝛼 =
𝑬 𝒛, 𝒕 = ℜ 𝑬𝒐 𝒆 𝜶𝒛
𝒆 𝒋𝒌𝒛
e 𝒖𝒙
= 𝑬𝒐 𝒆 𝜶𝒛
𝒄𝒐𝒔 (𝝎𝒕 − 𝒌𝒛) 𝒖𝒙
𝒆 𝒋𝜶𝒛
: Attenuation factor
Wave Equations “Good conductor ”
4) Good conductor , [𝝈 ≠ 𝟎, 𝝁 = 𝝁𝒐𝝁𝒓, 𝝐 = 𝝐𝒐 𝝐𝒓] assume source free 𝝆 = 𝟎
𝜵𝟐
𝑬 − 𝒋𝝎𝝁𝝈𝑬 + 𝝎𝟐
𝝁𝝐 𝑬 = 𝟎
𝝏𝟐
𝝏𝒛𝟐
𝑬 + 𝜸𝟐
𝑬 = 𝟎
𝜵𝟐
𝑬 + (−𝒋𝝎𝝁𝝈 + 𝝎𝟐
𝝁𝝐) 𝑬 = 𝟎
𝜸𝟐 = 𝝎𝟐𝝁𝝐 −𝒋𝝎𝝁𝝈
𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝜸𝒛
𝒖𝒙
𝑯𝒉 =
𝟏
−𝒋𝝎𝝁
𝜵 × 𝑬𝒉 =
𝟏
−𝒋𝝎𝝁
𝑢 𝑢 𝑢
0 0
𝜕
𝜕𝑧
𝐸 0 0
=
𝟏
−𝒋𝝎𝝁
𝜕𝐸
𝜕𝑧
𝑢 =
𝜸 𝑬𝒐
𝜔𝝁
𝒆 𝒋𝜸 𝒛
𝑢
𝛾 = −𝑗𝜔𝜇𝜎
𝛾 = −𝑗𝜔𝜇𝜎
𝛾 = −𝑗 𝜔𝜇𝜎
𝑒 = cos
𝜋
2
+
𝑗 sin
𝜋
2
= 0 + 𝑗
𝑗 = 𝑒
−𝑗 = 𝑒
−𝑗 = 𝑒
−𝑗 = cos
𝜋
4
−𝑗 sin
𝜋
4
−𝑗 =
1 − 𝑗
2
𝛾 =
1 − 𝑗
2
𝜔𝜇𝜎
𝛾 = 1 − 𝑗
𝜔𝜇𝜎
2
𝛾 =
1 − 𝑗
𝛿 𝛿 =
2
𝜔𝜇𝜎
Skin depth
Penetration
depth
21
22
12/7/2022
12
Wave Equations “Lossy dielectric Medium”
4) Good conductor , [𝝈 ≠ 𝟎, 𝝁 = 𝝁𝒐𝝁𝒓, 𝝐 = 𝝐𝒐 𝝐𝒓] assume source free 𝝆 = 𝟎
𝜵𝟐
𝑬 + 𝜸𝟐
𝑬 = 𝟎
𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝜸𝒛
𝒖𝒙
𝑯𝒉 𝒛 =
𝜸𝑬𝒐
𝝎𝝁
𝒆 𝒋𝜸𝒛
𝒖𝒚
𝑯𝒉 𝒛 =
(
1 − 𝑗
𝛿
)𝑬𝒐
𝝎𝝁
𝒆 𝒋𝜸𝒛
𝒖𝒚
𝑬 𝒛, 𝒕 = ℜ 𝑬𝒐 𝒆 𝒋𝜸𝒛
e 𝒖𝒙
𝑬 𝒛, 𝒕 = ℜ 𝑬𝒐 𝒆
𝒛
𝜹 𝒆
𝒋𝒛
𝜹 e 𝒖𝒙
= ℜ 𝑬𝒐 𝒆
𝒋( )𝒛
e 𝒖𝒙
𝛾 =
1 − 𝑗
𝛿 𝛿 =
2
𝜔𝜇𝜎
= 𝑬𝒐 𝒆
𝒛
𝜹 𝒄𝒐𝒔 (𝝎𝒕 −
𝒛
𝜹
) 𝒖𝒙
23
12/21/2022
1
Time Varying Fields
Applications
Magnetic Diffusion Equation
Applications
“Induction Heating”
By:
Emad Fathy Yassin
Faculty of Engineering
Cairo University
∇ 𝐸 − 𝑗𝜔𝜇𝜎𝐸 + 𝜔 𝜇𝜖𝐸 =
∇𝜌
𝜖
(
𝜕
𝜕𝑥
+
𝜕
𝜕𝑦
+
𝜕
𝜕𝑧
)𝐻 + 𝛾 𝐻 = 0
Diffusion Equation
∇ 𝐻 + −𝑗𝜔𝜇𝜎𝐻 = 0
∇ 𝐻 − 𝑗𝜔𝜇𝜎𝐻 + 𝜔 𝜇𝜖𝐻 = 0
Wave Equations
∇ × 𝐸 = −𝑗𝜔𝜇𝐻̅
∇ × 𝐻 = 𝐽̅+𝑗𝜔𝜖𝐸
∇. 𝐷 = 𝜌
∇. 𝐵 = 0
Maxwell’s Equations
∇ 𝐸 − 𝑗𝜔𝜇𝜎𝐸 + 0 =
∇𝜌
𝜖
∇ 𝐻 − 𝑗𝜔𝜇𝜎𝐻 + 0 = 0
Wave Equations
∇ × 𝐸 = −𝑗𝜔𝜇𝐻̅
∇ × 𝐻 = 𝐽̅+ 0
∇. 𝐷 = 𝜌
∇. 𝐵 = 0
Maxwell’s Equations in good conductors
Diffusion Equations
∇ 𝐻 + 𝛾 𝐻 = 0
1
2
12/21/2022
2
(
𝜕
𝜕𝑥
+
𝜕
𝜕𝑦
+
𝜕
𝜕𝑧
)𝐻 + 𝛾 𝐻 = 0
How to Solve Diffusion Equation?
∇ 𝐻 + 𝛾 𝐻 = 0
𝛾 = −𝑗𝜔𝜇𝜎
𝛾 = −𝑗𝜔𝜇𝜎
𝛾 = −𝑗 𝜔𝜇𝜎
𝑒 = cos
𝜋
2
+ 𝑗 sin
𝜋
2
= 0 + 𝑗
𝑗 = 𝑒
−𝑗 = 𝑒
−𝑗 = 𝑒
−𝑗 = cos
𝜋
4
− 𝑗 sin
𝜋
4
−𝑗 =
1 − 𝑗
2
𝛾 =
1 − 𝑗
2
𝜔𝜇𝜎
𝛾 = 1 − 𝑗
𝜔𝜇𝜎
2
𝛾 =
1 − 𝑗
𝛿
𝛿 =
2
𝜔𝜇𝜎
Skin depth
‘Penetration
depth’
𝜕
𝜕𝑢
𝐻 + 𝛾 𝐻 = 0
Assume inf. extension in 2 direction depends on
the problem dimensions
𝜕
𝜕𝑢
−−−→ 𝑀
𝑀 𝐻 + 𝛾 𝐻 = 0
𝑀 + 𝛾 = 0
𝑀 = ± 𝑗𝛾
𝑀 = ±𝛽
𝛽 = 𝑗𝛾 =
1 + 𝑗
𝛿
𝐻 = 𝐴 𝑒 + 𝐶 𝑒
How to Solve Diffusion Equation?
∇ 𝐻 + 𝛾 𝐻 = 0
𝛾 = −𝑗𝜔𝜇𝜎
𝛾 = −𝑗𝜔𝜇𝜎
𝛾 = −𝑗 𝜔𝜇𝜎
𝑒 = cos
𝜋
2
+ 𝑗 sin
𝜋
2
= 0 + 𝑗
𝑗 = 𝑒
−𝑗 = 𝑒
−𝑗 = 𝑒
−𝑗 = cos
𝜋
4
− 𝑗 sin
𝜋
4
−𝑗 =
1 − 𝑗
2
𝛾 =
1 − 𝑗
2
𝜔𝜇𝜎
𝛾 = 1 − 𝑗
𝜔𝜇𝜎
2
𝛾 =
1 − 𝑗
𝛿
𝛿 =
2
𝜔𝜇𝜎 Skin depth
Penetration depth
𝛽 = 𝑗𝛾 =
1 + 𝑗
𝛿
𝐻 = 𝐴 𝑒 + 𝐶 𝑒
Using Ampere's low to get H outside material and
direction of H
𝐻 = 𝐴 𝑒 + 𝐶 𝑒
To get 𝐴 𝑎𝑛𝑑 𝐶 Using BCs
Special cases
• Semi inf. extension
• Even symmetry
• Odd symmetry
𝐽̅ = ∇ × 𝐻
𝐸 =
𝐽̅
𝜎
=
1
𝜎
∇ × 𝐻
𝑆̅ =
1
2
𝐸 × 𝐻∗
− 𝑆̅. 𝑑𝑠 = 𝑃 + 𝑗𝑄
𝐻 − 𝐻 = 𝑘
𝐵 = 𝐵
3
4
12/21/2022
3
∇ 𝐻 + 𝛾 𝐻 = 0
(
𝜕
𝜕𝑥
+
𝜕
𝜕𝑦
+
𝜕
𝜕𝑧
)𝐻 + 𝛾 𝐻 = 0
Assume inf. extension in height == 𝑥 → ∞ and
diameter is very high z → ∞ 𝑧
𝑦
𝑥
𝑘 = 𝑘 cos 𝜔𝑡
(1) Induction Heating
𝑎
𝒙
𝒚
𝒛
Conducting Slab
∇ 𝐻 + 𝛾 𝐻 = 0
(
𝜕
𝜕𝑥
+
𝜕
𝜕𝑦
+
𝜕
𝜕𝑧
)𝐻 + 𝛾 𝐻 = 0
Assume inf. Extension in x and z direction
𝜕
𝜕𝑦
𝐻 + 𝛾 𝐻 = 0
𝐻 𝑦 = 𝐴 𝑒 + 𝐶 𝑒
Assume semi-inf. extension in +𝑣𝑒 y direction
𝑦 = ∞ 𝐻 ≠ ∞ 𝑡ℎ𝑒𝑛 𝐶 𝑚𝑢𝑠𝑡 𝑒𝑞𝑢𝑎𝑙 𝑧𝑒𝑟𝑜
𝐻 𝑦 = 𝐴 𝑒
𝐻 𝑦 = 𝐴 𝑒 (−𝑢 )
𝑧
𝑦
𝑥
𝑘 = 𝑘 cos 𝜔𝑡
𝑘 = 𝑘
1
4 3
2
+ + + = 𝐼
𝐻 ∗ 𝑙 + 0 + 𝐻 ∗ 𝑙 + 0 = 𝑘 𝑙
From ampere's low
𝐻. 𝑑𝑙 = 𝐼
𝐻
𝑙
=
𝑘
2
𝐻 =
𝑘
2
𝑢𝑠𝑖𝑛𝑔 𝐵𝐶𝑠 @ 𝑦 = 0
(1) Induction Heating
𝐻 =
𝑘
2
𝑎
5
6
12/21/2022
4
𝐻 𝑦 = 𝐴 𝑒 (−𝑢 )
𝑧
𝑦
𝑥
𝑘 = 𝑘 cos 𝜔𝑡
𝑘 = 𝑘
1
4 3
2
+ + + = 𝐼
𝐻 ∗ 𝑙 + 0 + 𝐻 ∗ 𝑙 + 0 = 𝑘 𝑙
𝐻 =
𝑘
2
From ampere's low
𝐻. 𝑑𝑙 = 𝐼
𝐻
𝑙
=
𝑘
2
𝐻=
𝑘
2
𝑢𝑠𝑖𝑛𝑔 𝐵𝐶𝑠 @ (𝑦 = 0)
𝐻 = 𝐻
1
2
𝑘
2
−𝑢 = 𝐴 (−𝑢 )
𝐻 𝑦 =
𝑘
2
𝑒 (−𝑢 )
𝐽̅ = ∇ × 𝐻
𝐽̅ =
𝑢 𝑢 𝑢
𝜕
𝜕𝑥
𝜕
𝜕𝑦
𝜕
𝜕𝑧
𝐻 𝐻 𝐻
=
𝑢 𝑢 𝑢
0
𝜕
𝜕𝑦
0
𝐻 0 0
= −
𝜕
𝜕𝑦
𝐻 𝑢̅
= −
𝑘 𝛽
2
𝑒 𝑢̅
(1) Induction Heating
𝑎
𝑧
𝑦
𝑥
𝑘 = 𝑘 cos 𝜔𝑡
𝑘 = 𝑘
1
4 3
2
+ + + = 𝐼
𝐻 ∗ 𝑙 + 0 + 𝐻 ∗ 𝑙 + 0 = 𝑘 𝑙
𝐻 =
𝑘
2
From ampere's low
𝐻. 𝑑𝑙 = 𝐼
𝐻
𝑙
=
𝑘
2
𝐻=
𝑘
2
1
2
𝐻 𝑦 =
𝑘
2
𝑒 (−𝑢 )
𝐽̅ = −
𝑘 𝛽
2
𝑒 𝑢
𝐸 =
𝐽̅
𝜎
= −
𝑘 𝛽
2𝜎
𝑒 𝑢
𝑆̅ =
1
2
𝐸 × 𝐻∗
𝑆̅|@ = 𝐸| × 𝐻|
∗
𝑆̅|@ =
1
2
𝑘 𝛽
2𝜎
(−𝑢 ) ×
𝑘
2
(−𝑢 )
𝑆̅|@ =
𝑘 𝛽
8𝜎
𝑢
(1) Induction Heating
7
8
12/21/2022
5
(1) Induction Heating
𝑧
𝑦
𝑥
𝑘 = 𝑘 cos 𝜔𝑡
𝑘 = 𝑘
1
4 3
2
+ + + = 𝐼
𝐻 ∗ 𝑙 + 0 + 𝐻 ∗ 𝑙 + 0 = 𝑘 𝑙
𝐻 =
𝑘
2
From ampere's low
𝐻. 𝑑𝑙 = 𝐼
𝐻
𝑙
=
𝑘
2
𝐻=
𝑘
2
1
2
𝐻 𝑦 =
𝑘
2
𝑒 (−𝑢 ) 𝐸 =
𝐽̅
𝜎
= −
𝑘 𝛽
2𝜎
𝑒 𝑢
𝑆̅|@ =
𝑘 𝛽
8𝜎
𝑢
− 𝑆̅. 𝑑𝑠 = − 𝑆̅. 𝑑𝑠 =
− 𝑆̅. 𝑑𝑠 =
𝑘 𝛽
8𝜎
∗ 1 ∗ 1
𝑃 + 𝑗𝑄 =
𝑘 𝛽
8𝜎
𝛽 =
1 + 𝑗
𝛿
=
𝑘
8𝜎
1 + 𝑗
𝛿
𝑃 =
𝑘
8𝜎𝛿
𝑤/𝑚 𝑄 =
𝑘
8𝜎𝛿
𝑉𝐴𝑅/𝑚
𝑏𝑜𝑡𝑡𝑜𝑚 𝑠𝑢𝑟𝑓𝑎𝑐𝑒
( @ 𝑦 = 0)
𝑘 𝛽
8𝜎
𝑢 . dxd𝑧 (−𝑢 )
9
12/21/2022
1
EPMN203: Time Varying
Fields Applications
Magnetic Diffusion Equation Applications
“Transformer Eddy Current Losses”
By:
Emad Fathy Yassin
Faculty of Engineering
Cairo University
Transformer Eddy Current Losses
𝑧
𝒚
𝑥
𝑥
𝒚
𝑥
𝑦
2𝑑
2ℎ
𝑥
𝑦
2ℎ
2𝑑
1
2
12/21/2022
2
Transformer Eddy Current Losses
𝑧
𝒚
𝑥
𝑥
𝒚
𝑥
𝑦
2𝑑
2ℎ
𝑥
𝑦
2ℎ
2𝑑
∇ 𝐻 + 𝛾 𝐻 = 0
(
𝜕
𝜕𝑥
+
𝜕
𝜕𝑦
+
𝜕
𝜕𝑧
)𝐻 + 𝛾 𝐻 = 0
Assume inf. extension in height == 𝑧 → ∞ and
2ℎ ≫ 2𝑑 −−→ y → ∞
𝜕
𝜕𝑥
𝐻 + 𝛾 𝐻 = 0
𝐻 𝑥 = 𝐴 𝑒 + 𝐶 𝑒
+ + + = 𝐼
From ampere's low
𝐻. 𝑑𝑙 = 𝐼 1
4
3
2
𝐻 ∗ 𝑙 + 0 + 0 + 0 = 𝑁𝐼
𝐻 = 𝑛𝐼
𝐻
𝐻
𝐻 𝑥 = 𝑑 = 𝐻 𝑥 = −𝑑
Using BCs @ 𝑥 = 𝑑
𝐻 = 𝐻
1
2
𝐻 = 𝐻 𝑥 = 𝑑
= 𝐴 cosh 𝛽𝑑
𝑒𝑣𝑒𝑛 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑡ℎ𝑒𝑛 𝐴 = 𝐶
𝐻 𝑥 = 𝐴 cosh 𝛽𝑥
𝐴 =
𝐻
cosh 𝛽𝑑
Transformer Eddy Current Losses
𝑧
𝒚
𝑥
𝑥
𝒚
𝑥
𝑦
2𝑑
2ℎ
𝑥
𝑦
2ℎ
2𝑑
∇ 𝐻 + 𝛾 𝐻 = 0
+ + + = 𝐼
From ampere's low
𝐻. 𝑑𝑙 = 𝐼 1
4
3
2
𝐻 ∗ 𝑙 + 0 + 0 + 0 = 𝑁𝐼
𝐻 = 𝑛𝐼
𝐻
𝐻
1
2
𝐻 𝑥 = 𝐴 cosh 𝛽𝑥
𝐴 =
𝐻
cosh 𝛽𝑑
𝐻 𝑥 = 𝐻
cosh 𝛽𝑥
cosh 𝛽𝑑
𝑢
𝐽̅ = ∇ × 𝐻
𝐽̅ =
𝑢 𝑢 𝑢
𝜕
𝜕𝑥
𝜕
𝜕𝑦
𝜕
𝜕𝑧
𝐻 𝐻 𝐻
=
𝑢 𝑢 𝑢
𝜕
𝜕𝑥
0 0
0 0 𝐻
= −
𝜕
𝜕𝑥
𝐻 𝑢̅
= −𝐻 𝛽
sinh 𝛽𝑥
cosh 𝛽𝑑
𝑢
3
4
12/21/2022
3
Transformer Eddy Current Losses
𝑧
𝒚
𝑥
𝑥
𝒚
𝑥
𝑦
2𝑑
2ℎ
𝑥
𝑦
2ℎ
2𝑑
1
4
3
2
𝐻 = 𝑛𝐼
𝐻
𝐻
1
2
𝐻 𝑥 = 𝐻
cosh 𝛽𝑥
cosh 𝛽𝑑
𝑢
𝐽̅ = −𝐻 𝛽
sinh 𝛽𝑥
cosh 𝛽𝑑
𝑢
𝐸 =
𝐽̅
𝜎
= −
𝐻 𝛽
𝜎
sinh 𝛽𝑥
cosh 𝛽𝑑
𝑢
𝑆̅ =
1
2
𝐸 × 𝐻∗
𝑆̅|@ = 𝐸| × 𝐻|
∗
𝑆̅|@ =
1
2
𝐻 𝛽
𝜎
sinh 𝛽𝑑
cosh 𝛽𝑑
(−𝑢 ) × 𝐻 (𝑢 )
𝑆̅|@ =
1
2
𝐻 𝛽
𝜎
sinh 𝛽𝑑
cosh 𝛽𝑑
(−𝑢 )
Transformer Eddy Current Losses
𝑧
𝒚
𝑥
𝑥
𝒚
𝑥
𝑦
2𝑑
2ℎ
𝑥
𝑦
2ℎ
2𝑑
1
4
3
2
𝐻 = 𝑛𝐼
𝐻
𝐻
1
2
𝐻 𝑥 = 𝐻
cosh 𝛽𝑥
cosh 𝛽𝑑
𝑢
𝐽̅ = −𝐻 𝛽
sinh 𝛽𝑥
cosh 𝛽𝑑
𝑢
𝐸 =
𝐽̅
𝜎
= −
𝐻 𝛽
𝜎
sinh 𝛽𝑥
cosh 𝛽𝑑
𝑢
𝑆̅ =
1
2
𝐸 × 𝐻∗
𝑆̅|@ = 𝐸| × 𝐻|
∗
𝑆̅|@ =
1
2
𝐻 𝛽
𝜎
sinh 𝛽𝑑
cosh 𝛽𝑑
(𝑢 ) × 𝐻 (𝑢 )
𝑆̅|@ =
1
2
𝐻 𝛽
𝜎
sinh 𝛽𝑑
cosh 𝛽𝑑
(𝑢 )
5
6
12/21/2022
4
Transformer Eddy Current Losses
𝑧
𝒚
𝑥
𝑥
𝒚
𝑥
𝑦
2𝑑
2ℎ
𝑥
𝑦
2ℎ
2𝑑
1
4
3
2
𝐻 = 𝑛𝐼
𝐻
𝐻
1
2
𝐻 𝑥 = 𝐻
cosh 𝛽𝑥
cosh 𝛽𝑑
𝑢 𝐸 =
𝐽̅
𝜎
= −
𝐻 𝛽
𝜎
sinh 𝛽𝑥
cosh 𝛽𝑑
𝑢
𝑆̅|@ =
1
2
𝐻 𝛽
𝜎
sinh 𝛽𝑑
cosh 𝛽𝑑
(𝑢 )
𝑆̅|@ =
1
2
𝐻 𝛽
𝜎
sinh 𝛽𝑑
cosh 𝛽𝑑
(−𝑢 )
− 𝑆̅. 𝑑𝑠 = − 𝑆̅. 𝑑𝑠
@
− 𝑆̅. 𝑑𝑠
@
= −
1
2
𝐻 𝛽
𝜎
sinh 𝛽𝑑
cosh 𝛽𝑑
(−𝑢 ). dyd𝑧 (𝑢 )
−
1
2
𝐻 𝛽
𝜎
sinh𝛽𝑑
cosh 𝛽𝑑
(𝑢 ). dyd𝑧 (−𝑢 )
= 2 ∗
1
2
𝐻 𝛽
𝜎
sinh 𝛽𝑑
cosh 𝛽𝑑
∗ 2ℎ ∗ 1 = 𝑃 + 𝑗𝑄
Transformer Eddy Current Losses
𝑃 + 𝑗𝑄 = 2 ∗
1
2
𝐻 𝛽
𝜎
sinh 𝛽𝑑
cosh 𝛽𝑑
∗ 2ℎ ∗ 1
sinh 𝛽𝑑
cosh 𝛽𝑑
cosh (𝑎 + 𝑗𝑏) = cosh 𝑎 cos 𝑏 + 𝑗 sinh 𝑎 sin 𝑏
sinh (𝑎 + 𝑗𝑏) = sinh 𝑎 cos 𝑏 + 𝑗 cosh 𝑎 sin 𝑏
=
sinh
1 + 𝑗
𝛿
𝑑
cosh
1 + 𝑗
𝛿
𝑑
=
sinh
𝑑
𝛿
cos
𝑑
𝛿
+ 𝑗 cosh
𝑑
𝛿
sin
𝑑
𝛿
cosh
𝑑
𝛿
cos
𝑑
𝛿
+ 𝑗 sinh
𝑑
𝛿
sin
𝑑
𝛿
∗
cosh
𝑑
𝛿
cos
𝑑
𝛿
− 𝑗 sinh
𝑑
𝛿
sin
𝑑
𝛿
cosh
𝑑
𝛿
cos
𝑑
𝛿
− 𝑗 sinh
𝑑
𝛿
sin
𝑑
𝛿
=
cosh
𝑑
𝛿
cos
𝑑
𝛿
+ sinh
𝑑
𝛿
sin
𝑑
𝛿
sinh
𝑑
𝛿
cosh
𝑑
𝛿
cos
𝑑
𝛿
+ sin
𝑑
𝛿
+𝑗 cos
𝑑
𝛿
sin
𝑑
𝛿
cosh
𝑑
𝛿
− sinh
𝑑
𝛿
=
sinh
𝑑
𝛿
cosh
𝑑
𝛿
+ 𝑗 cos
𝑑
𝛿
sin
𝑑
𝛿
cosh
𝑑
𝛿
cos
𝑑
𝛿
+ sinh
𝑑
𝛿
sin
𝑑
𝛿
7
8
12/21/2022
5
Transformer Eddy Current Losses
𝑃 + 𝑗𝑄 = 2 ∗
1
2
𝐻 𝛽
𝜎
sinh 𝛽𝑑
cosh 𝛽𝑑
∗ 2ℎ ∗ 1
sinh 𝛽𝑑
cosh 𝛽𝑑
cosh (𝑎 + 𝑗𝑏) = cosh 𝑎 cos 𝑏 + 𝑗 sinh 𝑎 sin 𝑏
sinh (𝑎 + 𝑗𝑏) = sinh 𝑎 cos 𝑏 + 𝑗 cosh 𝑎 sin 𝑏
=
sinh
𝑑
𝛿
cosh
𝑑
𝛿
+ 𝑗 cos
𝑑
𝛿
sin
𝑑
𝛿
cosh
𝑑
𝛿
cos
𝑑
𝛿
+ sinh
𝑑
𝛿
sin
𝑑
𝛿
sinh 𝑎 cosh 𝑎 =
1
2
sinh 2𝑎
sin 𝑎 cos 𝑎 =
1
2
sin 2𝑎
cosh 𝑎 =
1
2
1 + cosh 2𝑎
cos 𝑎 =
1
2
1 + cos 2𝑎
sinh a = −1 + cosh 2𝑎
sin 𝑎 =
1
2
1 − cos 2𝑎
=
1
2
sinh
2𝑑
𝛿
+ 𝑗 sin
2𝑑
𝛿
1
4
1 + cosh
2𝑑
𝛿
1 + cos
2𝑑
𝛿
+ −1 + cosh
2𝑑
𝛿
1 − cos
2𝑑
𝛿
=
sinh
2𝑑
𝛿
+ 𝑗 sin
2𝑑
𝛿
1
2
1 + cosh
2𝑑
𝛿
+ cos
2𝑑
𝛿
+ cosh
2𝑑
𝛿
cos
2𝑑
𝛿
−1 + cosh
2𝑑
𝛿
+ cos
2𝑑
𝛿
− cosh
2𝑑
𝛿
cos
2𝑑
𝛿
=
sinh
2𝑑
𝛿
+ 𝑗 sin
2𝑑
𝛿
1
2
2 cosh
2𝑑
𝛿
+ 2 cos
2𝑑
𝛿
=
sinh
2𝑑
𝛿
+ 𝑗 sin
2𝑑
𝛿
cosh
2𝑑
𝛿
+ cos
2𝑑
𝛿
Transformer Eddy Current Losses
𝑃 + 𝑗𝑄 = 2 ∗
1
2
𝐻 𝛽
𝜎
sinh 𝛽𝑑
cosh 𝛽𝑑
∗ 2ℎ ∗ 1
sinh 𝛽𝑑
cosh 𝛽𝑑
cosh (𝑎 + 𝑗𝑏) = cosh 𝑎 cos 𝑏 + 𝑗 sinh 𝑎 sin 𝑏
sinh (𝑎 + 𝑗𝑏) = sinh 𝑎 cos 𝑏 + 𝑗 cosh 𝑎 sin 𝑏
sinh 𝑎 cosh 𝑎 =
1
2
sinh 2𝑎
sin 𝑎 cos 𝑎 =
1
2
sin 2𝑎
cosh 𝑎 =
1
2
cosh 2𝑎 + 1
cos 𝑎 =
1
2
cos 2𝑎 + 1
sinh a = cosh 2𝑎 − 1
sin 𝑎 =
1
2
− cos 2𝑎 + 1
=
sinh
2𝑑
𝛿
+ 𝑗 sin
2𝑑
𝛿
cosh
2𝑑
𝛿
+ cos
2𝑑
𝛿
𝑃 + 𝑗𝑄 =
𝐻 𝛽
𝜎
sinh 𝛽𝑑
cosh 𝛽𝑑
∗ 2ℎ ∗ 1
𝑃 + 𝑗𝑄 =
𝐻
𝜎
1 + 𝑗
𝛿
sinh
2𝑑
𝛿
+ 𝑗 sin
2𝑑
𝛿
cosh
2𝑑
𝛿
+ cos
2𝑑
𝛿
∗ 2ℎ ∗ 1
𝑃 =
𝐻
𝜎
2ℎ
𝛿
sinh
2𝑑
𝛿
− sin
2𝑑
𝛿
cosh
2𝑑
𝛿
+ cos
2𝑑
𝛿
𝑤/𝑚
𝑄 =
𝐻
𝜎
2ℎ
𝛿
sinh
2𝑑
𝛿
+ sin
2𝑑
𝛿
cosh
2𝑑
𝛿
+ cos
2𝑑
𝛿
𝑉𝐴𝑅 /𝑚
9
10
12/21/2022
6
Transformer Eddy Current Losses
𝑃 =
(𝑛𝐼 )
𝜎
2ℎ
𝛿
sinh
2𝑑
𝛿
− sin
2𝑑
𝛿
cosh
2𝑑
𝛿
+ cos
2𝑑
𝛿
𝑤/𝑚
𝛿 =
2
𝜔𝜇𝜎
=
2
2𝜋 ∗ 50 ∗ 𝜇 ∗ 5000 ∗ 0.17 ∗ 10 ∗ 10
= 2.4413 ∗ 10
𝑃 =
100 ∗ 8
0.17 ∗ 10 ∗ 10
∗
0.45 ∗ 2
2.4413 ∗ 10
∗
sinh
0.2 ∗ 10
2.4413 ∗ 10
− sin
0.2 ∗ 10
2.4413 ∗ 10
cosh
0.2 ∗ 10
2.4413 ∗ 10
+ cos
0.2 ∗ 10
2.4413 ∗ 10
= 12.49 𝑤/𝑚
Transformer Eddy Current Losses
From Tailor Series Expansion
sin 𝑥 =
𝑥
1!
−
𝑥
3!
+
𝑥
5!
… … . .
𝑃 =
𝐻
𝜎
2ℎ
𝛿
sinh
2𝑑
𝛿
− sin
2𝑑
𝛿
cosh
2𝑑
𝛿
+ cos
2𝑑
𝛿
𝑤/𝑚
cos 𝑥 = 1 −
𝑥
2!
+
𝑥
4!
… … . .
sinℎ 𝑥 =
𝑥
1!
+
𝑥
3!
+
𝑥
5!
… … . .
cosh 𝑥 = 1 +
𝑥
2!
+
𝑥
4!
… … . .
𝑃 =
𝐻
𝜎
2ℎ
𝛿
sinh
2𝑑
𝛿
− sin
2𝑑
𝛿
cosh
2𝑑
𝛿
+ cos
2𝑑
𝛿
∗
1
2𝑑 ∗ 2ℎ
𝑤/𝑚
𝑥
𝑦
2ℎ
2𝑑
𝑃 =
𝐻
𝜎
1
2𝑑 ∗ 𝛿
2𝑑
𝛿
+
1
3!
(
2𝑑
𝛿
) −[
2𝑑
𝛿
−
1
3!
(
2𝑑
𝛿
) ]
1 +
1
2!
(
2𝑑
𝛿
) +[1 −
1
2!
(
2𝑑
𝛿
) ]
𝑤/𝑚
𝑃 =
𝐻
𝜎
1
2𝑑 ∗ 𝛿
2 ∗
1
3!
(
2𝑑
𝛿
)
2
𝑤/𝑚
𝑃 =
𝐻
𝜎
1
2𝑑 ∗ 𝛿
1
3!
(
2𝑑
𝛿
) 𝑤/𝑚
11
12
12/21/2022
7
Transformer Eddy Current Losses
From Tailor Series Expansion
sin 𝑥 =
𝑥
1!
−
𝑥
3!
+
𝑥
5!
… … . .
𝑃 =
𝐻
𝜎
2ℎ
𝛿
sinh
2𝑑
𝛿
− sin
2𝑑
𝛿
cosh
2𝑑
𝛿
+ cos
2𝑑
𝛿
𝑤/𝑚
cos 𝑥 = 1 −
𝑥
2!
+
𝑥
4!
… … . .
sinℎ 𝑥 =
𝑥
1!
+
𝑥
3!
+
𝑥
5!
… … . .
cosh 𝑥 = 1 +
𝑥
2!
+
𝑥
4!
… … . .
𝑥
𝑦
2ℎ
2𝑑
𝑃 =
𝐻
𝜎
1
2𝑑 ∗ 𝛿
1
3!
(
2𝑑
𝛿
) 𝑤/𝑚
𝑃 =
𝐻
𝜎
1
𝛿
1
3!
(2𝑑) 𝑤/𝑚
𝛿 =
2
𝜔𝜇𝜎
𝑃 =
1
3!
𝐻
𝜎
1
4
∗ 𝜔 𝜇 𝜎 (2𝑑) 𝑤/𝑚
𝑃 =
1
3!
𝐻 𝜇
4
𝜎 ∗ (2𝜋𝐹) (2𝑑) 𝑤/𝑚
𝑃 =
1
3!
𝐵 𝜎 ∗ (𝜋𝐹) (2𝑑) =
𝜋 𝜎
6
𝐹 𝐵 (2𝑑) 𝑤/𝑚
𝑃 = 𝐾 𝐹 𝐵 ∗ 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑤/𝑚
13
12/28/2022
1
EPMN203: Time Varying
Fields Applications
Magnetic Diffusion Equation Applications
“Bus Bar and Transmission Line”
By:
Emad Fathy Yassin
Faculty of Engineering
Cairo University
Bus Bar
𝑥
𝑦
2ℎ
2𝑑
1
2
12/28/2022
2
Bus Bar
𝑥
𝑦
2ℎ
2𝑑
∇ 𝐻 + 𝛾 𝐻 = 0
(
𝜕
𝜕𝑥
+
𝜕
𝜕𝑦
+
𝜕
𝜕𝑧
)𝐻 + 𝛾 𝐻 = 0
Assume inf. extension in length == 𝑧 → ∞ and
2ℎ ≫ 2𝑑 −−→ y → ∞
𝜕
𝜕𝑥
𝐻 + 𝛾 𝐻 = 0
𝐻 𝑥 = 𝐴 𝑒 + 𝐶 𝑒
+ + + = 𝐼
From ampere's low
𝐻. 𝑑𝑙 = 𝐼
4
3
𝐻 ∗ 2ℎ + 0 + 𝐻 ∗ 2ℎ + 0 = 𝐼
𝐻 =
𝐼
4ℎ
𝐼
𝐻
𝐻 𝑥 = 𝑑 = −𝐻 𝑥 = −𝑑
Using BCs @ 𝑥 = 𝑑
𝐻 = 𝐻
𝐼
4ℎ
= 𝐻 𝑥 = 𝑑
= 𝐶 sinh 𝛽𝑑
𝑜𝑑𝑑 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑡ℎ𝑒𝑛 𝐴 = −𝐶
𝐻 𝑥 = 𝐶 sinh 𝛽𝑥
𝐶 =
𝐼
4ℎ
1
sinh 𝛽𝑑
1
2
𝐻
Bus Bar
𝑥
𝑦
2ℎ
2𝑑
∇ 𝐻 + 𝛾 𝐻 = 0
+ + + = 𝐼
From ampere's low
𝐻. 𝑑𝑙 = 𝐼
4
3
𝐻 ∗ 2ℎ + 0 + 𝐻 ∗ 2ℎ + 0 = 𝐼
𝐻 =
𝐼
4ℎ
𝐼
𝐻
1
2
𝐻
𝐻 𝑥 =
𝐼
4ℎ
sinh 𝛽𝑥
sinh 𝛽𝑑
𝑢
𝐽̅ = ∇ × 𝐻
𝐽̅ =
𝑢 𝑢 𝑢
𝜕
𝜕𝑥
𝜕
𝜕𝑦
𝜕
𝜕𝑧
𝐻 𝐻 𝐻
=
𝑢 𝑢 𝑢
𝜕
𝜕𝑥
0 0
0 𝐻 0
=
𝜕
𝜕𝑥
𝐻 𝑢̅
= 𝛽
𝐼
4ℎ
cosh 𝛽𝑥
sinh 𝛽𝑑
𝑢̅
𝐸 =
𝐽̅
𝜎
=
𝐼
4ℎ
𝛽
𝜎
cosh 𝛽𝑥
sinh 𝛽𝑑
𝑢
𝐽̅ = 𝛽
𝐼
4ℎ
cosh 𝛽𝑥
sinh 𝛽𝑑
𝑢̅
Eddy currents are induced inside the
main conductor due to main AC current.
This causes current redistribution
3
4
12/28/2022
3
Bus Bar
𝑥
𝑦
2ℎ
2𝑑
+ + + = 𝐼
From ampere's low
𝐻. 𝑑𝑙 = 𝐼
4
3
𝐻 ∗ 2ℎ + 0 + 𝐻 ∗ 2ℎ + 0 = 𝐼
𝐻 =
𝐼
4ℎ
𝐼
𝐻
1
2
𝐻
𝐻 𝑥 =
𝐼
4ℎ
sinh 𝛽𝑥
sinh 𝛽𝑑
𝑢 𝐸 =
𝐼
4ℎ
𝛽
𝜎
cosh 𝛽𝑥
sinh 𝛽𝑑
𝑢
𝑆̅ =
1
2
𝐸 × 𝐻∗
𝑆̅|@ = 𝐸| × 𝐻|
∗
𝑆̅|@ =
1
2
𝐼
4ℎ
𝛽
𝜎
cosh 𝛽𝑑
sinh 𝛽𝑑
𝑢 ×
𝐼
4ℎ
𝑢
𝑆̅|@ =
1
2
𝐼 𝛽
16 ℎ 𝜎
cosh 𝛽𝑑
sinh 𝛽𝑑
(−𝑢 )
𝑆̅|@ =
1
2
𝐼 𝛽
16 ℎ 𝜎
cosh 𝛽𝑑
sinh 𝛽𝑑
(𝑢 )
𝑆̅|@ =
1
2
𝐼
4ℎ
𝛽
𝜎
cosh 𝛽𝑑
sinh𝛽𝑑
𝑢 ×
𝐼
4ℎ
(−𝑢 )
Bus Bar
𝑥
𝑦
2ℎ
2𝑑
+ + + = 𝐼
From ampere's low
𝐻. 𝑑𝑙 = 𝐼
4
3
𝐻 ∗ 2ℎ + 0 + 𝐻 ∗ 2ℎ + 0 = 𝐼
𝐻 =
𝐼
4ℎ
𝐼
𝐻
1
2
𝐻
𝑆̅|@ =
1
2
𝐼 𝛽
16 ℎ 𝜎
cosh 𝛽𝑑
sinh 𝛽𝑑
(−𝑢 )
𝑆̅|@ =
1
2
𝐼 𝛽
16 ℎ 𝜎
cosh 𝛽𝑑
sinh 𝛽𝑑
(𝑢 )
− 𝑆̅. 𝑑𝑠 = − 𝑆̅. 𝑑𝑠
@
− 𝑆̅. 𝑑𝑠
@
= −
1
2
𝐼 𝛽
16 ℎ 𝜎
cosh𝛽𝑑
sinh𝛽𝑑
(−𝑢 ). dyd𝑧 (𝑢 )
−
1
2
𝐼 𝛽
16 ℎ 𝜎
cosh𝛽𝑑
sinh 𝛽𝑑
(𝑢 ). dyd𝑧 (−𝑢 )
= 2 ∗
1
2
𝐼 𝛽
16 ℎ 𝜎
cosh 𝛽𝑑
sinh𝛽𝑑
∗ 2ℎ ∗ 1
=
𝐼 𝛽
8ℎ 𝜎
cosh 𝛽𝑑
sinh 𝛽𝑑
= 𝑃 + 𝑗𝑄
5
6
12/28/2022
4
Bus Bar
𝑥
𝑦
2ℎ
2𝑑
+ + + = 𝐼
From ampere's low
𝐻. 𝑑𝑙 = 𝐼
4
3
𝐻 ∗ 2ℎ + 0 + 𝐻 ∗ 2ℎ + 0 = 𝐼
𝐻 =
𝐼
4ℎ
𝐼
𝐻
1
2
𝐻
− 𝑆̅. 𝑑𝑠 =
𝐼 𝛽
8ℎ 𝜎
cosh 𝛽𝑑
sinh 𝛽𝑑
= 𝑃 + 𝑗𝑄
=
1
2
𝐼 (𝑅 + 𝑗𝑋)
𝑅 + 𝑗𝑋 =
𝛽
4ℎ 𝜎
cosh 𝛽𝑑
sinh 𝛽𝑑
𝑅 = ℜ
𝛽
4ℎ 𝜎
cosh 𝛽𝑑
sinh𝛽𝑑
=
1
4ℎ 𝛿 𝜎
sinh
2𝑑
𝛿
+ sin
2𝑑
𝛿
cosh
2𝑑
𝛿
− cos
2𝑑
𝛿
Ω/𝑚
𝑅 =
𝐿
𝜎 𝐴
𝑅
𝑅
=
=
1
𝜎 ∗ 2ℎ ∗ 2𝑑
=
1
4ℎ𝑑 𝜎
Ω/𝑚
𝑑
𝛿
sinh
2𝑑
𝛿
+ sin
2𝑑
𝛿
cosh
2𝑑
𝛿
− cos
2𝑑
𝛿
=
𝛼
2
sinh𝛼 + sin 𝛼
cosh 𝛼 − cos 𝛼
Transmission Line
2ℎ
2𝑑
2ℎ
2𝑑
𝐼
X
𝐼
7
8
12/28/2022
5
Transmission Line
2ℎ
2𝑑
2ℎ
2𝑑
𝐼
X
𝐼
𝐻 =
𝐼
4ℎ
𝐻 =
𝐼
4ℎ
𝐻 =
𝐼
4ℎ
𝐻 =
𝐼
4ℎ 𝐻 =
𝐼
4ℎ
𝐻 =
𝐼
4ℎ
2ℎ
2𝑑
𝐼
2ℎ
2𝑑
X
𝐼
𝐻 =
𝐼
2ℎ
𝐻 = 0
𝐻 = 0
𝑥
𝑦
2ℎ
2𝑑
+ + + = 𝐼
From ampere's low
𝐻. 𝑑𝑙 = 𝐼
4
3
𝐻 ∗ 2ℎ + 0 + 𝐻 ∗ 2ℎ + 0 = 𝐼
𝐻 =
𝐼
4ℎ
𝐼
𝐻
1
2
𝐻
2ℎ
2𝑑
𝐼
𝐻 =
𝐼
2ℎ
𝐻 = 0
𝑥
𝑦
Transmission Line
∇ 𝐻 + 𝛾 𝐻 = 0
(
𝜕
𝜕𝑥
+
𝜕
𝜕𝑦
+
𝜕
𝜕𝑧
)𝐻 + 𝛾 𝐻 = 0
Assume inf. extension in length == 𝑧 → ∞ and
2ℎ ≫ 2𝑑 −−→ y → ∞
𝜕
𝜕𝑥
𝐻 + 𝛾 𝐻 = 0
𝐻 𝑥 = 𝐴 𝑒 + 𝐶 𝑒
𝐻 𝑥 = 𝑑 ≠ 𝐻 𝑥 = −𝑑
Using BCs @ 𝑥 = −𝑑
𝐻 = 𝐻
0 = 𝐻 𝑥 = −𝑑
0 = 𝐴 cosh 0 + 𝐶 sinh 0
𝑁𝑜𝑡 𝑒𝑣𝑒𝑛 , 𝑁𝑜𝑡 𝑜𝑑𝑑
𝐻 𝑥 = 𝐴 cosh 𝛽(𝑥 + 𝑑) + 𝐶 sinh 𝛽(𝑥 + 𝑑)
𝐴 = 0
2ℎ
2𝑑
𝐼
𝐻 =
𝐼
2ℎ
𝑥
𝑦
𝐻 = 0
Using BCs @ 𝑥 = 𝑑
𝐻 = 𝐻
𝐼
2ℎ
= 𝐻 𝑥 = 𝑑
= 𝐶 sinh 2𝛽𝑑
𝐶 =
𝐼
2ℎ
1
sinh2𝛽𝑑
𝐻 𝑥 = 𝐶 sinh 𝛽(𝑥 + 𝑑)
𝐻 𝑥 =
𝐼
2ℎ
sinh 𝛽(𝑥 + 𝑑)
sinh 2𝛽𝑑
𝑢
Solution 1
9
10
12/28/2022
6
Transmission Line
∇ 𝐻 + 𝛾 𝐻 = 0
𝐻 𝑥 =
𝐼
2ℎ
sinh 𝛽(𝑥 + 𝑑)
sinh 2𝛽𝑑
𝑢
𝐽̅ = ∇ × 𝐻
𝐽̅ =
𝑢 𝑢 𝑢
𝜕
𝜕𝑥
𝜕
𝜕𝑦
𝜕
𝜕𝑧
𝐻 𝐻 𝐻
=
𝑢 𝑢 𝑢
𝜕
𝜕𝑥
0 0
0 𝐻 0
=
𝜕
𝜕𝑥
𝐻 𝑢̅
= 𝛽
𝐼
2ℎ
cosh 𝛽(𝑥 + 𝑑)
sinh 2𝛽𝑑
𝑢̅
𝐸 =
𝐽̅
𝜎
=
𝐼
2ℎ
𝛽
𝜎
cosh 𝛽(𝑥 + 𝑑)
sinh 2𝛽𝑑
𝑢
2ℎ
2𝑑
𝐼
𝐻 =
𝐼
2ℎ
𝑥
𝑦
𝐻 = 0
Solution 1
Transmission Line
𝐻 𝑥 =
𝐼
2ℎ
sinh 𝛽(𝑥 + 𝑑)
sinh 2𝛽𝑑
𝑢 𝐸 =
𝐼
2ℎ
𝛽
𝜎
cosh 𝛽(𝑥 + 𝑑)
sinh 2𝛽𝑑
𝑢
𝑆̅ =
1
2
𝐸 × 𝐻∗
𝑆̅|@ = 𝐸| × 𝐻|
∗
𝑆̅|@ =
1
2
𝐼
2ℎ
𝛽
𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
𝑢 ×
𝐼
2ℎ
𝑢
𝑆̅|@ =
1
2
𝐼 𝛽
4 ℎ 𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
(−𝑢 )
𝑆̅|@ = 0
𝑆̅|@ =
1
2
𝐼
4ℎ
𝛽
𝜎
cosh 𝛽𝑑
sinh 𝛽𝑑
𝑢 × 0
2ℎ
2𝑑
𝐼
𝐻 =
𝐼
2ℎ
𝑥
𝑦
𝐻 = 0
Solution 1
11
12
12/28/2022
7
Transmission Line
𝑆̅|@ =
1
2
𝐼 𝛽
4 ℎ 𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
(−𝑢 )
𝑆̅|@ = 0
− 𝑆̅. 𝑑𝑠 = − 𝑆̅. 𝑑𝑠
@
− 𝑆̅. 𝑑𝑠
@
= −
1
2
𝐼 𝛽
4 ℎ 𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
(−𝑢 ). dyd𝑧 (𝑢 )
=
1
2
𝐼 𝛽
4 ℎ 𝜎
cosh2𝛽𝑑
sinh 2𝛽𝑑
∗ 2ℎ ∗ 1
=
𝐼 𝛽
4ℎ 𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
= 𝑃 + 𝑗𝑄
2ℎ
2𝑑
𝐼
𝐻 =
𝐼
2ℎ
𝑥
𝑦
𝐻 = 0
Solution 1
Transmission Line
− 𝑆̅. 𝑑𝑠 =
𝐼 𝛽
4ℎ 𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
= 𝑃 + 𝑗𝑄
=
1
2
𝐼 (𝑅 + 𝑗𝑋)
𝑅 + 𝑗𝑋 =
𝛽
2ℎ 𝜎
cosh 2𝛽𝑑
sinh2𝛽𝑑
𝑅 = ℜ
𝛽
2ℎ 𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
=
1
2ℎ 𝛿 𝜎
sinh
4𝑑
𝛿
+ sin
4𝑑
𝛿
cosh
4𝑑
𝛿
− cos
4𝑑
𝛿
Ω/𝑚
𝑋 = Ι𝑚
𝛽
2ℎ 𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
=
1
2ℎ 𝛿 𝜎
sinh
4𝑑
𝛿
− sin
4𝑑
𝛿
cosh
4𝑑
𝛿
− cos
4𝑑
𝛿
Ω/𝑚
2ℎ
2𝑑
𝐼
𝐻 =
𝐼
2ℎ
𝑥
𝑦
𝐻 = 0
Solution 1
13
14
12/28/2022
8
Transmission Line
2ℎ
2𝑑
2ℎ
2𝑑
𝐼
X
𝐼
𝐻 =
𝐼
4ℎ
𝐻 =
𝐼
4ℎ
𝐻 =
𝐼
4ℎ
𝐻 =
𝐼
4ℎ 𝐻 =
𝐼
4ℎ
𝐻 =
𝐼
4ℎ
2ℎ
2𝑑
𝐼
2ℎ
2𝑑
X
𝐼
𝐻 =
𝐼
2ℎ
𝐻 = 0
𝐻 = 0
𝑥
𝑦
2ℎ
2𝑑
+ + + = 𝐼
From ampere's low
𝐻. 𝑑𝑙 = 𝐼
4
3
𝐻 ∗ 2ℎ + 0 + 𝐻 ∗ 2ℎ + 0 = 𝐼
𝐻 =
𝐼
4ℎ
𝐼
𝐻
1
2
𝐻
𝑥
𝑦
𝐻 =
𝐼
2ℎ
2ℎ
2𝑑
X
𝐻 = 0
Solution 2
Transmission Line
∇ 𝐻 + 𝛾 𝐻 = 0
(
𝜕
𝜕𝑥
+
𝜕
𝜕𝑦
+
𝜕
𝜕𝑧
)𝐻 + 𝛾 𝐻 = 0
Assume inf. extension in length == 𝑧 → ∞ and
2ℎ ≫ 2𝑑 −−→ y → ∞
𝜕
𝜕𝑥
𝐻 + 𝛾 𝐻 = 0
𝐻 𝑥 = 𝐴 𝑒 + 𝐶 𝑒
𝐻 𝑥 = 𝑑 ≠ 𝐻 𝑥 = −𝑑
Using BCs @ 𝑥 = 𝑑
𝐻 = 𝐻
0 = 𝐻 𝑥 = 𝑑
0 = 𝐴 cosh 0 + 𝐶 sinh 0
𝑁𝑜𝑡 𝑒𝑣𝑒𝑛 , 𝑁𝑜𝑡 𝑜𝑑𝑑
𝐻 𝑥 = 𝐴 cosh 𝛽(𝑥 − 𝑑) + 𝐶 sinh 𝛽(𝑥 − 𝑑)
𝐴 = 0
Using BCs @ 𝑥 = −𝑑
𝐻 = 𝐻
𝐼
2ℎ
= 𝐻 𝑥 = −𝑑
= −𝐶 sinh2𝛽𝑑
𝐶 = −
𝐼
2ℎ
1
sinh 2𝛽𝑑
𝐻 𝑥 = 𝐶 sinh 𝛽(𝑥 − 𝑑)
𝐻 𝑥 = −
𝐼
2ℎ
sinh 𝛽(𝑥 − 𝑑)
sinh 2𝛽𝑑
𝑢
𝑥
𝑦
𝐻 =
𝐼
2ℎ
2ℎ
2𝑑
X
𝐻 = 0
Solution 2
15
16
12/28/2022
9
Transmission Line
∇ 𝐻 + 𝛾 𝐻 = 0
𝐻 𝑥 = −
𝐼
2ℎ
sinh 𝛽(𝑥 − 𝑑)
sinh 2𝛽𝑑
𝑢
𝐽̅ = ∇ × 𝐻
𝐽̅ =
𝑢 𝑢 𝑢
𝜕
𝜕𝑥
𝜕
𝜕𝑦
𝜕
𝜕𝑧
𝐻 𝐻 𝐻
=
𝑢 𝑢 𝑢
𝜕
𝜕𝑥
0 0
0 𝐻 0
=
𝜕
𝜕𝑥
𝐻 𝑢̅
= −𝛽
𝐼
2ℎ
cosh 𝛽(𝑥 − 𝑑)
sinh 2𝛽𝑑
𝑢̅
𝐸 =
𝐽̅
𝜎
= −
𝐼
2ℎ
𝛽
𝜎
cosh 𝛽(𝑥 − 𝑑)
sinh 2𝛽𝑑
𝑢
𝐻 =
𝐼
2ℎ
2ℎ
2𝑑
X
𝐻 = 0
Solution 2
Transmission Line
𝐻 𝑥 = −
𝐼
2ℎ
sinh 𝛽(𝑥 − 𝑑)
sinh 2𝛽𝑑
𝑢 𝐸 = −
𝐼
2ℎ
𝛽
𝜎
cosh 𝛽(𝑥 − 𝑑)
sinh 2𝛽𝑑
𝑢
𝑆̅ =
1
2
𝐸 × 𝐻∗
𝑆̅|@ = 𝐸| × 𝐻|
∗
𝑆̅|@ = −
1
2
𝐼
2ℎ
𝛽
𝜎
cosh 2𝛽𝑑
sinh2𝛽𝑑
𝑢 ×
𝐼
2ℎ
(𝑢 )
𝑆̅|@ =
1
2
𝐼 𝛽
4 ℎ 𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
(𝑢 )
𝑆̅|@ = 0
𝑆̅|@ =
1
2
𝐼
4ℎ
𝛽
𝜎
cosh 0
sinh2𝛽𝑑
𝑢 × 0
𝐻 =
𝐼
2ℎ
2ℎ
2𝑑
X
𝐻 = 0
Solution 2
17
18
12/28/2022
10
Transmission Line
𝑆̅|@ =
1
2
𝐼 𝛽
4 ℎ 𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
(𝑢 )
𝑆̅|@ = 0
− 𝑆̅. 𝑑𝑠 = − 𝑆̅. 𝑑𝑠
@
− 𝑆̅. 𝑑𝑠
@
= −
1
2
𝐼 𝛽
4 ℎ 𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
(𝑢 ). dyd𝑧 (−𝑢 )
=
1
2
𝐼 𝛽
4 ℎ 𝜎
cosh2𝛽𝑑
sinh 2𝛽𝑑
∗ 2ℎ ∗ 1
=
𝐼 𝛽
4ℎ 𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
= 𝑃 + 𝑗𝑄
𝐻 =
𝐼
2ℎ
2ℎ
2𝑑
X
𝐻 = 0
Solution 2
Transmission Line
− 𝑆̅. 𝑑𝑠 =
𝐼 𝛽
4ℎ 𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
= 𝑃 + 𝑗𝑄
=
1
2
𝐼 (𝑅 + 𝑗𝑋)
𝑅 + 𝑗𝑋 =
𝛽
2ℎ 𝜎
cosh 2𝛽𝑑
sinh2𝛽𝑑
𝑅 = ℜ
𝛽
2ℎ 𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
=
1
2ℎ 𝛿 𝜎
sinh
4𝑑
𝛿
+ sin
4𝑑
𝛿
cosh
4𝑑
𝛿
− cos
4𝑑
𝛿
Ω/𝑚
𝑋 = Ι𝑚
𝛽
2ℎ 𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
=
1
2ℎ 𝛿 𝜎
sinh
4𝑑
𝛿
− sin
4𝑑
𝛿
cosh
4𝑑
𝛿
− cos
4𝑑
𝛿
Ω/𝑚
𝐻 =
𝐼
2ℎ
2ℎ
2𝑑
X
𝐻 = 0
Solution 2
19
20
12/28/2022
11
Transmission Line
∇ 𝐻 + 𝛾 𝐻 = 0
(
𝜕
𝜕𝑥
+
𝜕
𝜕𝑦
+
𝜕
𝜕𝑧
)𝐻 + 𝛾 𝐻 = 0
Assume inf. extension in length == 𝑧 → ∞ and
2ℎ ≫ 2𝑑 −−→ y → ∞
𝜕
𝜕𝑥
𝐻 + 𝛾 𝐻 = 0
𝐻 𝑥 = 𝐴 𝑒 + 𝐶 𝑒
𝐻 𝑥 = 𝑑 ≠ 𝐻 𝑥 = −𝑑
Using BCs @ 𝑥 = 0
𝐻 = 𝐻
0 = 𝐻 𝑥 = 0
0 = 𝐴 cosh 0 + 𝐶 sinh 0
𝑁𝑜𝑡 𝑒𝑣𝑒𝑛 , 𝑁𝑜𝑡 𝑜𝑑𝑑
𝐻 𝑥 = 𝐴 cosh 𝛽𝑥 + 𝐶 sinh 𝛽𝑥
𝐴 = 0
Using BCs @ 𝑥 = 2𝑑
𝐻 = 𝐻
𝐼
2ℎ
= 𝐻 𝑥 = 2𝑑
= 𝐶 sinh 2𝛽𝑑
𝐶 =
𝐼
2ℎ
1
sinh2𝛽𝑑
𝐻 𝑥 = 𝐶 sinh 𝛽𝑥
𝐻 𝑥 =
𝐼
2ℎ
sinh 𝛽𝑥
sinh 2𝛽𝑑
𝑢
2ℎ
2𝑑
𝐼
𝐻 =
𝐼
2ℎ
𝑥
𝑦
𝐻 = 0
Solution 3
Transmission Line
∇ 𝐻 + 𝛾 𝐻 = 0
𝐻 𝑥 =
𝐼
2ℎ
sinh 𝛽𝑥
sinh 2𝛽𝑑
𝑢
𝐽̅ = ∇ × 𝐻
𝐽̅ =
𝑢 𝑢 𝑢
𝜕
𝜕𝑥
𝜕
𝜕𝑦
𝜕
𝜕𝑧
𝐻 𝐻 𝐻
=
𝑢 𝑢 𝑢
𝜕
𝜕𝑥
0 0
0 𝐻 0
=
𝜕
𝜕𝑥
𝐻 𝑢̅
= 𝛽
𝐼
2ℎ
cosh 𝛽𝑥
sinh 2𝛽𝑑
𝑢̅
𝐸 =
𝐽̅
𝜎
=
𝐼
2ℎ
𝛽
𝜎
cosh 𝛽𝑥
sinh 2𝛽𝑑
𝑢
2ℎ
2𝑑
𝐼
𝑥
𝑦
𝐻 = 0
Solution 3
21
22
12/28/2022
12
Transmission Line
𝐻 𝑥 =
𝐼
2ℎ
sinh 𝛽𝑥
sinh 2𝛽𝑑
𝑢 𝐸 =
𝐼
2ℎ
𝛽
𝜎
cosh 𝛽𝑥
sinh 2𝛽𝑑
𝑢
𝑆̅ =
1
2
𝐸 × 𝐻∗
𝑆̅|@ = 𝐸| × 𝐻|
∗
𝑆̅|@ =
1
2
𝐼
2ℎ
𝛽
𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
𝑢 ×
𝐼
2ℎ
(𝑢 )
𝑆̅|@ =
1
2
𝐼 𝛽
4 ℎ 𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
(−𝑢 )
𝑆̅|@ = 0
𝑆̅|@ =
1
2
𝐼
4ℎ
𝛽
𝜎
cosh 0
sinh 2𝛽𝑑
𝑢 × 0
2ℎ
2𝑑
𝐼
𝑥
𝑦
𝐻 = 0
Solution 3
Transmission Line
𝑆̅|@ =
1
2
𝐼 𝛽
4 ℎ 𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
(−𝑢 )
𝑆̅|@ = 0
− 𝑆̅. 𝑑𝑠 = − 𝑆̅. 𝑑𝑠
@
− 𝑆̅. 𝑑𝑠
@
= −
1
2
𝐼 𝛽
4 ℎ 𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
(−𝑢 ). dyd𝑧 (𝑢 )
=
1
2
𝐼 𝛽
4 ℎ 𝜎
cosh2𝛽𝑑
sinh 2𝛽𝑑
∗ 2ℎ ∗ 1
=
𝐼 𝛽
4ℎ 𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
= 𝑃 + 𝑗𝑄
2ℎ
2𝑑
𝐼
𝑥
𝑦
𝐻 = 0
Solution 3
23
24
12/28/2022
13
Transmission Line
− 𝑆̅. 𝑑𝑠 =
𝐼 𝛽
4ℎ 𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
= 𝑃 + 𝑗𝑄
=
1
2
𝐼 (𝑅 + 𝑗𝑋)
𝑅 + 𝑗𝑋 =
𝛽
2ℎ 𝜎
cosh 2𝛽𝑑
sinh2𝛽𝑑
𝑅 = ℜ
𝛽
2ℎ 𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
=
1
2ℎ 𝛿 𝜎
sinh
4𝑑
𝛿
+ sin
4𝑑
𝛿
cosh
4𝑑
𝛿
− cos
4𝑑
𝛿
Ω/𝑚
𝑋 = Ι𝑚
𝛽
2ℎ 𝜎
cosh 2𝛽𝑑
sinh 2𝛽𝑑
=
1
2ℎ 𝛿 𝜎
sinh
4𝑑
𝛿
− sin
4𝑑
𝛿
cosh
4𝑑
𝛿
− cos
4𝑑
𝛿
Ω/𝑚
2ℎ
2𝑑
𝐼
𝑥
𝑦
𝐻 = 0
Solution 3
Proximity Effect
Proximity effect is the current redistribution mechanism due to changing magnetic fields from currents
in other nearby conductors
Litz Wire, HF-Litz, High Frequency Litz Wire, Litz
Wire for High Efficiency | ELEKTRISOLA
25
26
12/27/2022
1
EPE2020: Time Varying
Fields Applications
Magnetic Diffusion Equation Applications
“Electromagnetic Shielding”
By:
Emad Fathy Yassin
Faculty of Engineering
Cairo University
Electromagnetic Shielding
1
2
12/27/2022
2
Electromagnetic Shielding
∇ 𝐻 + 𝛾 𝐻 = 0
(
𝜕
𝜕𝑥
+
𝜕
𝜕𝑦
+
𝜕
𝜕𝑧
)𝐻 + 𝛾 𝐻 = 0
Assume inf. extension in height == 𝑧 → ∞ and
h >> t then y → ∞
Electromagnetic Shielding
𝒙
𝒚
𝒛
𝜕
𝜕𝑥
𝐻 + 𝛾 𝐻 = 0
𝐻 𝑥 = 𝐴 𝑒 + 𝐶 𝑒 𝑢
𝐻 𝑥 = 𝑎 ≠ 𝐻 𝑥 = 𝑎 + 𝑡
𝑁𝑜𝑡 𝑒𝑣𝑒𝑛 , 𝑁𝑜𝑡 𝑜𝑑𝑑 𝐻
𝐻
𝐻
Using BCs @ 𝑥 = 𝑎
𝐻 = 𝐻
𝐻 = 𝐴 𝑒 + 𝐶 𝑒 (1)
Using BCs @ 𝑥 = 𝑎 + 𝑡
𝐻 = 𝐻
𝐻 = 𝐴 𝑒 ( ) + 𝐶 𝑒 ( ) (2)
3
4
12/27/2022
3
Electromagnetic Shielding
𝒙
𝒚
𝒛
𝐻
𝐻
𝐻
𝐻 = 𝐴 𝑒 + 𝐶 𝑒 (1)
𝐻 = 𝐴 𝑒 ( ) + 𝐶 𝑒 ( ) (2)
𝐻 𝑥 = 𝐴 𝑒 + 𝐶 𝑒 𝑢
𝐽̅ = ∇ × 𝐻
𝐽̅ =
𝑢̅ 𝑢̅ 𝑢̅
𝜕
𝜕𝑥
0 0
0 𝐻 0
=
𝜕
𝜕𝑥
𝐻 𝑢̅
𝐽̅ 𝑥 = 𝛽 −𝐴 𝑒 + 𝐶 𝑒 𝑢
𝐸 𝑥 = −𝐴 𝑒 + 𝐶 𝑒 𝑢
𝐹𝑟𝑜𝑚 𝐹𝑎𝑟𝑎𝑑𝑎𝑦 𝑠 𝑙𝑜𝑤
𝑒𝑚𝑓 = −
𝑑𝜙
𝑑𝑡
𝑒𝑚𝑓 = −𝑗𝜔 𝐵 ∗ 𝐴𝑟𝑒𝑎
𝑒𝑚𝑓 = −𝑗𝜔 𝜇 𝐻 ∗ 𝐴𝑟𝑒𝑎
𝐻
Electromagnetic Shielding
𝒙
𝒚
𝒛
𝐻
𝐻
𝐻
𝐻 = 𝐴 𝑒 + 𝐶 𝑒 (1)
𝐻 = 𝐴 𝑒 ( ) + 𝐶 𝑒 ( ) (2)
𝐸 𝑥 = −𝐴 𝑒 + 𝐶 𝑒 𝑢
𝐹𝑟𝑜𝑚 𝐹𝑎𝑟𝑎𝑑𝑎𝑦 𝑠 𝑙𝑜𝑤
𝑒𝑚𝑓 = −𝑗𝜔 𝐵 ∗ 𝐴𝑟𝑒𝑎
𝑒𝑚𝑓 = −𝑗𝜔 𝜇 𝐻 ∗ 𝐴𝑟𝑒𝑎
𝐻
𝐸. 𝑑𝑙 = −𝑗𝜔 𝜇 𝐻 ∗ 𝐴𝑟𝑒𝑎
𝐸(𝑥 = 𝑎). 𝑑𝑙 ≈ −𝑗𝜔 𝜇 𝐻 ∗ 2𝑎 ∗ 𝐿
𝐸 𝑥 = 𝑎 ∗ 2𝐿 ≈ −𝑗𝜔 𝜇 𝐻 ∗ 2𝑎 ∗ 𝐿
𝛽
𝜎
−𝐴 𝑒 + 𝐶 𝑒 ≈ −𝑗𝜔 𝜇 𝐻 ∗ 𝑎
𝛽 −𝐴 𝑒 + 𝐶 𝑒 ≈ −𝑗𝜔 𝜇 𝜎 𝐻 ∗ 𝑎
𝛾 = −𝑗𝜔 𝜇 𝜎
𝛽 = 𝑗 𝛾
𝛽 = −𝛾
𝛽 −𝐴 𝑒 + 𝐶 𝑒 ≈ −𝛽 𝐻 ∗ 𝑎
−𝛽 𝐻 𝑎 = −𝐴 𝑒 + 𝐶 𝑒 (3)
5
6
12/27/2022
4
Electromagnetic Shielding
𝒙
𝒚
𝒛
𝐻
𝐻
𝐻
𝐻 = 𝐴 𝑒 + 𝐶 𝑒 (1)
𝐻 = 𝐴 𝑒 ( ) + 𝐶 𝑒 ( ) (2)
𝐻
−𝛽 𝐻 𝑎 = −𝐴 𝑒 + 𝐶 𝑒 (3)
𝑒𝑞𝑛. 1 + 𝑒𝑞𝑛. (3)
𝐻 (1 − 𝛽𝑎) = 2𝐶 𝑒
𝐶 =
𝐻 1 − 𝛽𝑎
2
∗ 𝑒
𝑠𝑢𝑏. 𝑖𝑛 𝑒𝑞𝑛. 1
𝐴 =
𝐻 1 + 𝛽𝑎
2
∗ 𝑒
𝑠𝑢𝑏. 𝑖𝑛 𝑒𝑞𝑛. 2 𝑡𝑜 𝑔𝑒𝑡 𝑡
𝐻 =
𝐻 1 + 𝛽𝑎
2
∗ 𝑒 𝑒 ( ) +
𝐻 1 − 𝛽𝑎
2
∗ 𝑒 𝑒 ( )
Electromagnetic Shielding
𝒙
𝒚
𝒛
𝐻
𝐻
𝐻
𝐻 = 𝐴 𝑒 + 𝐶 𝑒 (1)
𝐻 = 𝐴 𝑒 ( ) + 𝐶 𝑒 ( ) (2)
𝐻
−𝛽 𝐻 𝑎 = −𝐴 𝑒 + 𝐶 𝑒 (3)
𝐶 =
𝐻 1 − 𝛽𝑎
2
∗ 𝑒
𝐴 =
𝐻 1 + 𝛽𝑎
2
∗ 𝑒
𝑠𝑢𝑏. 𝑖𝑛 𝑒𝑞𝑛. 2 𝑡𝑜 𝑔𝑒𝑡 𝑡
𝐻 =
𝐻 1 + 𝛽𝑎
2
∗ 𝑒 𝑒 ( ) +
𝐻 1 − 𝛽𝑎
2
∗ 𝑒 𝑒 ( )
𝐻
𝐻
=
1 + 𝛽𝑎
2
𝑒 +
1 − 𝛽𝑎
2
𝑒
𝐻
𝐻
=
𝑒 + 𝑒
2
− 𝛽𝑎
𝑒 − 𝑒
2
𝐻
𝐻
= cosh 𝛽𝑡 − 𝛽𝑎 sinh 𝛽𝑡
cosh 𝑥 = 1 +
𝑥
2!
+
𝑥
4!
… … …
sinh 𝑥 =
𝑥
1!
+
𝑥
3!
+
𝑥
5!
… … …
𝐻
𝐻
≈ 1 − 𝛽𝑎 ∗ 𝛽𝑡
7
8
12/27/2022
5
Electromagnetic Shielding
𝒙
𝒚
𝒛
𝐻
𝐻
𝐻
𝐻 = 𝐴 𝑒 + 𝐶 𝑒 (1)
𝐻 = 𝐴 𝑒 ( ) + 𝐶 𝑒 ( ) (2)
𝐻
−𝛽 𝐻 𝑎 = −𝐴 𝑒 + 𝐶 𝑒 (3)
𝐶 =
𝐻 1 − 𝛽𝑎
2
∗ 𝑒
𝐴 =
𝐻 1 + 𝛽𝑎
2
∗ 𝑒
cosh 𝑥 = 1 +
𝑥
2!
+
𝑥
4!
sinh𝑥 =
𝑥
1!
+
𝑥
3!
+
𝑥
5!
𝐻
𝐻
≈ 1 − 𝛽 𝑎𝑡
𝐻
𝐻
≈ 1 − 𝑗𝜔 𝜇 𝜎𝑎𝑡
𝛾 = −𝑗𝜔 𝜇 𝜎
𝛽 = −𝛾
𝐻
𝐻
≈ 1 + 𝜔 𝜇 𝜎𝑎𝑡
𝑡 ≈
1
𝜔 𝜇 𝜎𝑎
𝐻
𝐻
− 1
Electromagnetic Shielding
𝒙
𝒚
𝒛
𝐻
𝐻
𝐻
𝐻
𝑡 ≈
1
𝜔 𝜇 𝜎𝑎
𝐻
𝐻
− 1
𝑡 ≈
1
2𝜋 ∗ 50 ∗ 𝜇 ∗ 10 ∗ 3
4
1
− 1 ≈ 0.327 mm
𝑡 ≈
1
2𝜋 ∗ 50 ∗ 𝜇 ∗ 10 ∗ 3
8
1
− 1 ≈ 0.67 mm
𝑐𝑎𝑠𝑒 (𝑎)
𝑐𝑎𝑠𝑒 (𝑏)
9
10

More Related Content

PDF
Eg1108 transformers
PDF
pdfcoffee.com_transformer-ppt-for-first-year-pdf-free.pdf
PPTX
Magnetic effects of electric current-By Nivesh krishna
PDF
Chapter 1 - Magnetic Circuits.pdf
PPTX
AEDC_Unit I.pptx
PPTX
607028072-Transformer-ppt-for-first-year.pptx
PDF
202004101310174191gaurav_gupta_Transformers.pdf
PPT
Electromagnetic induction and transformer
Eg1108 transformers
pdfcoffee.com_transformer-ppt-for-first-year-pdf-free.pdf
Magnetic effects of electric current-By Nivesh krishna
Chapter 1 - Magnetic Circuits.pdf
AEDC_Unit I.pptx
607028072-Transformer-ppt-for-first-year.pptx
202004101310174191gaurav_gupta_Transformers.pdf
Electromagnetic induction and transformer

Similar to Field exams mxq proplems engineering with solution (20)

PDF
Chapter 1
PPTX
Transformer.pptx
PPTX
08 UNIT-8(Electromagnetism).pptx
PPTX
CH_2fggdgghfghhhgghhhf_Transformers.pptx
PDF
Transformers devices and its efficiency of it
PPTX
transformhdhhjytbjguihgters_g_62[2].pptx
PPTX
Magnetic circuits
PPT
Electromagnetism
PPTX
ELECTRICAL MACHINES AND DRIVES.pptx
PPTX
Magnetic flux
PDF
C_Main Magnetics.pdf
DOC
Transformer
PPT
65fgscwcwdefdafdfsafdfdfdfdfdf65 (1).ppt
PPT
125457ffttttttttttttttttttttttttttttttttt34.ppt
PPT
Magnetic Effects Of Current Class 12 Part-2
PPTX
Dc machines electrical machines – i
PPTX
UNIT_3_Transformers Power Point PPT.pptx
PDF
EE 8301 EMI
PDF
Faraday’s Law of Induction.pdf
Chapter 1
Transformer.pptx
08 UNIT-8(Electromagnetism).pptx
CH_2fggdgghfghhhgghhhf_Transformers.pptx
Transformers devices and its efficiency of it
transformhdhhjytbjguihgters_g_62[2].pptx
Magnetic circuits
Electromagnetism
ELECTRICAL MACHINES AND DRIVES.pptx
Magnetic flux
C_Main Magnetics.pdf
Transformer
65fgscwcwdefdafdfsafdfdfdfdfdf65 (1).ppt
125457ffttttttttttttttttttttttttttttttttt34.ppt
Magnetic Effects Of Current Class 12 Part-2
Dc machines electrical machines – i
UNIT_3_Transformers Power Point PPT.pptx
EE 8301 EMI
Faraday’s Law of Induction.pdf
Ad

Recently uploaded (20)

PDF
737-MAX_SRG.pdf student reference guides
PDF
Visual Aids for Exploratory Data Analysis.pdf
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PDF
Abrasive, erosive and cavitation wear.pdf
PDF
Integrating Fractal Dimension and Time Series Analysis for Optimized Hyperspe...
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PPT
Total quality management ppt for engineering students
PDF
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPT
Occupational Health and Safety Management System
PPTX
Safety Seminar civil to be ensured for safe working.
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
Fundamentals of Mechanical Engineering.pptx
PPTX
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PDF
PPT on Performance Review to get promotions
PPTX
Nature of X-rays, X- Ray Equipment, Fluoroscopy
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
737-MAX_SRG.pdf student reference guides
Visual Aids for Exploratory Data Analysis.pdf
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
Abrasive, erosive and cavitation wear.pdf
Integrating Fractal Dimension and Time Series Analysis for Optimized Hyperspe...
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
Total quality management ppt for engineering students
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Occupational Health and Safety Management System
Safety Seminar civil to be ensured for safe working.
UNIT 4 Total Quality Management .pptx
Fundamentals of Mechanical Engineering.pptx
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
R24 SURVEYING LAB MANUAL for civil enggi
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PPT on Performance Review to get promotions
Nature of X-rays, X- Ray Equipment, Fluoroscopy
Automation-in-Manufacturing-Chapter-Introduction.pdf
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
Ad

Field exams mxq proplems engineering with solution

  • 44. Concept of Magnetic Circuits What are magnetic circuits ? They are basically ferromagnetic structures (mostly iron) with coils wound around them. Because of the material high permeability, most of the magnetic flux is confined inside the magnetic circuit. Examples: Transformers, Actuators, Electromagnets and Electric machines. 1
  • 45. Concept of Magnetic Circuits 2 It’s an approximate technique to compute magnetic flux. 2 NI H a π = 2 NI B a µ π = 2 ( ) 2 NI b a µ φ π π = BA φ = 2 2 ( ) NI a b φ π µ π =
  • 46. Concept of Magnetic Circuits 3 V I R = l R A σ = 2 2 ( ) a R b π σ π = 2 2 ( ) V I a b π σ π =
  • 47. Concept of Magnetic Circuits 4 2 2 ( ) V I a b π σ π = 2 2 ( ) NI a b φ π µ π =
  • 48. Concept of Magnetic Circuits 5 I φ ( ) V EMF ( ) NI MMF σ µ l R A σ = mc l A µ ℜ = Mean core length Reluctance 5
  • 49. Concept of Magnetic Circuits 6 V IR = NI φ = ℜ V R I NI ℜ φ
  • 50. Concept of Magnetic Circuits 7 DC Magnetic Circuits: the supply is DC, magnetic circuit laws can be used directly. 1 DC coil V i R = 2 DC coil V i R =
  • 51. Concept of Magnetic Circuits 8 DC Magnetic Circuits 1 2 i i = 1 2 1 2 mc mc c c l l A A φ φ µ µ = 1 2 Ni Ni = 1 1 2 2 φ µ φ µ = 1 Ni 1 ℜ 1 φ 2 Ni 2 ℜ 2 φ 1 1 2 2 φ φ ℜ = ℜ
  • 52. Example Sheet (3), Prob. (1): Find the value of the current that will produce a flux of 0.0025 Wb. 5000 r µ = NI φ = ℜ mc c l A µ ℜ = 4(30 2 2.5) 140 mc l cm = + × = 50 N = 10cm 2 5*10 50 c A cm = = 9
  • 53. Example Sheet (3), Prob. (1): Find the value of the current that will produce a flux of 0.0025 Wb. 5000 r µ = 7 4 1.4 (5000)(4 10 )(50 10 ) π − − ℜ = × × 50 N = 10cm 1 44563.38 H− ℜ = NI φ = ℜ 2.228 I A = 10
  • 54. Concept of Magnetic Circuits 11 AC Magnetic Circuits: the supply is AC, Faraday’s law must be considered first.
  • 55. Concept of Magnetic Circuits 12 AC Magnetic Circuits: AC v e zero − = AC v e = (Neglecting Coil Resistance) V zero ∑ = d e N dt φ = −
  • 56. Concept of Magnetic Circuits 13 AC Magnetic Circuits AC d v N dt φ = sin( ) m d V t N dt φ ω = By Integration cos( ) sin( ) 2 m m V V t t N N π φ ω ω ω ω =− = − Ф is dependent on V and f
  • 57. Concept of Magnetic Circuits 14 AC Magnetic Circuits 1 2 φ φ φ = = 1 2 2 1 i i µ µ = 1 1 mc c l Ni A φ µ = 2 2 mc c l Ni A φ µ = 1 1 2 2 c c mc mc Ni A Ni A l l µ µ = 1 Ni 1 ℜ 1 φ 2 Ni 2 ℜ 2 φ
  • 58. Concept of Magnetic Circuits 15 AC Magnetic Circuits To get the current sin( ) 2 mc m c l V i t N A N π ω µ ω      = −        mc c l i N A φ µ = 2 sin( ) 2 m c mc V i t N A l π ω µ ω = −            
  • 59. Concept of Magnetic Circuits 16 AC Magnetic Circuits 2 c mc V I N A j l µ ω =             core V I j L ω = 2 core mc c N L l A µ = mc c l A µ ℜ = 2 N L = ℜ Self Inductance
  • 60. Example Sheet (3), Prob. (1): Find the inductance of the coil. 5000 r µ = 50 N = 10cm 1 44563.38 H− ℜ = 2 N L = ℜ 0.056 L H = 17
  • 61. Magnetic Circuits: Electric Machines 18 Electrical machines have generally two basic parts named "Stator" and "Rotor". The stator is the stationary member. The rotor is the rotating member. A small air gap exists between the two member.
  • 63. Magnetic Circuits: Electric Machines Salient Poles Stator 20 N S
  • 64. Magnetic Circuits: Electric Machines 21 φ φ f g M φ = ℜ 2 2 f f g N I φ = ℜ Neglecting the reluctance of the steel parts g o c g A µ ℜ = f o c M A g φ µ = f g o M B g µ = f f f M N I =
  • 65. Faraday’s Law Applications 1 1. Inductors. 2. Transformers. 3. Electrical Generators. 4. Electrical Motors. 5. Transmission Lines.
  • 68. Inductors 4 d v N dt f = Ni  f Ni f =  Ni f =  2 N di v dt =  di v L dt = 2 N L = Â
  • 69. Inductors 5 ( ) V j L I w = L V jX I = sin( ) 2 m V i t L p w w = - By Integration V I j L w =
  • 70. Inductors: Introduction to Inductor Design 6 Objective: Design an inductor having a given inductance L, which carries worst-case current Imax without saturating the core (Bmax), and which has a given winding resistance R, or, equivalently, exhibits a worst-case copper loss of Im 2R
  • 74. Transformer 10 Ideal Transformer - Rcoil = zero - µ → ∞ - No leakage flux - No core losses 1 1 1 d v N dt f = 2 2 2 d v N dt f = 1 2 f f = 1 1 2 2 v N v N = 1 1 2 2 e N e N = Since no leakage
  • 75. Transformer 11 Ideal Transformer 1 1 2 2 N i N i f - =  Since µ → ∞ zero  = 1 2 2 1 N i N i = 1 1 N i 2 2 N i  f
  • 76. Transformer 12 Ideal Transformer 1 1 2 2 v N v N = 1 1 2 2 e N e N = 2 1 1 2 i N i N = 1 1 2 2 v i v i =
  • 78. Transformer: Equivalent Circuit 14 Case A: Ideal Transformer 1 1 2 2 v N v N = 1 1 2 2 e N e N = 2 1 1 2 i N i N = 1 1 2 2 v i v i =
  • 79. Transformer: Equivalent Circuit 15 Case B: - Rcoil = zero - µ ≠ ∞ - No leakage flux - No core losses At No-load: (i2 = zero) 1 N im f =  1 2 1 sin( ) 2 m V i t N m p w w =  - 1 1 sin( ) 2 m V t N p f w w = - From Faraday’s Law 1 N im  f
  • 80. Transformer: Equivalent Circuit 16 If the transformer is loaded: core X L m w = 1 sin( ) 2 m core V i t L m p w w = - 1 core V I j L m w = 1 1 N i 2 2 N i  f 1 1 2 2 N i N i f - =  1 1 2 2 1 N i N i N im - =
  • 81. Transformer: Equivalent Circuit 17 2 1 2 1 N i i i N m = - 2 ' 2 2 1 N i i N = 2 1 2 1 N i i i N m = +
  • 82. Transformer: Equivalent Circuit 18 Case C: - Rcoil = zero - µ ≠ ∞ - No leakage flux - core losses exist. Core (iron) losses 1. Eddy Current Losses 2 2 2 ( ) e m P B f thickness µ 2 2 2 ( ) e e m P k B f thickness = W/m3
  • 83. Transformer: Equivalent Circuit 19 Case C: 2. Hysteresis Losses
  • 84. Transformer: Equivalent Circuit 20 Case C: 2. Hysteresis Losses BH Curve (Magnetization Curve)
  • 85. Transformer: Equivalent Circuit 21 Case C: 2. Hysteresis Losses B H
  • 86. Transformer: Equivalent Circuit 22 Case C: 2. Hysteresis Losses 1 . m r B B w H dB - = ò 2 . r m B B w H dB = ò 1 1 2 3 (A.m ) ( . . ) . H B T J A m J m - - - - ´ = = Energy lost /unit volume/cycle = 2(w1 – w2)= area inside the loop
  • 87. Transformer: Equivalent Circuit 23 Case C: 2. Hysteresis Losses n depends on the material (1.6 – 2.4) Total core losses: n h P B f µ n h h P k B f = W/m3 2 2 2 ( ) n c e h P k B f thickness k B f = + 2 c P B µ W/m3 Since f is usually constant 2 c P V µ 2 c P f µ
  • 89. Transformer: Equivalent Circuit 25 Case D: - Rcoil = zero - µ ≠ ∞ - Leakage flux exists. - core losses exist.
  • 90. Transformer: Equivalent Circuit Case D: 1 1 N i 2 2 N i  f 1 l  2 l  1 f 2 f 1 l f 2 l f 1 1 l f f f = + 2 2 l f f f = - 1 1 1 1 l l N i f =  2 2 2 2 l l N i f =  (1) (2) (3) (4) From (1) & (3) 1 1 1 1 1 l d d d N N N dt dt dt f f f = + 2 1 1 1 1 1 1 l l l d N di v N dt R dt f = = 26
  • 91. Transformer: Equivalent Circuit Case D: 1 1 N i 2 2 N i  f 1 l  2 l  1 f 2 f 1 l f 2 l f From (2) & (4) 2 2 2 2 2 l d d d N N N dt dt dt f f f = - 2 2 2 2 2 2 2 l l l d N di v N dt R dt f = = 2 2 l f f f = - 2 2 2 2 l l N i f =  (2) (4) 27
  • 92. Transformer: Equivalent Circuit Case D: let 1 1 d e N dt f = 2 2 d e N dt f = 1 1 1 l v e v = + 2 2 2 l v e v = - 1 v 1 l v 1 e 2 e 2 l v 2 v 1 1 1 1 1 l d d d N N N dt dt dt f f f = + 2 2 2 2 2 l d d d N N N dt dt dt f f f = - 1 1 1 d v N dt f = 2 2 2 d v N dt f = 28
  • 93. Transformer: Equivalent Circuit Case D: 2 1 1 1 1 l l N di v R dt = 2 2 2 2 2 l l N di v R dt = 1 1 1 l l di v L dt = 2 2 2 l l di v L dt = 1 1 1 l l V j L I w = 2 2 2 l l V j L I w = 1 1 1 l l V jX I = 2 2 2 l l V jX I = 1 v 1 1 l jX I 1 e 2 e 2 2 l jX I 2 v 29
  • 95. Transformer: Equivalent Circuit Case E: - Rcoil ≠ zero - µ ≠ ∞ - Leakage flux exists. - core losses exist. Exact Equivalent Circuit of the Transformer 31
  • 96. FARADAY’S LAW APPLICATIONS 1. Inductors. 2. Transformers. 3. Electrical Generators. 4. Electrical Motors. 5. Transmission Lines. 1
  • 97. GENERATORS  Faraday’s Disk Generator (1831) 2
  • 99. GENERATORS 4 𝑒 = − න 𝑆 𝜕𝐵 𝜕𝑡 . 𝑑𝑆 + ර 𝑐 (𝑣 × 𝐵) . 𝑑𝑙 𝐵 = 𝐵𝑜𝑢𝑦 𝑒 = ර 𝑐 (𝑣 × 𝐵) . 𝑑𝑙 𝑒 = න 1 2 + න 2 3 + න 3 4 + න 4 1 = is the velocity in the direction normal to the loop 𝑣 dl = unit length along the extension of the loop x y z
  • 100. GENERATORS 5 𝑒12 = න 1=0 2=−ℎ ӈ 𝑣 × 𝐵𝑜𝑢𝑦 . 𝑑𝑥 (−𝑢𝑥) 𝑎𝑛 𝑢𝑦 𝛼 𝑒12 = 𝑢𝐵𝑜ℎ sin 𝛼 𝑢𝑧 an normal to the loop 𝜈 = u 𝑎𝑛 = u cos(𝛼) 𝑢𝑦 − u sin(𝛼) 𝑢𝑧 ӈ 𝑣 × 𝐵𝑜𝑢𝑦 = u 𝐵𝑜 sin(𝛼) 𝑢𝑥 x y z
  • 101. GENERATORS 6 𝑒23 = න 2=0 3=𝑤 (𝜈 × 𝐵𝑜𝑢𝑦 . 𝑑𝑦 (𝑢𝑦) = u 𝐵𝑜 sin(𝛼) 𝑢𝑥 . 𝑑𝑦 (𝑢𝑦) 𝑒23 = 𝑧𝑒𝑟𝑜 x y z
  • 102. GENERATORS 7 𝑒34 = න 3=−ℎ 4=0 ӈ 𝑣 × 𝐵𝑜𝑢𝑦 . 𝑑𝑥 (𝑢𝑥) 𝑒34 = 𝑢𝐵𝑜ℎ sin 𝛼 x y z 𝑒34 = න 3=−ℎ 4=0 ӈ 𝑣 × 𝐵𝑜𝑢𝑦 . 𝑑𝑥 (𝑢𝑥) ӈ 𝑣 × 𝐵𝑜𝑢𝑦 = u 𝐵𝑜 sin(𝛼) 𝑢𝑥
  • 103. GENERATORS 8 𝑒41 = න 4 1 = 𝑧𝑒𝑟𝑜 𝑢 = 𝜔 𝑤 2 𝑒 = 2𝑢𝐵𝑜ℎ sin 𝛼 𝑒 = 𝜔𝐵𝑜(𝑤ℎ) sin 𝛼 𝛼 = 𝜔𝑡 + 𝜃𝑜 𝑒 = 𝜔𝐵𝑜(𝑤ℎ) sin( 𝜔𝑡 + 𝜃𝑜) x y z Radial speed w to linear speed u
  • 104. GENERATORS AC Generator (Alternator) 9 𝑒 = 𝜔𝐵𝑜𝐴 sin( 𝜔𝑡 + 𝜃𝑜) 𝑇 = 1 𝑓 𝑓 = 𝜔 2𝜋 𝐴 = ℎ𝑤
  • 105. GENERATORS: AC GENERATOR 10 Field direction The field lines has to perpendicularly cross the loop That is why there is a “sine” in the expression 𝑒 = 𝜔𝐵𝑜𝐴 sin( 𝜔𝑡 + 𝜃𝑜)
  • 106. GENERATORS: AC GENERATOR 11 Realistically the field lines are usually curved or more circular due to the use of cylindrical magnetic poles to fit rotational motion
  • 107. GENERATORS: AC GENERATOR 12 𝑒 = ර 𝑐 (𝑣 × 𝐵) . 𝑑𝑙 𝑒12 = න 1=0 2=ℎ 𝑢 𝑢𝜙 × 𝐵𝑜 𝑢𝑟 . 𝑑𝑧 (−𝑢𝑧) 𝑒12 = 𝑢𝐵𝑜ℎ 𝑢𝑟 𝑢𝜙 𝑢𝑧 𝑒 = න 1 2 + න 2 3 + න 3 4 + න 4 1 N S No field region
  • 108. GENERATORS: AC GENERATOR 13 𝑒34 = න 3=ℎ 4=0 𝑢 𝑢𝜙 × 𝐵𝑜(−𝑢𝑟) . 𝑑𝑧 𝑢𝑧 𝑒34 = 𝑢𝐵𝑜ℎ 𝑒23 = 𝑧𝑒𝑟𝑜 𝑒41 = 𝑧𝑒𝑟𝑜 𝑢𝑟 𝑢𝜙 𝑢𝑧
  • 109. GENERATORS: AC GENERATOR 14 𝑢 = 𝜔𝑟 𝑒 = 2𝑢𝐵𝑜ℎ 𝑒 = 2𝜔𝐵𝑜(𝑟ℎ) Under the pole faces 𝑒 = 0 Beyond the pole edges B0=0 𝑒 = 2 𝜋 𝐴𝑝𝐵𝑜𝜔 𝑒 = 2 𝜋 𝜙𝜔 Ф = Total flux under one pole 𝑢𝑟 𝑢𝜙 𝑢𝑧
  • 111. GENERATORS: DC GENERATOR (DYNAMO) 16
  • 115. GENERATORS: 3-PHASE AC GENERATOR 20
  • 116. GENERATORS: 3-PHASE AC GENERATOR 21
  • 117. Faraday’s Law Applications 1 1. Inductors. 2. Transformers. 3. Electrical Generators. 4. Electrical Motors. 5. Transmission Lines.
  • 122. Generators 6 . . S c B e dS t v B dl ¶ =- ¶ + ´ ò ò  y o B B u = . c e v B dl = ´ ò  2 3 4 1 1 2 3 4 e = + + + ò ò ò ò
  • 123. Generators 7 ( ) 2 12 1 0 ( ) . ( ) h n y x o e u a B u dx u = = = - ´ - ò n a y u a 12 sin o e uB h a = (1)(1)sin ( ) n y x a u u a ´ =
  • 124. Generators 8 ( ) 3 23 2 0 ( ) . ( ) w n y y o e u a B u dy u = = = - ´ ò 23 e zero =
  • 125. Generators 9 ( ) 4 34 3 0 ( ) . ( ) h n y x o e u a B u dx u = = = ´ ò n a y u a 34 sin o e uB h a = (1)(1)sin ( ) n y x a u u a ´ =
  • 126. Generators 10 1 41 4 e zero = = ò 2 w u w = 2 sin o e uB h a = ( )sin o e B wh w a = o t a w q = + ( )sin( ) o o e B wh t w w q = +
  • 127. Generators 11 AC Generator (Alternator) sin( ) o o e B A t w w q = + 1 T f = 2 f w p = A hw =
  • 130. Generators: AC Generator 14 . c e v B dl = ´ ò  ( ) 2 12 1 0 ( ) ( ) . ( ) h r z o e u u B u dz u f = = = ´ - ò 12 o e uB h = r u u f z u 2 3 4 1 1 2 3 4 e = + + + ò ò ò ò
  • 131. Generators: AC Generator 15 ( ) 4 34 3 0 ( ) ( ) . ( ) h r z o e u u B u dz u f = = = ´ - ò 34 o e uB h = 23 e zero = 41 e zero = r u u f z u
  • 132. Generators: AC Generator 16 u r w = 2 o e uB h = 2 ( ) o e B rh w = Under the pole faces 0 e = Beyond the pole edges r u u f z u 2 p o e A B w p = 2 e fw p = Ф = Total flux under one pole
  • 133. Generators: AC Generator 17 2 e fw p = 2 e fw p =
  • 134. Generators: DC Generator (Dynamo) 18
  • 136. Generators: DC Generator 20 e K fw = 2 e fw p = Under the pole faces 0 e = Beyond the pole edges
  • 138. Generators: 3-phase AC Generator 22
  • 139. Generators: 3-phase AC Generator 23
  • 140. Generators: 3-phase AC Generator 24
  • 143. MOTORS: DC MOTOR 3 𝑇 = 𝑚 × 𝐵 𝑚 = 𝐼𝑆 𝑚 = 𝐼(ℎ𝑤)𝑎𝑛 𝑃𝑚 = 𝑇𝜔 𝑃𝑚 = 𝜔𝐼𝐵𝑜𝐴 sin 𝛼 𝐴 = ℎ𝑤 𝑇 = 𝐼(ℎ𝑤)𝑎𝑛 × 𝐵𝑜𝑢𝑦 𝑇 = 𝐼𝐵𝑜𝐴 sin 𝛼 (𝑢𝑥) 𝑎𝑛 = cos(𝛼) 𝑢𝑦 − sin(𝛼) 𝑢𝑧
  • 146. MOTORS: DC MOTOR 6 𝐹12 = 𝐼 න 1=0 2=−ℎ 𝑑𝑧(−𝑢𝑧) × 𝐵𝑜𝑢𝑟 𝐹12 = 𝐼𝐵𝑜ℎ(𝑢𝜙) 𝐹𝑚 = 𝐼 න 𝑑𝑙 × 𝐵 𝐵 = 𝐵𝑜𝑢𝑟 𝐹12 = 𝐼 න 1 2 𝑑𝑙 × 𝐵 𝑢𝑟 𝑢𝜙 𝑢𝑧 𝑒 = න 1 2 + න 2 3 + න 3 4 + න 4 1 dl = in the direction of the current carrying conductor
  • 147. MOTORS: DC MOTOR 7 𝐹34 = 𝐼 න 3=−ℎ 4=0 𝑑𝑧(𝑢𝑧) × 𝐵𝑜(−𝑢𝑟) 𝐹34 = 𝐼𝐵𝑜ℎ(𝑢𝜙) 𝐵 = 𝐵𝑜(−𝑢𝑟) 𝐹34 = 𝐼 න 3 4 𝑑𝑙 × 𝐵 𝑢𝑟 𝑢𝜙 𝑢𝑧
  • 149. MOTORS: DC MOTOR 9 𝑇 = 𝑟 × 𝐹 𝑇 = 𝐹𝐿 𝑇 = (2𝑟)𝐼𝐵𝑜ℎ 𝑇 = 2𝐼𝐵𝑜(𝑟ℎ) Under the pole faces 𝑇 = 0 𝑇 = 2 𝜋 𝐴𝑝𝐵𝑜𝐼 𝑇 = 2 𝜋 𝜙𝐼 Ф = Total flux under one pole Beyond the pole edges
  • 150. MOTORS: AC MOTOR 10 𝐵 = 𝐵𝑜 sin 𝜔1 𝑡 𝜔1 = 2𝜋𝑓
  • 151. MOTORS: AC MOTOR 11 𝑒 = − න 𝑆 𝜕𝐵 𝜕𝑡 . 𝑑𝑆 + ර 𝑐 (𝑣 × 𝐵) . 𝑑𝑙 𝐵 = 𝐵𝑜 sin 𝜔1 𝑡𝑢𝑦 𝑒1 = − න 𝑆 𝜕𝐵 𝜕𝑡 . 𝑑𝑆 𝑒 = 𝑒1 + 𝑒2 𝑒1 = − න 𝑆=ℎ𝑤 𝜔1𝐵𝑜 cos( 𝜔1𝑡)𝑢𝑦. 𝑑𝑆 𝑎𝑛
  • 152. MOTORS: AC MOTOR 12 𝑒1 = − න 𝑆=𝑤ℎ 𝜔1𝐵𝑜 cos( 𝜔1𝑡)𝑢𝑦. 𝑑𝑆 𝑎𝑛 𝑎𝑛 ⋅ 𝑢𝑦 = (1)(1) cos 𝛼 𝑒1 = −𝜔1𝐵𝑜(𝑤ℎ) cos( 𝜔1𝑡) cos( 𝛼) 𝑒1 = −𝜔1𝐵𝑜(𝑤ℎ) cos( 𝜔1𝑡) cos( 𝜔𝑡 + 𝜃𝑜) 𝑒1 = −𝜔1𝐵𝑜 𝐴 2 [cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜) + cos( (𝜔1 + 𝜔)𝑡 + 𝜃𝑜)]
  • 153. MOTORS: AC MOTOR 13 𝑒2 = 𝜔𝐵𝑜(𝑤ℎ) sin( 𝜔1𝑡) sin( 𝜔𝑡 + 𝜃𝑜) 𝑒2 = ර 𝑐 𝑣 × 𝐵. 𝑑𝑙 𝑒2 = 𝜔𝐵𝑜 (𝑤ℎ) 2 [cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜) − cos( (𝜔1 + 𝜔)𝑡 + 𝜃𝑜)]
  • 154. MOTORS: AC MOTOR 14 𝑒 = 𝑒1 + 𝑒2 𝑒 = −𝐵𝑜 𝐴 2 [(𝜔1 − 𝜔) cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜) +(𝜔1 + 𝜔) cos( (𝜔1 + 𝜔)𝑡 + 𝜃𝑜)] 𝑒1 = −𝜔1𝐵𝑜 𝐴 2 [cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜) + cos( (𝜔1 + 𝜔)𝑡 + 𝜃𝑜)] 𝑒2 = 𝜔𝐵𝑜 𝐴 2 [cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜) − cos( (𝜔1 + 𝜔)𝑡 + 𝜃𝑜)] 𝑒 = 𝑒𝑓 + 𝑒𝑏
  • 155. MOTORS: AC MOTOR 15 𝑒𝑓 𝑒𝑏 𝑖𝑓 𝑖𝑏 𝑖𝑓 = 𝐵𝑜𝐴 2 𝑍𝑓 [(𝜔1 − 𝜔) cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜 − 𝜙𝑓)] 𝑖𝑓 𝑖𝑏 𝑒𝑓 𝑍𝑓 𝑒𝑏 𝑍𝑏 𝑅 + 𝑗(𝜔1 − 𝜔)𝐿 𝑅 + 𝑗(𝜔1 + 𝜔)𝐿 𝑖𝑏 = 𝐵𝑜𝐴 2 𝑍𝑏 [(𝜔1 + 𝜔) cos( (𝜔1 + 𝜔)𝑡 + 𝜃𝑜 − 𝜙𝑏)]
  • 156. MOTORS: AC MOTOR Torque 16 𝑖𝑓 = 𝐼𝑓𝑚 cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜 − 𝜙𝑓) 𝑖𝑏 = 𝐼𝑏𝑚 cos( (𝜔1 + 𝜔)𝑡 + 𝜃𝑜 − 𝜙𝑏) 𝑇𝑓 = 𝑚 × 𝐵 𝑚 = 𝑖𝑓𝑆 𝑇𝑓 = 𝐼𝑓𝑚 cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜 − 𝜙𝑓)(𝐴𝑎𝑛) × 𝐵𝑜 sin 𝜔1 𝑡𝑢𝑦 𝐵 = 𝐵𝑜 sin 𝜔1 𝑡𝑢𝑦 𝑇𝑓 = 𝐼𝑓𝑚𝐵𝑜𝐴 cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜 − 𝜙𝑓) sin 𝜔1 𝑡 sin( 𝜔𝑡 + 𝜃𝑜) sin 𝜔1 𝑡 sin( 𝜔𝑡 + 𝜃𝑜) = 1 2 [cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜) − cos( (𝜔1 + 𝜔)𝑡 + 𝜃𝑜)]
  • 157. MOTORS: AC MOTOR Torque 17 𝑇𝑓 = 𝐼𝑓𝑚𝐵𝑜𝐴 2 cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜 − 𝜙𝑓) ∗ [cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜) − cos( (𝜔1 + 𝜔)𝑡 + 𝜃𝑜)] cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜 − 𝜙𝑓) ∗ cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜) = 1 2 cos 𝜙𝑓 + cos[ 2((𝜔1 − 𝜔)𝑡 − 𝜃𝑜) − 𝜙𝑓)] cos( (𝜔1 − 𝜔)𝑡 − 𝜃𝑜 − 𝜙𝑓) ∗ cos( (𝜔1 + 𝜔)𝑡 + 𝜃𝑜) = 1 2 cos[ 2(𝜔𝑡 + 𝜃𝑜) + 𝜙𝑓) cos( 2𝜔1 − 𝜙𝑓)]
  • 158. MOTORS: AC MOTOR Torque 18 𝑇𝑓 = 𝐼𝑓𝑚𝐵𝑜𝐴 4 ∗ cos 𝜙𝑓 + cos[ 2((𝜔1 − 𝜔)𝑡 − 𝜃𝑜) − 𝜙𝑓)] − cos( 2𝜔1 − 𝜙𝑓) − cos[ 2(𝜔𝑡 + 𝜃𝑜) + 𝜙𝑓)] 𝑇𝑓𝑎𝑣𝑔 = 𝐼𝑓𝑚𝐵𝑜𝐴 4 cos 𝜙𝑓 Similarly 𝑇𝑏𝑎𝑣𝑔 = − 𝐼𝑏𝑚𝐵𝑜𝐴 4 cos 𝜙𝑏 𝑇𝑛𝑒𝑡 = 𝐵𝑜𝐴 4 𝐼𝑓𝑚 cos 𝜙𝑓 − 𝐼𝑏𝑚 cos 𝜙𝑏
  • 159. MOTORS: AC MOTOR 19 For ω = 0 𝑇𝑛𝑒𝑡 = 𝐵𝑜𝐴 4 𝐼𝑓𝑚 cos 𝜙𝑓 − 𝐼𝑏𝑚 cos 𝜙𝑏 𝜙𝑓 = 𝜙𝑏 𝐼𝑓𝑚 = 𝐼𝑏𝑚 𝑇𝑛𝑒𝑡 = 𝑧𝑒𝑟𝑜 This motor cannot start from rest by its own developed torque For any speed ω 𝐼𝑓𝑚 ≠ 𝐼𝑏𝑚 𝜙𝑓 ≠ 𝜙𝑏 𝑇𝑛𝑒𝑡 ≠ 𝑧𝑒𝑟𝑜
  • 160. MOTORS: AC MOTOR The motor needs an external method to start-up It is called Induction Motor Single Phase Induction Motor 20
  • 161. Faraday’s Law Applications 1 1. Inductors. 2. Transformers. 3. Electrical Generators. 4. Electrical Motors. 5. Transmission Lines.
  • 164. Motors: DC Motor 4 o B B = DC N S
  • 166. Motors: DC Motor 6 2 12 1 0 ( ) h x y o F I dx u B u = = = - ´ ò 12 ( ) z o F IB h u = - m F I dl B = ´ ò y o B B u = 2 12 1 F I dl B = ´ ò 12 F
  • 167. Motors: DC Motor 7 4 34 3 0 ( ) h x y o F I dx u B u = = = ´ ò 12 ( ) z o F IB h u = 4 34 3 F I dl B = ´ ò 12 F 34 F
  • 168. Motors: DC Motor 8 w 34 F 12 F w T r F = ´ T FL = L sin L w a = ( )sin o T IB hw a = o F IB h = ( )sin( ) o T IB hw t w = a
  • 170. Motors: DC Motor 10 T m B = ´ m I S = ( ) n m I hw a = m P T w = sin m o P IB A w a = A hw = (1)(1)sin ( ) n y x a u u a ´ = ( ) n y o T I hw a B u = ´ sin ( ) x o T IB A u a =
  • 172. Motors: DC Motor 12 2 12 1 0 ( ) h z r o F I dz u B u = = = ´ ò 12 ( ) o F IB h uf = m F I dl B = ´ ò r o B B u = 2 12 1 F I dl B = ´ ò r u u f z u
  • 173. Motors: DC Motor 13 4 34 3 0 ( ) ( ) h z r o F I dz u B u = = = - ´ - ò 34 ( ) o F IB h uf = ( ) r o B B u = - 4 34 3 F I dl B = ´ ò r u u f z u
  • 175. Motors: DC Motor 15 T r F = ´ T FL = (2 ) o T r IB h = 2 ( ) o T IB rh = Under the pole faces 0 T = 2 p o T A B I p = 2 T I f p = Ф = Total flux under one pole Beyond the pole edges
  • 176. Motors: AC Motor 16 1 sin o B B t w = 1 2 f w p =
  • 177. Motors: AC Motor 17 . . S c B e dS t v B dl ¶ =- ¶ + ´ ò ò  1 sin y o B B tu w = 1 . S B e dS t ¶ =- ¶ ò 1 2 e e e = + 1 1 1 cos( ) . y n o S hw e B t u dS a w w = =- ò
  • 178. Motors: AC Motor 18 1 1 1 ( )cos( )cos( ) o o e B wh t t w w w q =- + 1 1 1 1 [cos(( ) ) cos(( ) )] 2 o o o A e B t t w w w q w w q =- - - + + + 1 1 1 cos( ) . y n o S wh e B t u dS a w w = =- ò (1)(1)cos n y a u a ⋅ = 1 1 1 ( )cos( )cos( ) o e B wh t w w a =-
  • 179. Motors: AC Motor 19 2 1 ( )sin( )sin( ) o o e B wh t t w w w q = + 2 . c e v B dl = ´ ò  2 1 1 [cos(( ) ) cos(( ) )] 2 o o o A e B t t w w w q w w q = - - - + +
  • 180. Motors: AC Motor 20 1 2 e e e = + 1 1 1 1 [( )cos(( ) ) 2 ( )cos(( ) )] o o o A e B t t w w w w q w w w w q =- - - - + + + + 1 1 1 1 [cos(( ) ) cos(( ) )] 2 o o o A e B t t w w w q w w q =- - - + + + 2 1 1 [cos(( ) ) cos(( ) )] 2 o o o A e B t t w w w q w w q = - - - + + f b e e e = +
  • 181. Motors: AC Motor 21 f e b e f i b i 1 1 [( ) cos(( ) )] 2 o f o f f B A i t Z w w w w q f = - - - - f i b i f f e Z b b e Z 1 1 [( ) cos(( ) )] 2 o b o b b B A i t Z w w w w q f = + + + - 1 ( ) R j L w w + - 1 ( ) R j L w w + +
  • 182. Motors: AC Motor 22 Torque 1 cos(( ) ) f fm o f i I t w w q f = - - - 1 cos(( ) ) b bm o b i I t w w q f = + + - f T m B = ´ f m i S = 1 1 cos(( ) )( ) sin n y f fm o f o T I t Aa B tu w w q f w = - - - ´ 1 sin y o B B tu w = 1 1 cos(( ) )sin sin( ) f fm o o f o T I B A t t t w w q f w w q = - - - + 1 1 1 1 sin sin( ) [cos(( ) ) cos(( ) )] 2 o o o t t t t w w q w w q w w q + = - - - + +
  • 183. Motors: AC Motor 23 Torque 1 1 1 cos(( ) ) 2 *[cos(( ) ) cos(( ) )] fm o f o f o o I B A T t t t w w q f w w q w w q = - - - - - - + + [ ] 1 1 1 cos(( ) )*cos(( ) ) 1 cos cos[2(( ) ) )] 2 o f o f o f t t t w w q f w w q f w w q f - - - - - = + - - - 1 1 1 cos(( ) )*cos(( ) ) 1 cos[2( ) )] cos(2 ) 2 o f o o f f t t t t w w q f w w q w q f w f - - - + + = é ù + + + - ê ú ë û
  • 184. Motors: AC Motor 24 Torque 1 1 cos cos[2(( ) ) )] * cos(2 ) cos[2( ) )] 4 f o f fm o f f o f t I B A T t t f w w q f w f w q f é ù + - - - ê ú = ê ú - - - + + ê ú ë û cos 4 fm o favg f I B A T f = Similarly cos 4 bm o bavg b I B A T f =- [ ] cos cos 4 o net fm f bm b B A T I I f f = -
  • 185. Motors: AC Motor 25 For ω = 0 [ ] cos cos 4 o net fm f bm b B A T I I f f = - f b f f = fm bm I I = net T zero = This motor cannot start from rest by its own developed torque For any speed ω fm bm I I ¹ f b f f ¹ net T zero ¹
  • 186. Motors: AC Motor 26 The motor needs an external method to start-up It is called Induction Motor Single Phase Induction Motor
  • 187. Maxwell’s equations 1 Static Fields (ρ & J are constants) Electrostatics Magnetostatics Steady Current Flow E zero ´ = .D r  = H J ´ = .B zero  = D E e = B H m = E zero ´ = .J zero  = J E s =
  • 188. Maxwell’s equations 2 Time varying fields: Faraday’s Law for a single turn d e dt f =- . S B dS f = ò . c emf E dl = ò  . . c S d E dl B dS dt =- ò ò 
  • 189. Maxwell’s equations 3 Time varying fields: Faraday’s Law for a stationary loop Using Stoke’s theorem B E t ¶ ´ =- ¶ . . c S B E dl dS t ¶ =- ¶ ò ò  . . cons non cons E E E - = + S c ( A).dS A.dl ´ = ò ò 
  • 190. Maxwell’s equations 4 Time varying fields . . cons non cons D D D - = + . . cons D r  = . . non cons D zero -  = .D r  =
  • 191. Maxwell’s equations 5 Time varying fields: Law of conservation of charge net dQ I dt =- . S dQ J dS dt =- ò  v Q dv r = ò . S v d J dS dv dt r =- ò ò 
  • 192. Maxwell’s equations 6 Time varying fields: Law of conservation of charge Using Divergence theorem . S v J dS dv t r ¶ =- ¶ ò ò  .J t r ¶  =- ¶ V S ( .A)dv A.dS  = ò ò 
  • 193. Maxwell’s equations 7 Time varying fields: Modified Ampere’s Law Contradicts with the law of conservation of charge .J zero t r ¶  + = ¶ H J ´ = .( ) H zero  ´ = .J zero  = .D r  =
  • 194. Maxwell’s equations 8 Time varying fields: Modified Ampere’s Law ( . ) . D J zero t ¶   + = ¶ .( ) H zero  ´ = .( ) .( ) D H J t ¶  ´ =  + ¶ D H J t ¶ ´ = + ¶
  • 195. Maxwell’s equations 9 B, H , D, E are field quantities ρ , J are source quantities D H J t ¶ ´ = + ¶ .D r  = B E t ¶ ´ =- ¶ .B zero  =
  • 196. Maxwell’s equations 10 Integral form (using Divergence and Stoke’s) . . C S B E dl dS t ¶ =- ¶ ò ò  . ( ). C S D H dl J dS t ¶ = + ¶ ò ò  . S V D dS dv r = ò ò  . S B dS zero = ò 
  • 197. Maxwell’s equations 11 Explanatory example: For path 1 For path 2 Applying Ampere’s law will give B = zero since there is no conduction current passing in the capacitor. . en c H dl I = ò  2 o c i B u r f m p =
  • 198. Maxwell’s equations 12 Explanatory example: For path 2 Applying modified Ampere’s law For parallel plate capacitor: . ( ). c S D H dl J dS t ¶ = + ¶ ò ò  J zero = o D E e = V E d = sin m V V t w = sin m o V D t d e w =
  • 199. Maxwell’s equations 13 Explanatory example: For path 2 . . c S D H dl dS t ¶ = ¶ ò ò  cos m o V D t t d e w w ¶ = ¶ ( cos ) 2 m o o V A t d B r m e w w p = 2 o d i B u r f m p =
  • 200. Maxwell’s equations 14 Explanatory example: For path 2 Displacement Current From circuits equations: cos m d o V i A t d e w w = c dV i C dt = cos c m i CV t w w = o A C d e = cos m c o V i A t d e w w = c d i i = dE dt J
  • 201. Maxwell’s equations 15 Boundary Conditions 1 2 2 ( ) 0 n u E E    1 2 t t E E  1 2 2 ( ) n s u D D     1 2 2 ( ) n s u H H J    1 2 2.( ) 0 n u B B   1 2 n n s D D    1 2 s t t H H J   1 2 n n B B 
  • 202. Maxwell’s equations: Time-Harmonic 16 Time Harmonic Fields A time-harmonic field is one that varies periodically or sinusoidally with time. When the source quantities (ρ , J) vary sinusoidally, all the field quantities will vary sinusoidally cos( ) m v V t     2 2 j m m V V V e      ( ) ( , ) Re[ ( )e ] j t E r t E r     ( ) ( ) Re[ e ] j t m v t V     ( , ) ( )cos( ) E r t E r t     ( ) ( )e ( ) j h E r E r E r      ( ) ( , ) Re[ ( )e ] j t h E r t E r  
  • 203. Maxwell’s equations: Time-Harmonic 17 ( ) ( , ) Re[ ( )e ] j t h B r t B r   ( ) ( ) ( )(Re[e ]) ( ) Re[e ] j t j t h h E r B r t w w ¶ ´ =- ¶ ( ) (Re[e ]) j t h E w ´ ( ) (Re[e ]) j t h j B w w =- h h E j B w ´ =- ( ) ( , ) Re[ ( )e ] j t h E r t E r   B E t ¶ ´ =- ¶
  • 204. Maxwell’s equations: Time-Harmonic 18 h h h H J j D w ´ = + . h h D r  = . h B zero  = h h E j B w ´ =-
  • 205. Poynting’s Theorem 19 V/m * A/m=VA/m2 S E H = ´ . .( ) . . S E H H E E H  =  ´ = ´ - ´ . .( ) .( ) B D S H E J t t ¶ ¶  = - - + ¶ ¶ 2 2 2 1 1 . ( ) ( ) 2 2 S E E H t t s e m ¶ ¶  =- - - ¶ ¶ 2 2 2 1 1 . ( ) 2 2 S v v S dS E dv E H dv t s e m ¶ =- - + ¶ ò ò ò  2 d df ( x ) f ( x ) 2 f ( x ) dt dt =
  • 206. Poynting’s Theorem 20 For time harmonic fields complex Poynting vector . ( ) d e m S v v S dS P dv w w dv t ¶ - = + + ¶ ò ò ò  2 d P E s = 2 1 2 e w E e = 2 1 2 m w H m = 2 2 2 1 1 1 . ( ) 2 2 2 h h h h S v v S dS E dv j H E dv s w m e - = + - ò ò ò  * 1 2 h h h S E H = ´
  • 207. Poynting’s Theorem 21 For time harmonic fields . ( ) h davg mavg eavg S v v S dS P dv j w w dv w - = + - ò ò ò  . h S S dS P jQ - = + ò 
  • 208. 11/15/2022 1 Time Varying Fields Applications Maxwell’s Equations By: Emad Fathy Yassin Faculty of Engineering Cairo University Maxwell’s Equations “ Static Fields” Magnetostatics Electrostatics Steady Current Flow • Static Fields and 1 2
  • 209. 11/15/2022 2 Maxwell’s Equations “ Time Varying Fields” 𝑒𝑚𝑓 = − 𝜕𝜙 𝜕𝑡 As 𝑒𝑚𝑓 = ∮ 𝐸. 𝑑𝑙 , and 𝜙 = ∫ 𝐵. 𝑑𝑠 Then: 𝐸. 𝑑𝑙 = − 𝜕 𝜕𝑡 𝐵. 𝑑𝑠 = − 𝜕𝐵 𝜕𝑡 . 𝑑𝑠 • Time varying Fields: Faraday’s Law For a single stationary turn Stokes ‘ Theorem 𝐴̅. 𝑑𝑙 = ∇ × 𝐴̅. 𝑑𝑠 𝑎𝑟𝑒𝑎 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑐𝑙𝑜𝑠𝑒𝑑 𝑝𝑎𝑡ℎ 𝜵 × 𝑬 = − 𝝏𝑩 𝝏𝒕 −− −(𝟏) 𝐸. 𝑑𝑙 = ∇ × 𝐸. 𝑑𝑠 Maxwell’s Equations “ Time Varying Fields” 𝐷. 𝑑𝑠 = 𝑄 = 𝜌 𝑑𝑣 Then: 𝐷. 𝑑𝑠 = ∇. 𝐷 𝑑𝑣 = 𝜌 𝑑𝑣 • Time varying Fields: Gaussian’s Law Divergence ‘ Theorem 𝐴̅. 𝑑𝑠 = ∇. 𝐴̅ 𝑑𝑣 𝑣𝑜𝑙𝑢𝑚𝑒 𝑐𝑙𝑜𝑠𝑒𝑑 𝑎𝑟𝑒𝑎 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝜵. 𝑫 = 𝝆𝒗 −− −(𝟐) 3 4
  • 210. 11/15/2022 3 Maxwell’s Equations “ Time Varying Fields” 𝐼 = − 𝑑𝑄 𝑑𝑡 = − 𝝏 𝝏𝑡 𝜌 𝑑𝑣 𝐼 = 𝐽̅. 𝑑𝑠 = ∇. 𝐽̅ 𝑑𝑣 • Time varying Fields: Law of Conservation of Charge Divergence ‘ Theorem 𝐴̅. 𝑑𝑠 = ∇. 𝐴̅ 𝑑𝑣 𝑣𝑜𝑙𝑢𝑚𝑒 𝑐𝑙𝑜𝑠𝑒𝑑 𝑎𝑟𝑒𝑎 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝜵. 𝑱̅ = − 𝝏𝝆𝒗 𝝏𝒕 This is one of the fundamental postulates of physics, that electric changes may not be created or destroyed. 𝑸 Maxwell’s Equations “ Time Varying Fields” 𝐻. 𝑑𝑙 = 𝐼 = 𝐽̅. 𝑑𝑠 𝐻. 𝑑𝑙 = ∇ × 𝐻. 𝑑𝑠 = 𝐽. 𝑑𝑠 • Time varying Fields: Ampere's Law 𝜵 × 𝑯 = 𝑱̅ Stokes ‘ Theorem 𝐴̅. 𝑑𝑙 = ∇ × 𝐴̅. 𝑑𝑠 𝑎𝑟𝑒𝑎 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑐𝑙𝑜𝑠𝑒𝑑 𝑝𝑎𝑡ℎ 𝜵. 𝜵 × 𝑯 = 𝜵. 𝑱̅ Null Identity 𝜵. 𝜵 × 𝑨 = 𝟎 𝜵 × 𝜵𝑽 = 𝟎 𝜵. 𝜵 × 𝑯 = 𝜵. 𝑱̅ = 𝟎 Take divergence 5 6
  • 211. 11/15/2022 4 Maxwell’s Equations “ Time Varying Fields” • Time varying Fields: Ampere's Law 𝜵 × 𝑯 = 𝑱̅ Stokes ‘ Theorem 𝐴̅. 𝑑𝑙 = ∇ × 𝐴̅. 𝑑𝑠 𝑎𝑟𝑒𝑎 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑐𝑙𝑜𝑠𝑒𝑑 𝑝𝑎𝑡ℎ 𝜵. 𝜵 × 𝑯 = 𝜵. 𝑱̅ Null Identity 𝜵. 𝜵 × 𝑨 = 𝟎 𝜵 × 𝜵𝑽 = 𝟎 𝜵. 𝜵 × 𝑯 = 𝜵. 𝑱̅ = 𝟎 Take divergence This contradicts with the continuity equations 𝜵. 𝑱̅ = − 𝝏𝝆𝒗 𝝏𝒕 Then ampere's law has to be modified 𝜵. 𝜵 × 𝑯 = 𝜵. 𝑱̅ + 𝝏𝝆𝒗 𝝏𝒕 = 𝟎 Maxwell’s Equations “ Time Varying Fields” • Time varying Fields: Modified Ampere's Law Then ampere's law has to be modified 𝜵. 𝜵 × 𝑯 = 𝜵. 𝑱̅ + 𝝏𝝆𝒗 𝝏𝒕 = 𝟎 From gaussian law sub. with 𝝆𝒗 = 𝜵. 𝑫 𝜵. 𝜵 × 𝑯 = 𝜵. 𝑱̅ + 𝝏 𝝏𝒕 𝜵. 𝑫 = 𝟎 𝜵. 𝜵 × 𝑯 = 𝜵. (𝑱̅ + 𝝏 𝝏𝒕 𝑫) = 𝟎 𝜵. 𝜵 × 𝑯 = 𝜵. (𝑱̅ + 𝝏 𝝏𝒕 𝑫) = 𝟎 𝜵 × 𝑯 = 𝑱̅ + 𝝏𝑫 𝝏𝒕 −− −(𝟑) Conduction Current density Displacement Current density 7 8
  • 212. 11/15/2022 5 Maxwell’s Equations “ Time Varying Fields” 𝐵. 𝑑𝑠 = 0 ∇. 𝐵 𝑑𝑣 = 0 • Time varying Fields: The Law of conservation of Magnetic Fields Divergence Theorem 𝐴̅. 𝑑𝑠 = ∇. 𝐴̅ 𝑑𝑣 𝑣𝑜𝑙𝑢𝑚𝑒 𝑐𝑙𝑜𝑠𝑒𝑑 𝑎𝑟𝑒𝑎 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝜵. 𝑩 = 𝟎 −− −(𝟒) This equation is one of the fundamental postulates in the magnetic field. This means that the magnetic flux lines always close upon themselves and there are no isolated magnetic charges. Maxwell’s Equations “ Time Varying Fields” Differential form 𝜵 × 𝑬 = − 𝝏𝑩 𝝏𝒕 −− − 𝟏 𝜵 × 𝑯 = 𝑱̅ + 𝝏𝑫 𝝏𝒕 −− −(𝟐) 𝜵. 𝑫 = 𝝆𝒗 −− −(𝟑) 𝜵. 𝑩 = 𝟎 −− −(𝟒) Integral form 𝑬. 𝒅𝒍 = − 𝝏𝑩 𝝏𝒕 . 𝒅𝒔 −− − 𝟏 𝑯. 𝒅𝒍 = (𝑱̅ + 𝝏𝑫 𝝏𝒕 ). 𝒅𝒔 −− −(𝟐) 𝑫. 𝒅𝒔 = 𝑸𝒆𝒏 −− −(𝟑) 𝑩. 𝒅𝒔 = 𝟎 −− −(𝟒) 𝑩, 𝑯, 𝑫, 𝑬 are field quantities 𝝆𝒗 , 𝑱 are source quantities Substitutive relations 𝑫 = 𝝐𝑬 𝑩 = 𝝁 𝑯 𝑱̅ = 𝝈 𝑬 9 10
  • 213. 11/15/2022 6 Maxwell’s Equations “ Explanatory Example ” Maxwell’s 2nd law 𝑯. 𝒅𝒍 = (𝑱̅ + 𝝏𝑫 𝝏𝒕 ). 𝒅𝒔 𝒊𝒄 𝒔𝟏 𝒔𝟐 𝒗𝒄(𝒕) 𝑯. 𝒅𝒍 = (𝑱𝒄 + 𝝏𝑫 𝝏𝒕 ). 𝒅𝒔 𝑺𝟏 = (𝑱𝒄 + 𝝏𝑫 𝝏𝒕 ). 𝒅𝒔 𝑺𝟐 (𝑱𝒄 + 𝝏𝑫 𝝏𝒕 ). 𝒅𝒔 𝑺𝟏 = (𝑱𝒄 + 𝟎). 𝒅𝒔 𝑺𝟏 = 𝒊𝒄 Since there is no dielectric over the surface 𝑺𝟏 (𝑱𝒄 + 𝝏𝑫 𝝏𝒕 ). 𝒅𝒔 𝑺𝟐 = (𝟎 + 𝝏𝑫 𝝏𝒕 ). 𝒅𝒔 𝑺𝟐 = 𝒊𝒅 Since there is no free charges in the dielectric over the surface 𝑺𝟐, then 𝒊𝒄 = 𝒊𝒅 𝒊𝒅 Maxwell’s Equations “Explanatory Example ” 𝒊𝒄 𝒔𝟏 𝒔𝟐 𝒗𝒄(𝒕) 𝒊𝒄 = 𝒊𝒅 𝒊𝒅 𝑫 = 𝝐𝑬 𝑫 = 𝝐 𝒗𝒄 𝒅 𝒊𝒅 = 𝝏𝑫 𝝏𝒕 . 𝒅𝒔 = 𝝐 𝒅 𝝏𝒗𝒄 𝝏𝒕 . 𝒅𝒔 = 𝝐 𝑨 𝒅 𝝏𝒗𝒄 𝝏𝒕 = 𝑪 𝝏𝒗𝒄 𝝏𝒕 −−− −(𝟐) 𝑨 𝒅 In another method, the capacitance of this capacitor can be given by: 𝑪 = 𝝐 𝑨 𝒅 𝒊𝒄 = 𝑪 𝒅𝒗𝒄 𝒅𝒕 = 𝝐 𝑨 𝒅 𝒅𝒗𝒄 𝒅𝒕 −−− −(𝟏) Then the capacitor current can be calculated from: The flux density in the dielectric is given by: Where 𝐸 = 𝒗𝒄 𝒅 Then, From (1) and (2) 11 12
  • 214. 11/15/2022 7 Maxwell’s Equations “ Time Harmonic (phasor) Form” A time-harmonic field is one that varies periodically or sinusoidally with time. When the source quantities (𝜌 , 𝐽) vary sinusoidally, all the field quantities will vary sinusoidally 𝑣 𝑡 = 𝑉 cos(𝜔𝑡 + 𝜃) in instantaneous value 𝑉 = 𝑉 2 ∠𝜃 = 𝑉 2 𝑒 in phasor value 𝒎 𝒋𝜽 Maxwell’s Equations “ Time Harmonic (phasor) Form” A time-harmonic field is one that varies periodically or sinusoidally with time. When the source quantities (𝜌 , 𝐽) vary sinusoidally, all the field quantities will vary sinusoidally 𝐸 𝑟, 𝑡 = 𝐸 𝑟 cos(𝜔𝑡 + 𝜃) = ℜ 𝐸 𝑟 e = ℜ 𝐸 𝑟 e e = ℜ 𝐸 e 𝑬𝒉 = 𝑬 𝒓 𝒆𝒋𝜽 13 14
  • 215. 11/15/2022 8 Maxwell’s Equations “ Time Harmonic (phasor) Form” Differential form 𝜵 × 𝑬 = − 𝝏𝑩 𝝏𝒕 −− − 𝟏 𝜵 × 𝑯 = 𝑱̅ + 𝝏𝑫 𝝏𝒕 −− −(𝟐) 𝜵. 𝑫 = 𝝆𝒗 −− −(𝟑) 𝜵. 𝑩 = 𝟎 −− −(𝟒) 𝐸 𝑟, 𝑡 = 𝐸 𝑟 cos(𝜔𝑡 + 𝜃) = ℜ 𝐸 e 𝐸 = 𝐸 𝑟 e 𝜕 𝜕𝑡 𝐸 𝑟, 𝑡 = 𝜕 𝜕𝑡 ℜ 𝐸 𝑒 = 𝑗𝜔 ℜ 𝐸 𝑒 𝝏 𝝏𝒕 ==⇒ 𝒋𝝎 Time harmonic form 𝜵 × 𝑬𝒉 = −𝒋𝝎𝝁𝑯𝒉 −− − 𝟏 𝜵 × 𝑯𝒉 = 𝑱̅ + 𝒋𝝎 𝝐 𝑬𝒉 −− −(𝟐) 𝜵. 𝑫𝒉 = 𝝆𝒗 −− −(𝟑) 𝜵. 𝑩𝒉 = 𝟎 −− −(𝟒) 𝝏𝟐 𝝏𝒕𝟐 ==⇒ 𝒋𝝎 𝟐 Poynting Theorem Poynting vector S is used to calculate the power losses in a medium using the electric and magnetic field quantities 𝑺 = 𝑬 × 𝑯 𝑉𝐴/𝑚 𝛁. 𝑺 = 𝛁. (𝑬 × 𝑯 ) = 𝑯 . 𝛁 × 𝑬 − 𝑬. 𝛁 × 𝑯 𝜵 × 𝑬 = − 𝝏𝑩 𝝏𝒕 −− − 𝟏 𝜵 × 𝑯 = 𝑱̅ + 𝝏𝑫 𝝏𝒕 −− −(𝟐) 𝜵. 𝑫 = 𝝆𝒗 −− −(𝟑) 𝜵. 𝑩 = 𝟎 −− −(𝟒) = 𝑯 . (− 𝝏𝑩 𝝏𝒕 ) − 𝑬. (𝑱̅ + 𝝏𝑫 𝝏𝒕 ) Substitutive relations 𝑫 = 𝝐𝑬 𝑩 = 𝝁 𝑯 𝑱̅ = 𝝈 𝑬 = −𝝁𝑯 . 𝝏𝑯 𝝏𝒕 − 𝑬. (𝝈𝑬 + 𝝐 𝝏𝑬 𝝏𝒕 ) = −𝝁𝑯 . 𝝏𝑯 𝝏𝒕 − 𝝈𝑬𝟐 − 𝝐 𝑬. 𝝏𝑬 𝝏𝒕 15 16
  • 216. 11/15/2022 9 Poynting Theorem 𝑺 = 𝑬 × 𝑯 𝑉𝐴/𝑚 𝛁. 𝑺 = 𝛁. (𝑬 × 𝑯 ) 𝜵 × 𝑬 = − 𝝏𝑩 𝝏𝒕 −− − 𝟏 𝜵 × 𝑯 = 𝑱̅ + 𝝏𝑫 𝝏𝒕 −− −(𝟐) 𝜵. 𝑫 = 𝝆𝒗 −− −(𝟑) 𝜵. 𝑩 = 𝟎 −− −(𝟒) = −𝝁𝑯 . 𝝏𝑯 𝝏𝒕 − 𝝈𝑬𝟐 − 𝝐 𝑬. 𝝏𝑬 𝝏𝒕 = −𝝈𝑬𝟐 − 𝟏 𝟐 𝝁 𝝏𝑯𝟐 𝝏𝒕 − 𝟏 𝟐 𝝐 𝝏𝑬𝟐 𝝏𝒕 𝛁. 𝑺 = 𝝈𝑬𝟐 + 𝝏 𝝏𝒕 𝟏 𝟐 𝝁𝑯𝟐 + 𝝏 𝝏𝒕 𝟏 𝟐 𝝐𝑬𝟐 − 𝑆̅. 𝑑𝑠 = 𝝈𝑬𝟐 𝑑𝑣 + 𝝏 𝝏𝒕 𝟏 𝟐 𝝁𝑯𝟐 𝑑𝑣 + 𝝏 𝝏𝒕 𝟏 𝟐 𝝐𝑬𝟐 𝑑𝑣 Divergence ‘ Theorem 𝐴̅. 𝑑𝑠 = ∇. 𝐴̅ 𝑑𝑣 − 𝛁. 𝑺 𝑑𝑣 = 𝝈𝑬𝟐 𝑑𝑣 + 𝝏 𝝏𝒕 𝟏 𝟐 𝝁𝑯𝟐 𝑑𝑣 + 𝝏 𝝏𝒕 𝟏 𝟐 𝝐𝑬𝟐 𝑑𝑣 Poynting Theorem 𝜵 × 𝑬 = − 𝝏𝑩 𝝏𝒕 −− − 𝟏 𝜵 × 𝑯 = 𝑱̅ + 𝝏𝑫 𝝏𝒕 −− −(𝟐) 𝜵. 𝑫 = 𝝆𝒗 −− −(𝟑) 𝜵. 𝑩 = 𝟎 −− −(𝟒) − 𝑆̅. 𝑑𝑠 = 𝝈𝑬𝟐 𝑑𝑣 + 𝝏 𝝏𝒕 𝟏 𝟐 𝝁𝑯𝟐 𝑑𝑣 + 𝝏 𝝏𝒕 𝟏 𝟐 𝝐𝑬𝟐 𝑑𝑣 − 𝑆̅. 𝑑𝑠 = 𝑝 𝑑𝑣 + 𝝏 𝝏𝒕 𝒘𝒎 𝑑𝑣 + 𝝏 𝝏𝒕 𝒘𝒆 𝑑𝑣 𝒑𝒅 = 𝝈𝑬𝟐 , 𝒘𝒎 = 𝟏 𝟐 𝝁𝑯𝟐 , 𝒂𝒏𝒅 𝒘𝒆 = 𝟏 𝟐 𝝐𝑬𝟐 𝑺𝒉 = 1 2 𝑬𝒉 × 𝑯∗ 𝒉 − 𝑆̅ . 𝑑𝑠 = 𝝈𝑬𝟐 𝑑𝑣 + 𝒋𝝎 𝟏 𝟐 𝝁𝑯𝟐 𝑑𝑣 + 𝒋𝝎 𝟏 𝟐 𝝐𝑬𝟐 𝑑𝑣 − 𝑆̅ . 𝑑𝑠 = 𝑃 + 𝒋𝑸 17 18
  • 217. 12/7/2022 1 Time Varying Fields Applications Wave Equations By: Emad Fathy Yassin Faculty of Engineering Cairo University Wave Equations Differential form 𝜵 × 𝑬 = − 𝝏𝑩 𝝏𝒕 −− − 𝟏 𝜵 × 𝑯 = 𝑱̅ + 𝝏𝑫 𝝏𝒕 −− −(𝟐) 𝜵. 𝑫 = 𝝆𝒗 −− −(𝟑) 𝜵. 𝑩 = 𝟎 −− −(𝟒) 𝜵 × 𝜵 × 𝑬 = − 𝝏 𝝏𝒕 𝜵 × 𝑩 Take curl for maxwell’s 1st equation 𝜵 × 𝜵 × 𝑬 = − 𝝏 𝝏𝒕 𝝁 (𝑱̅ + 𝝏𝑫 𝝏𝒕 ) Sub. using maxwell’s 2nd equation Substitutive quantities 𝑫 = 𝝐𝑬 𝑩 = 𝝁 𝑯 𝑱̅ = 𝝈 𝑬 𝜵𝜵. 𝑬 − 𝜵𝟐 𝑬 = − 𝝏 𝝏𝒕 𝝁 (𝝈 𝑬 + 𝝐 𝝏𝑬 𝝏𝒕 ) Sub. using maxwell’s 3rd equation −𝝁𝝈 𝝏 𝝏𝒕 𝑬 − 𝝁𝝐 𝝏𝟐 𝑬 𝝏𝒕𝟐 𝜵 𝝆 𝝐 − 𝜵𝟐 𝑬 = 𝜵𝟐 𝑬 − 𝝁𝝈 𝝏 𝝏𝒕 𝑬 − 𝝁𝝐 𝝏𝟐 𝑬 𝝏𝒕𝟐 = 𝜵𝝆 𝝐 −− −(𝟏) 1 2
  • 218. 12/7/2022 2 Wave Equations Differential form 𝜵 × 𝑬 = − 𝝏𝑩 𝝏𝒕 −− − 𝟏 𝜵 × 𝑯 = 𝑱̅ + 𝝏𝑫 𝝏𝒕 −− −(𝟐) 𝜵. 𝑫 = 𝝆𝒗 −− −(𝟑) 𝜵. 𝑩 = 𝟎 −− −(𝟒) 𝜵 × 𝜵 × 𝑯 = 𝜵 × (𝑱̅ + 𝝏𝑫 𝝏𝒕 ) Take curl for maxwell’s 2nd equation Sub. using maxwell’s 1st and 3rd equations Substitutive quantities 𝑫 = 𝝐𝑬 𝑩 = 𝝁 𝑯 𝑱̅ = 𝝈 𝑬 𝜵𝜵. 𝑯 − 𝜵𝟐 𝑯 = 𝝈 𝜵 × 𝑬 + 𝝐 𝝏 𝝏𝒕 𝜵 × 𝑬 𝟎 − 𝜵𝟐 𝑯 = −𝝁𝝈 𝝏 𝝏𝒕 𝑯 − 𝝁𝝐 𝝏𝟐 𝑯 𝝏𝒕𝟐 𝜵𝟐 𝑯 − 𝝁𝝈 𝝏 𝝏𝒕 𝑯 − 𝝁𝝐 𝝏𝟐 𝑯 𝝏𝒕𝟐 = 𝟎 −− −(𝟐) 𝜵 × 𝜵 × 𝑯 = 𝜵 × (𝝈 𝑬 + 𝝐 𝝏 𝑬 𝝏𝒕 ) Wave Equations Max. Eqns. (Differential form) 𝜵 × 𝑬 = − 𝝏𝑩 𝝏𝒕 −− − 𝟏 𝜵 × 𝑯 = 𝑱̅ + 𝝏𝑫 𝝏𝒕 −− −(𝟐) 𝜵. 𝑫 = 𝝆𝒗 −− −(𝟑) 𝜵. 𝑩 = 𝟎 −− −(𝟒) 𝜵𝟐 𝑯 − 𝝁𝝈 𝝏 𝝏𝒕 𝑯 − 𝝁𝝐 𝝏𝟐 𝑯 𝝏𝒕𝟐 = 𝟎 −− −(𝟐) 𝜵𝟐 𝑬 − 𝝁𝝈 𝝏 𝝏𝒕 𝑬 − 𝝁𝝐 𝝏𝟐 𝑬 𝝏𝒕𝟐 = 𝜵𝝆 𝝐 −− −(𝟏) Wave equations in differential form Wave equations in time harmonic (phasor) form 𝜵𝟐 𝑯 − 𝒋𝝎𝝁𝝈𝑯 + 𝝎𝟐 𝝁𝝐𝑯 = 𝟎 −− −(𝟐) 𝜵𝟐 𝑬 − 𝒋𝝎𝝁𝝈𝑬 + 𝝎𝟐 𝝁𝝐𝑬 = 𝜵𝝆 𝝐 −− −(𝟏) Max. Eqns. (Time harmonic form) 𝜵 × 𝑬𝒉 = −𝒋𝝎𝝁𝑯𝒉 −− − 𝟏 𝜵 × 𝑯𝒉 = 𝑱̅ + 𝒋𝝎 𝝐 𝑬𝒉 −− −(𝟐) 𝜵. 𝑫𝒉 = 𝝆𝒗 −− −(𝟑) 𝜵. 𝑩𝒉 = 𝟎 −− −(𝟒) 3 4
  • 219. 12/7/2022 3 Wave Equations “Different Media” Solve the wave equations for different medias as follows:  Free space, [𝝈 = 𝟎, 𝝁𝒐, 𝝐𝒐] (vacuum, space, dry air)  Lossless dielectric media , [𝝈 = 𝟎, 𝝁𝒐𝝁𝒓, 𝝐𝒐𝝐𝒓] (dry wood, plastic)  Lossy dielectric media , [𝝈 ≠ 𝟎, 𝝁𝒐𝝁𝒓, 𝝐𝒐𝝐𝒓] (wet soil, sea water)  Good conductor, [𝝈 𝒗𝒆𝒓𝒚 𝒉𝒊𝒈𝒉, 𝝁𝒐𝝁𝒓, 𝝐𝒐𝝐𝒓] (Cupper, Aluminum) 𝜵𝟐 𝑯 − 𝒋𝝎𝝁𝝈𝑯 + 𝝎𝟐 𝝁𝝐𝑯 = 𝟎 −− −(𝟐) 𝜵𝟐 𝑬 − 𝒋𝝎𝝁𝝈𝑬 + 𝝎𝟐 𝝁𝝐𝑬 = 𝜵𝝆 𝝐 −− −(𝟏) Wave Equations “Free space ” Wifi/WLAN antenna 𝜵𝟐 𝑯 + 𝝎𝟐 𝝁𝒐𝝐𝒐𝑯 = 𝟎 − −(𝟐) 𝜵𝟐 𝑬 + 𝝎𝟐 𝝁𝒐𝝐𝒐𝑬 = 𝟎 − −(𝟏) TV antenna Satellite antenna Military antenna ==⇒ 𝒌𝒐 𝟐 = 𝝎𝟐 𝝁𝒐𝝐𝒐 1) Free space, [𝝈 = 𝟎, 𝝁𝒐, 𝝐𝒐] assume source free 𝝆 = 𝟎 𝜵𝟐 𝑯 − 𝒋𝝎𝝁𝝈𝑯 + 𝝎𝟐 𝝁𝝐𝑯 = 𝟎 − −(𝟐) 𝜵𝟐 𝑬 − 𝒋𝝎𝝁𝝈𝑬 + 𝝎𝟐 𝝁𝝐𝑬 = 𝜵𝝆 𝝐 − − (𝟏) 5 6
  • 220. 12/7/2022 4 Wave Equations “Free space ” 1) Free space, [𝝈 = 𝟎, 𝝁𝒐, 𝝐𝒐] assume source free 𝝆 = 𝟎 𝜵𝟐 𝑯 + 𝝎𝟐 𝝁𝒐𝝐𝒐𝑯 = 𝟎 −− −(𝟐) 𝜵𝟐 𝑬 + 𝝎𝟐 𝝁𝒐𝝐𝒐𝑬 = 𝟎 −− −(𝟏) 𝝏𝟐 𝝏𝒙𝟐 + 𝝏𝟐 𝝏𝒚𝟐 + 𝝏𝟐 𝝏𝒛𝟐 𝑬 + 𝒌𝒐 𝟐 𝑬 = 𝟎 𝒖𝒙 𝒖𝒛 𝒖𝒚 Planner waves Wave Equations “Free space ” 1) Free space, [𝝈 = 𝟎, 𝝁𝒐, 𝝐𝒐] assume source free 𝝆 = 𝟎 𝜵𝟐 𝑬 + 𝝎𝟐 𝝁𝒐𝝐𝒐𝑬 = 𝟎 −− −(𝟏) 𝝏𝟐 𝝏𝒙𝟐 + 𝝏𝟐 𝝏𝒚𝟐 + 𝝏𝟐 𝝏𝒛𝟐 𝑬 + 𝒌𝒐 𝟐 𝑬 = 𝟎 𝝏𝟐 𝝏𝒛𝟐 𝑬 + 𝒌𝒐 𝟐 𝑬 = 𝟎  ODE 𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛 𝑭𝒐𝒓𝒘𝒂𝒓𝒅 𝒘𝒂𝒗𝒆 + 𝑬𝒐 𝒆𝒋𝒌𝒐𝒛 𝑩𝒂𝒄𝒌𝒘𝒂𝒓𝒅 𝒘𝒂𝒗𝒆 How to solve ODE 𝝏𝟐 𝝏𝒛𝟐 𝑬 + 𝒌𝒐 𝟐 𝑬 = 𝟎 Let 𝐌 = 𝝏 𝝏𝒛 ⇒ 𝑴𝟐 𝑬 + 𝒌𝒐 𝟐 𝑬 = 𝟎 𝑴𝟐 = −𝒌𝒐 𝟐 ⇒ 𝑴 = ±𝒋𝒌𝒐 𝑬 𝒛 = 𝑨𝒆 𝒋𝒌𝒐𝒛 + 𝑪𝒆 𝒋𝒌𝒐𝒛 7 8
  • 221. 12/7/2022 5 𝒖𝒙 𝒖𝒛 𝒖𝒚 1) Free space, [𝝈 = 𝟎, 𝝁𝒐, 𝝐𝒐] assume source free 𝝆 = 𝟎 𝜵𝟐 𝑬 + 𝝎𝟐 𝝁𝒐𝝐𝒐𝑬 = 𝟎 −− −(𝟏) 𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛 𝑭𝒐𝒓𝒘𝒂𝒓𝒅 𝒘𝒂𝒗𝒆 + 𝑬𝒐 𝒆𝒋𝒌𝒐𝒛 𝑩𝒂𝒄𝒌𝒘𝒂𝒓𝒅 𝒘𝒂𝒗𝒆 Wave Equations “Free space ” 𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛 Direction of propagation Direction of oscillation 𝒖𝒙 From Maxwells 1st equation 𝜵 × 𝑬𝒉 = −𝒋𝝎𝝁𝑯𝒉 𝑯𝒉 = 𝟏 −𝒋𝝎𝝁𝒐 𝜵 × 𝑬𝒉 𝒖𝒙 𝒖𝒛 𝒖𝒚 1) Free space, [𝝈 = 𝟎, 𝝁𝒐, 𝝐𝒐] assume source free 𝝆 = 𝟎 𝜵𝟐 𝑬 + 𝝎𝟐 𝝁𝒐𝝐𝒐𝑬 = 𝟎 −− −(𝟏) Wave Equations “Free space ” 𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛 𝒖𝒙 Direction of propagation Direction of oscillation 𝑯𝒉 = 𝟏 −𝒋𝝎𝝁𝒐 𝜵 × 𝑬𝒉 𝐻 = 1 −𝑗𝜔𝜇 𝑢 𝑢 𝑢 𝜕 𝜕𝑥 𝜕 𝜕𝑦 𝜕 𝜕𝑧 𝐸 𝐸 𝐸 𝐻 = 1 −𝑗𝜔𝜇 𝑢 𝑢 𝑢 0 0 𝜕 𝜕𝑧 𝐸 0 0 = 1 −𝑗𝜔𝜇 𝜕𝐸 𝜕𝑧 𝑢 9 10
  • 222. 12/7/2022 6 1) Free space, [𝝈 = 𝟎, 𝝁𝒐, 𝝐𝒐] assume source free 𝝆 = 𝟎 𝜵𝟐 𝑬 + 𝝎𝟐 𝝁𝒐𝝐𝒐𝑬 = 𝟎 −− −(𝟏) Wave Equations “Free space ” 𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛 𝒖𝒙 𝒖𝒙 𝒖𝒛 𝒖𝒚 𝑯𝒉 = 𝟏 −𝒋𝝎𝝁𝒐 𝜵 × 𝑬𝒉 𝑯 𝒛 = 1 −𝑗𝜔𝜇 𝑢 𝑢 𝑢 0 0 𝜕 𝜕𝑧 𝐸 0 0 = 1 −𝑗𝜔𝜇 𝜕𝐸 𝜕𝑧 𝑢 = −𝒋𝒌𝒐 𝑬𝒐 −𝑗𝜔𝜇 𝒆 𝒋𝒌𝒐𝒛 𝑢 𝒌𝒐 𝟐 = 𝝎𝟐 𝝁𝒐𝝐𝒐 𝒌𝒐 = 𝝎 𝝁𝒐𝝐𝒐 𝒌𝒐 = 𝝎 𝑪 Speed of light 𝑪 = 𝟏 𝝁𝒐𝝐𝒐 = 𝝎 𝝁𝒐𝝐𝒐 𝑬𝒐 𝜔𝜇 𝒆 𝒋𝒌𝒐𝒛 𝑢 Wave Number 1) Free space, [𝝈 = 𝟎, 𝝁𝒐, 𝝐𝒐] assume source free 𝝆 = 𝟎 𝜵𝟐 𝑬 + 𝝎𝟐 𝝁𝒐𝝐𝒐𝑬 = 𝟎 −− −(𝟏) Wave Equations “Free space ” 𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛 𝒖𝒙 𝒖𝒙 𝒖𝒛 𝒖𝒚 𝑯 𝒛 = 𝟏 −𝒋𝝎𝝁𝒐 𝜵 × 𝑬𝒉 𝒌𝒐 𝟐 = 𝝎𝟐 𝝁𝒐𝝐𝒐 𝒌𝒐 = 𝝎 𝝁𝒐𝝐𝒐 𝒌𝒐 = 𝝎 𝑪 Speed of light 𝑪 = 𝟏 𝝁𝒐𝝐𝒐 = 𝝎 𝝁𝒐𝝐𝒐𝑬𝒐 𝜔𝜇 𝒆 𝒋𝒌𝒐𝒛 𝑢 = 𝝐𝒐 𝝁𝒐 𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛 𝑢 = 𝟏 𝜼𝒐 𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛 𝑢 𝜼𝒐 = 𝝁𝒐 𝝐𝒐 = 𝟏𝟐𝟎𝝅 𝛀 Intrinsic impedance 11 12
  • 223. 12/7/2022 7 1) Free space, [𝝈 = 𝟎, 𝝁𝒐, 𝝐𝒐] assume source free 𝝆 = 𝟎 𝜵𝟐 𝑬 + 𝝎𝟐 𝝁𝒐𝝐𝒐𝑬 = 𝟎 −− −(𝟏) Wave Equations “Free space ” 𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛 𝒖𝒙 𝒖𝒙 𝒖𝒛 𝒖𝒚 𝝀 = 𝒖 𝒇 = 𝟏 𝒇 𝝎 𝒌𝒐 = 𝟐𝝅 𝒌𝒐 𝑯 𝒛 = 𝟏 𝜼𝒐 𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛 𝒖𝒚 𝒌𝒐 𝟐 = 𝝎𝟐 𝝁𝒐𝝐𝒐 𝒌𝒐 = 𝝎 𝝁𝒐𝝐𝒐 𝒌𝒐 = 𝝎 𝑪 Speed of light 𝑪 = 𝟏 𝝁𝒐𝝐𝒐 𝑬 𝒛, 𝒕 = ℜ 𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛 e 𝒖𝒙 = 𝑬𝒐 𝒄𝒐𝒔 (𝝎𝒕 − 𝒌𝒐𝒛) 𝒖𝒙 𝑯 𝒛, 𝒕 = 𝟏 𝜼𝒐 𝑬𝒐 𝒄𝒐𝒔 (𝝎𝒕 − 𝒌𝒐𝒛) 𝒖𝒚 𝝎𝒕 − 𝒌𝒐𝒛 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝝎 − 𝒌𝒐 𝜕𝒛 𝜕𝑡 = 𝟎 𝒖 = 𝝎 𝒌𝒐 𝒖 𝒖 = 𝑪 Wave speed (speed of light in free space) 1) Free space, [𝝈 = 𝟎, 𝝁𝒐, 𝝐𝒐] assume source free 𝝆 = 𝟎 𝜵𝟐 𝑬 + 𝝎𝟐 𝝁𝒐𝝐𝒐𝑬 = 𝟎 Wave Equations “Free space ” 𝑬 𝒛, 𝒕 = 𝑬𝒐 𝒄𝒐𝒔 (𝝎𝒕 − 𝒌𝒐𝒛) 𝒖𝒙 𝑯 𝒛, 𝒕 = 𝟏 𝜼𝒐 𝑬𝒐 𝒄𝒐𝒔 (𝝎𝒕 − 𝒌𝒐𝒛) 𝒖𝒚 EMANIM: Interactive animation of electromagnetic waves (szialab.org) File:EM-Wave.gif - Wikimedia Commons 𝒖𝒚 𝒖𝒛 𝒖𝒙 Electromagnetic EM wave 13 14
  • 224. 12/7/2022 8 Wave Equations “Lossless dielectric Medium” 2) Lossless dielectric Medium, [𝝈 = 𝟎, 𝝁 = 𝝁𝒐𝝁𝒓, 𝝐 = 𝝐𝒐 𝝐𝒓] assume source free 𝝆 = 𝟎 𝜵𝟐 𝑯 + 𝝎𝟐 𝝁𝝐𝑯 = 𝟎 −− −(𝟐) 𝜵𝟐 𝑬 + 𝝎𝟐 𝝁𝝐 𝑬 = 𝟎 −− −(𝟏) 𝝏𝟐 𝝏𝒙𝟐 + 𝝏𝟐 𝝏𝒚𝟐 + 𝝏𝟐 𝝏𝒛𝟐 𝑬 + 𝒌𝟐 𝑬 = 𝟎 𝒖𝒙 𝒖𝒛 𝒖𝒚 Planner waves 𝒌𝟐 = 𝝎𝟐 𝝁𝝐 Wave Equations “Lossless dielectric Medium” 𝝏𝟐 𝝏𝒛𝟐 𝑬 + 𝒌𝟐 𝑬 = 𝟎  ODE 𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒛 𝑭𝒐𝒓𝒘𝒂𝒓𝒅 𝒘𝒂𝒗𝒆 + 𝑬𝒐 𝒆𝒋𝒌𝒛 𝑩𝒂𝒄𝒌𝒘𝒂𝒓𝒅 𝒘𝒂𝒗𝒆 𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒛 𝒖𝒙 From Maxwells 1st equation 𝜵 × 𝑬𝒉 = −𝒋𝝎𝝁𝑯𝒉 𝑯𝒉 = 𝟏 −𝒋𝝎𝝁 𝜵 × 𝑬𝒉 𝒖𝒙 𝒖𝒛 𝒖𝒚 Direction of propagation Direction of oscillation 2) Lossless dielectric Medium, [𝝈 = 𝟎, 𝝁 = 𝝁𝒐𝝁𝒓, 𝝐 = 𝝐𝒐 𝝐𝒓] assume source free 𝝆 = 𝟎 𝜵𝟐 𝑬 + 𝝎𝟐 𝝁𝝐 𝑬 = 𝟎 −− −(𝟏) 15 16
  • 225. 12/7/2022 9 Wave Equations “Lossless dielectric Medium” 𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒛 𝒖𝒙 𝑯𝒉 = 𝟏 −𝒋𝝎𝝁 𝜵 × 𝑬𝒉 𝐻 = 𝟏 −𝒋𝝎𝝁 𝑢 𝑢 𝑢 0 0 𝜕 𝜕𝑧 𝐸 0 0 = 𝟏 −𝒋𝝎𝝁 𝜕𝐸 𝜕𝑧 𝑢 = −𝒋𝒌𝑬𝒐 −𝑗𝜔𝝁 𝒆 𝒋𝒌𝒛 𝑢 𝒌𝟐 = 𝝎𝟐 𝝁𝝐 𝒌 = 𝝎 𝝁𝝐 𝒌 = 𝝎 𝒖 𝒖 = 𝟏 𝝁𝝐 = 𝑪 𝝁𝒓𝝐𝒓 = 𝝎 𝝁𝝐𝑬𝒐 𝜔𝝁 𝒆 𝒋𝒌𝒛 𝑢 2) Lossless dielectric Medium, [𝝈 = 𝟎, 𝝁 = 𝝁𝒐𝝁𝒓, 𝝐 = 𝝐𝒐 𝝐𝒓] assume source free 𝝆 = 𝟎 𝜵𝟐 𝑬 + 𝝎𝟐 𝝁𝝐 𝑬 = 𝟎 −− −(𝟏) Wave Equations “Lossless dielectric Medium” 𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒐𝒛 𝒖𝒙 𝒖𝒙 𝒖𝒛 𝒖𝒚 𝑯 𝒛 = 𝟏 −𝒋𝝎𝝁 𝜵 × 𝑬𝒉 = 𝟏 𝜼 𝑬𝒐 𝒆 𝒋𝒌𝒛 𝑢 𝜼 = 𝝁𝒐𝝁𝒓 𝝐𝒓𝝐𝒐 = 𝟏𝟐𝟎𝝅 𝝁𝒓 𝝐𝒓 𝛀 2) Lossless dielectric Medium, [𝝈 = 𝟎, 𝝁 = 𝝁𝒐𝝁𝒓, 𝝐 = 𝝐𝒐 𝝐𝒓] assume source free 𝝆 = 𝟎 𝜵𝟐 𝑬 + 𝝎𝟐 𝝁𝝐 𝑬 = 𝟎 −− −(𝟏) 𝑬 𝒛, 𝒕 = 𝑬𝒐 𝒄𝒐𝒔 (𝝎𝒕 − 𝒌𝒛) 𝒖𝒙 𝑯 𝒛, 𝒕 = 𝟏 𝜼 𝑬𝒐 𝒄𝒐𝒔 (𝝎𝒕 − 𝒌𝒛) 𝒖𝒚 𝝀 = 𝟐𝝅 𝒌 17 18
  • 226. 12/7/2022 10 Wave Equations “Lossy dielectric Medium” 3) Lossy dielectric Medium, [𝝈 ≠ 𝟎, 𝝁 = 𝝁𝒐𝝁𝒓, 𝝐 = 𝝐𝒐 𝝐𝒓] assume source free 𝝆 = 𝟎 𝜵𝟐 𝑬 − 𝒋𝝎𝝁𝝈𝑬 + 𝝎𝟐 𝝁𝝐 𝑬 = 𝟎 𝝏𝟐 𝝏𝒛𝟐 𝑬 + 𝒌𝒄 𝟐 𝑬 = 𝟎 𝜵𝟐 𝑬 + (−𝒋𝝎𝝁𝝈 + 𝝎𝟐 𝝁𝝐) 𝑬 = 𝟎 𝒌𝒄 𝟐 = 𝝎𝟐 𝝁𝝐 −𝒋𝝎𝝁𝝈 𝒌𝒄 𝟐 = 𝝎𝟐 𝝁𝝐(𝟏 − 𝒋𝝈 𝝎𝝐 ) 𝒌𝒄 = 𝝎𝟐𝝁𝝐 𝟏 − 𝒋𝝈 𝝎𝝐 𝟏 𝟐 𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒄𝒛 𝒖𝒙 𝑯𝒉 = 𝟏 −𝒋𝝎𝝁 𝜵 × 𝑬𝒉 = 𝟏 −𝒋𝝎𝝁 𝑢 𝑢 𝑢 0 0 𝜕 𝜕𝑧 𝐸 0 0 = 𝟏 −𝒋𝝎𝝁 𝜕𝐸 𝜕𝑧 𝑢 = 𝒌𝒄𝑬𝒐 𝜔𝝁 𝒆 𝒋𝒌𝒄𝒛 𝑢 𝒌𝒄 = 𝒌 𝟏 − 𝒋𝝈 𝝎𝝐 𝟏 𝟐 𝟏 + 𝒙 𝒏 = 𝟏 + 𝒏𝒙 𝟏! + 𝒏 𝒏 − 𝟏 𝒙𝟐 𝟐! + ⋯ Binomial Theory 𝒌𝒄 ≃ 𝑘 (𝟏 − 𝒋𝝈 𝟐𝝎𝝐 ) 𝒌 = 𝝎 𝝁𝝐 Wave Equations “Lossy dielectric Medium” 3) Lossy dielectric Medium, [𝝈 ≠ 𝟎, 𝝁 = 𝝁𝒐𝝁𝒓, 𝝐 = 𝝐𝒐 𝝐𝒓] assume source free 𝝆 = 𝟎 𝜵𝟐 𝑬 − 𝒋𝝎𝝁𝝈𝑬 + 𝝎𝟐 𝝁𝝐 𝑬 = 𝟎 𝒌𝒄 𝟐 = 𝝎𝟐 𝝁𝝐 −𝒋𝝎𝝁𝝈 𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒄𝒛 𝒖𝒙 𝑯𝒉 𝒛 = 𝒌𝒄𝑬𝒐 𝝎𝝁 𝒆 𝒋𝒌𝒄𝒛 𝒖𝒚 𝒌𝒄 ≃ 𝑘 (𝟏 − 𝒋𝝈 𝟐𝝎𝝐 ) 𝒌𝒄 ≃ 𝒌 − 𝒋𝜶 𝑯𝒉 𝒛 = (𝒌 − 𝒋𝜶)𝑬𝒐 𝝎𝝁 𝒆 𝒋𝒌𝒄𝒛 𝒖𝒚 𝛼 = 𝑘𝜎 2𝜔𝜖 𝛼 = 𝜎 𝜔 𝜇𝜖 2𝜔𝜖 𝛼 = 𝑬 𝒛, 𝒕 = ℜ 𝑬𝒐 𝒆 𝒋𝒌𝒄𝒛 e 𝒖𝒙 𝑬 𝒛, 𝒕 = ℜ 𝑬𝒐 𝒆 𝜶𝒛 𝒆 𝒋𝒌𝒛 e 𝒖𝒙 = 𝑬𝒐 𝒆 𝜶𝒛 𝒄𝒐𝒔 (𝝎𝒕 − 𝒌𝒛) 𝒖𝒙 = ℜ 𝑬𝒐 𝒆 𝒋(𝒌 𝒋𝜶)𝒛 e 𝒖𝒙 19 20
  • 227. 12/7/2022 11 Wave Equations “Lossy dielectric Medium” 3) Lossy dielectric Medium, [𝝈 ≠ 𝟎,𝝁 = 𝝁𝒐𝝁𝒓, 𝝐 = 𝝐𝒐 𝝐𝒓] assume source free 𝝆 = 𝟎 𝜵𝟐 𝑬 − 𝒋𝝎𝝁𝝈𝑬 + 𝝎𝟐 𝝁𝝐 𝑬 = 𝟎 𝒌𝒄 𝟐 = 𝝎𝟐 𝝁𝝐 −𝒋𝝎𝝁𝝈 𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝒌𝒄𝒛 𝒖𝒙 𝒌𝒄 ≃ 𝒌 − 𝒋𝜶 𝛼 = 𝑘𝜎 2𝜔𝜖 𝛼 = 𝑬 𝒛, 𝒕 = ℜ 𝑬𝒐 𝒆 𝜶𝒛 𝒆 𝒋𝒌𝒛 e 𝒖𝒙 = 𝑬𝒐 𝒆 𝜶𝒛 𝒄𝒐𝒔 (𝝎𝒕 − 𝒌𝒛) 𝒖𝒙 𝒆 𝒋𝜶𝒛 : Attenuation factor Wave Equations “Good conductor ” 4) Good conductor , [𝝈 ≠ 𝟎, 𝝁 = 𝝁𝒐𝝁𝒓, 𝝐 = 𝝐𝒐 𝝐𝒓] assume source free 𝝆 = 𝟎 𝜵𝟐 𝑬 − 𝒋𝝎𝝁𝝈𝑬 + 𝝎𝟐 𝝁𝝐 𝑬 = 𝟎 𝝏𝟐 𝝏𝒛𝟐 𝑬 + 𝜸𝟐 𝑬 = 𝟎 𝜵𝟐 𝑬 + (−𝒋𝝎𝝁𝝈 + 𝝎𝟐 𝝁𝝐) 𝑬 = 𝟎 𝜸𝟐 = 𝝎𝟐𝝁𝝐 −𝒋𝝎𝝁𝝈 𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝜸𝒛 𝒖𝒙 𝑯𝒉 = 𝟏 −𝒋𝝎𝝁 𝜵 × 𝑬𝒉 = 𝟏 −𝒋𝝎𝝁 𝑢 𝑢 𝑢 0 0 𝜕 𝜕𝑧 𝐸 0 0 = 𝟏 −𝒋𝝎𝝁 𝜕𝐸 𝜕𝑧 𝑢 = 𝜸 𝑬𝒐 𝜔𝝁 𝒆 𝒋𝜸 𝒛 𝑢 𝛾 = −𝑗𝜔𝜇𝜎 𝛾 = −𝑗𝜔𝜇𝜎 𝛾 = −𝑗 𝜔𝜇𝜎 𝑒 = cos 𝜋 2 + 𝑗 sin 𝜋 2 = 0 + 𝑗 𝑗 = 𝑒 −𝑗 = 𝑒 −𝑗 = 𝑒 −𝑗 = cos 𝜋 4 −𝑗 sin 𝜋 4 −𝑗 = 1 − 𝑗 2 𝛾 = 1 − 𝑗 2 𝜔𝜇𝜎 𝛾 = 1 − 𝑗 𝜔𝜇𝜎 2 𝛾 = 1 − 𝑗 𝛿 𝛿 = 2 𝜔𝜇𝜎 Skin depth Penetration depth 21 22
  • 228. 12/7/2022 12 Wave Equations “Lossy dielectric Medium” 4) Good conductor , [𝝈 ≠ 𝟎, 𝝁 = 𝝁𝒐𝝁𝒓, 𝝐 = 𝝐𝒐 𝝐𝒓] assume source free 𝝆 = 𝟎 𝜵𝟐 𝑬 + 𝜸𝟐 𝑬 = 𝟎 𝑬 𝒛 = 𝑬𝒐 𝒆 𝒋𝜸𝒛 𝒖𝒙 𝑯𝒉 𝒛 = 𝜸𝑬𝒐 𝝎𝝁 𝒆 𝒋𝜸𝒛 𝒖𝒚 𝑯𝒉 𝒛 = ( 1 − 𝑗 𝛿 )𝑬𝒐 𝝎𝝁 𝒆 𝒋𝜸𝒛 𝒖𝒚 𝑬 𝒛, 𝒕 = ℜ 𝑬𝒐 𝒆 𝒋𝜸𝒛 e 𝒖𝒙 𝑬 𝒛, 𝒕 = ℜ 𝑬𝒐 𝒆 𝒛 𝜹 𝒆 𝒋𝒛 𝜹 e 𝒖𝒙 = ℜ 𝑬𝒐 𝒆 𝒋( )𝒛 e 𝒖𝒙 𝛾 = 1 − 𝑗 𝛿 𝛿 = 2 𝜔𝜇𝜎 = 𝑬𝒐 𝒆 𝒛 𝜹 𝒄𝒐𝒔 (𝝎𝒕 − 𝒛 𝜹 ) 𝒖𝒙 23
  • 229. 12/21/2022 1 Time Varying Fields Applications Magnetic Diffusion Equation Applications “Induction Heating” By: Emad Fathy Yassin Faculty of Engineering Cairo University ∇ 𝐸 − 𝑗𝜔𝜇𝜎𝐸 + 𝜔 𝜇𝜖𝐸 = ∇𝜌 𝜖 ( 𝜕 𝜕𝑥 + 𝜕 𝜕𝑦 + 𝜕 𝜕𝑧 )𝐻 + 𝛾 𝐻 = 0 Diffusion Equation ∇ 𝐻 + −𝑗𝜔𝜇𝜎𝐻 = 0 ∇ 𝐻 − 𝑗𝜔𝜇𝜎𝐻 + 𝜔 𝜇𝜖𝐻 = 0 Wave Equations ∇ × 𝐸 = −𝑗𝜔𝜇𝐻̅ ∇ × 𝐻 = 𝐽̅+𝑗𝜔𝜖𝐸 ∇. 𝐷 = 𝜌 ∇. 𝐵 = 0 Maxwell’s Equations ∇ 𝐸 − 𝑗𝜔𝜇𝜎𝐸 + 0 = ∇𝜌 𝜖 ∇ 𝐻 − 𝑗𝜔𝜇𝜎𝐻 + 0 = 0 Wave Equations ∇ × 𝐸 = −𝑗𝜔𝜇𝐻̅ ∇ × 𝐻 = 𝐽̅+ 0 ∇. 𝐷 = 𝜌 ∇. 𝐵 = 0 Maxwell’s Equations in good conductors Diffusion Equations ∇ 𝐻 + 𝛾 𝐻 = 0 1 2
  • 230. 12/21/2022 2 ( 𝜕 𝜕𝑥 + 𝜕 𝜕𝑦 + 𝜕 𝜕𝑧 )𝐻 + 𝛾 𝐻 = 0 How to Solve Diffusion Equation? ∇ 𝐻 + 𝛾 𝐻 = 0 𝛾 = −𝑗𝜔𝜇𝜎 𝛾 = −𝑗𝜔𝜇𝜎 𝛾 = −𝑗 𝜔𝜇𝜎 𝑒 = cos 𝜋 2 + 𝑗 sin 𝜋 2 = 0 + 𝑗 𝑗 = 𝑒 −𝑗 = 𝑒 −𝑗 = 𝑒 −𝑗 = cos 𝜋 4 − 𝑗 sin 𝜋 4 −𝑗 = 1 − 𝑗 2 𝛾 = 1 − 𝑗 2 𝜔𝜇𝜎 𝛾 = 1 − 𝑗 𝜔𝜇𝜎 2 𝛾 = 1 − 𝑗 𝛿 𝛿 = 2 𝜔𝜇𝜎 Skin depth ‘Penetration depth’ 𝜕 𝜕𝑢 𝐻 + 𝛾 𝐻 = 0 Assume inf. extension in 2 direction depends on the problem dimensions 𝜕 𝜕𝑢 −−−→ 𝑀 𝑀 𝐻 + 𝛾 𝐻 = 0 𝑀 + 𝛾 = 0 𝑀 = ± 𝑗𝛾 𝑀 = ±𝛽 𝛽 = 𝑗𝛾 = 1 + 𝑗 𝛿 𝐻 = 𝐴 𝑒 + 𝐶 𝑒 How to Solve Diffusion Equation? ∇ 𝐻 + 𝛾 𝐻 = 0 𝛾 = −𝑗𝜔𝜇𝜎 𝛾 = −𝑗𝜔𝜇𝜎 𝛾 = −𝑗 𝜔𝜇𝜎 𝑒 = cos 𝜋 2 + 𝑗 sin 𝜋 2 = 0 + 𝑗 𝑗 = 𝑒 −𝑗 = 𝑒 −𝑗 = 𝑒 −𝑗 = cos 𝜋 4 − 𝑗 sin 𝜋 4 −𝑗 = 1 − 𝑗 2 𝛾 = 1 − 𝑗 2 𝜔𝜇𝜎 𝛾 = 1 − 𝑗 𝜔𝜇𝜎 2 𝛾 = 1 − 𝑗 𝛿 𝛿 = 2 𝜔𝜇𝜎 Skin depth Penetration depth 𝛽 = 𝑗𝛾 = 1 + 𝑗 𝛿 𝐻 = 𝐴 𝑒 + 𝐶 𝑒 Using Ampere's low to get H outside material and direction of H 𝐻 = 𝐴 𝑒 + 𝐶 𝑒 To get 𝐴 𝑎𝑛𝑑 𝐶 Using BCs Special cases • Semi inf. extension • Even symmetry • Odd symmetry 𝐽̅ = ∇ × 𝐻 𝐸 = 𝐽̅ 𝜎 = 1 𝜎 ∇ × 𝐻 𝑆̅ = 1 2 𝐸 × 𝐻∗ − 𝑆̅. 𝑑𝑠 = 𝑃 + 𝑗𝑄 𝐻 − 𝐻 = 𝑘 𝐵 = 𝐵 3 4
  • 231. 12/21/2022 3 ∇ 𝐻 + 𝛾 𝐻 = 0 ( 𝜕 𝜕𝑥 + 𝜕 𝜕𝑦 + 𝜕 𝜕𝑧 )𝐻 + 𝛾 𝐻 = 0 Assume inf. extension in height == 𝑥 → ∞ and diameter is very high z → ∞ 𝑧 𝑦 𝑥 𝑘 = 𝑘 cos 𝜔𝑡 (1) Induction Heating 𝑎 𝒙 𝒚 𝒛 Conducting Slab ∇ 𝐻 + 𝛾 𝐻 = 0 ( 𝜕 𝜕𝑥 + 𝜕 𝜕𝑦 + 𝜕 𝜕𝑧 )𝐻 + 𝛾 𝐻 = 0 Assume inf. Extension in x and z direction 𝜕 𝜕𝑦 𝐻 + 𝛾 𝐻 = 0 𝐻 𝑦 = 𝐴 𝑒 + 𝐶 𝑒 Assume semi-inf. extension in +𝑣𝑒 y direction 𝑦 = ∞ 𝐻 ≠ ∞ 𝑡ℎ𝑒𝑛 𝐶 𝑚𝑢𝑠𝑡 𝑒𝑞𝑢𝑎𝑙 𝑧𝑒𝑟𝑜 𝐻 𝑦 = 𝐴 𝑒 𝐻 𝑦 = 𝐴 𝑒 (−𝑢 ) 𝑧 𝑦 𝑥 𝑘 = 𝑘 cos 𝜔𝑡 𝑘 = 𝑘 1 4 3 2 + + + = 𝐼 𝐻 ∗ 𝑙 + 0 + 𝐻 ∗ 𝑙 + 0 = 𝑘 𝑙 From ampere's low 𝐻. 𝑑𝑙 = 𝐼 𝐻 𝑙 = 𝑘 2 𝐻 = 𝑘 2 𝑢𝑠𝑖𝑛𝑔 𝐵𝐶𝑠 @ 𝑦 = 0 (1) Induction Heating 𝐻 = 𝑘 2 𝑎 5 6
  • 232. 12/21/2022 4 𝐻 𝑦 = 𝐴 𝑒 (−𝑢 ) 𝑧 𝑦 𝑥 𝑘 = 𝑘 cos 𝜔𝑡 𝑘 = 𝑘 1 4 3 2 + + + = 𝐼 𝐻 ∗ 𝑙 + 0 + 𝐻 ∗ 𝑙 + 0 = 𝑘 𝑙 𝐻 = 𝑘 2 From ampere's low 𝐻. 𝑑𝑙 = 𝐼 𝐻 𝑙 = 𝑘 2 𝐻= 𝑘 2 𝑢𝑠𝑖𝑛𝑔 𝐵𝐶𝑠 @ (𝑦 = 0) 𝐻 = 𝐻 1 2 𝑘 2 −𝑢 = 𝐴 (−𝑢 ) 𝐻 𝑦 = 𝑘 2 𝑒 (−𝑢 ) 𝐽̅ = ∇ × 𝐻 𝐽̅ = 𝑢 𝑢 𝑢 𝜕 𝜕𝑥 𝜕 𝜕𝑦 𝜕 𝜕𝑧 𝐻 𝐻 𝐻 = 𝑢 𝑢 𝑢 0 𝜕 𝜕𝑦 0 𝐻 0 0 = − 𝜕 𝜕𝑦 𝐻 𝑢̅ = − 𝑘 𝛽 2 𝑒 𝑢̅ (1) Induction Heating 𝑎 𝑧 𝑦 𝑥 𝑘 = 𝑘 cos 𝜔𝑡 𝑘 = 𝑘 1 4 3 2 + + + = 𝐼 𝐻 ∗ 𝑙 + 0 + 𝐻 ∗ 𝑙 + 0 = 𝑘 𝑙 𝐻 = 𝑘 2 From ampere's low 𝐻. 𝑑𝑙 = 𝐼 𝐻 𝑙 = 𝑘 2 𝐻= 𝑘 2 1 2 𝐻 𝑦 = 𝑘 2 𝑒 (−𝑢 ) 𝐽̅ = − 𝑘 𝛽 2 𝑒 𝑢 𝐸 = 𝐽̅ 𝜎 = − 𝑘 𝛽 2𝜎 𝑒 𝑢 𝑆̅ = 1 2 𝐸 × 𝐻∗ 𝑆̅|@ = 𝐸| × 𝐻| ∗ 𝑆̅|@ = 1 2 𝑘 𝛽 2𝜎 (−𝑢 ) × 𝑘 2 (−𝑢 ) 𝑆̅|@ = 𝑘 𝛽 8𝜎 𝑢 (1) Induction Heating 7 8
  • 233. 12/21/2022 5 (1) Induction Heating 𝑧 𝑦 𝑥 𝑘 = 𝑘 cos 𝜔𝑡 𝑘 = 𝑘 1 4 3 2 + + + = 𝐼 𝐻 ∗ 𝑙 + 0 + 𝐻 ∗ 𝑙 + 0 = 𝑘 𝑙 𝐻 = 𝑘 2 From ampere's low 𝐻. 𝑑𝑙 = 𝐼 𝐻 𝑙 = 𝑘 2 𝐻= 𝑘 2 1 2 𝐻 𝑦 = 𝑘 2 𝑒 (−𝑢 ) 𝐸 = 𝐽̅ 𝜎 = − 𝑘 𝛽 2𝜎 𝑒 𝑢 𝑆̅|@ = 𝑘 𝛽 8𝜎 𝑢 − 𝑆̅. 𝑑𝑠 = − 𝑆̅. 𝑑𝑠 = − 𝑆̅. 𝑑𝑠 = 𝑘 𝛽 8𝜎 ∗ 1 ∗ 1 𝑃 + 𝑗𝑄 = 𝑘 𝛽 8𝜎 𝛽 = 1 + 𝑗 𝛿 = 𝑘 8𝜎 1 + 𝑗 𝛿 𝑃 = 𝑘 8𝜎𝛿 𝑤/𝑚 𝑄 = 𝑘 8𝜎𝛿 𝑉𝐴𝑅/𝑚 𝑏𝑜𝑡𝑡𝑜𝑚 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ( @ 𝑦 = 0) 𝑘 𝛽 8𝜎 𝑢 . dxd𝑧 (−𝑢 ) 9
  • 234. 12/21/2022 1 EPMN203: Time Varying Fields Applications Magnetic Diffusion Equation Applications “Transformer Eddy Current Losses” By: Emad Fathy Yassin Faculty of Engineering Cairo University Transformer Eddy Current Losses 𝑧 𝒚 𝑥 𝑥 𝒚 𝑥 𝑦 2𝑑 2ℎ 𝑥 𝑦 2ℎ 2𝑑 1 2
  • 235. 12/21/2022 2 Transformer Eddy Current Losses 𝑧 𝒚 𝑥 𝑥 𝒚 𝑥 𝑦 2𝑑 2ℎ 𝑥 𝑦 2ℎ 2𝑑 ∇ 𝐻 + 𝛾 𝐻 = 0 ( 𝜕 𝜕𝑥 + 𝜕 𝜕𝑦 + 𝜕 𝜕𝑧 )𝐻 + 𝛾 𝐻 = 0 Assume inf. extension in height == 𝑧 → ∞ and 2ℎ ≫ 2𝑑 −−→ y → ∞ 𝜕 𝜕𝑥 𝐻 + 𝛾 𝐻 = 0 𝐻 𝑥 = 𝐴 𝑒 + 𝐶 𝑒 + + + = 𝐼 From ampere's low 𝐻. 𝑑𝑙 = 𝐼 1 4 3 2 𝐻 ∗ 𝑙 + 0 + 0 + 0 = 𝑁𝐼 𝐻 = 𝑛𝐼 𝐻 𝐻 𝐻 𝑥 = 𝑑 = 𝐻 𝑥 = −𝑑 Using BCs @ 𝑥 = 𝑑 𝐻 = 𝐻 1 2 𝐻 = 𝐻 𝑥 = 𝑑 = 𝐴 cosh 𝛽𝑑 𝑒𝑣𝑒𝑛 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑡ℎ𝑒𝑛 𝐴 = 𝐶 𝐻 𝑥 = 𝐴 cosh 𝛽𝑥 𝐴 = 𝐻 cosh 𝛽𝑑 Transformer Eddy Current Losses 𝑧 𝒚 𝑥 𝑥 𝒚 𝑥 𝑦 2𝑑 2ℎ 𝑥 𝑦 2ℎ 2𝑑 ∇ 𝐻 + 𝛾 𝐻 = 0 + + + = 𝐼 From ampere's low 𝐻. 𝑑𝑙 = 𝐼 1 4 3 2 𝐻 ∗ 𝑙 + 0 + 0 + 0 = 𝑁𝐼 𝐻 = 𝑛𝐼 𝐻 𝐻 1 2 𝐻 𝑥 = 𝐴 cosh 𝛽𝑥 𝐴 = 𝐻 cosh 𝛽𝑑 𝐻 𝑥 = 𝐻 cosh 𝛽𝑥 cosh 𝛽𝑑 𝑢 𝐽̅ = ∇ × 𝐻 𝐽̅ = 𝑢 𝑢 𝑢 𝜕 𝜕𝑥 𝜕 𝜕𝑦 𝜕 𝜕𝑧 𝐻 𝐻 𝐻 = 𝑢 𝑢 𝑢 𝜕 𝜕𝑥 0 0 0 0 𝐻 = − 𝜕 𝜕𝑥 𝐻 𝑢̅ = −𝐻 𝛽 sinh 𝛽𝑥 cosh 𝛽𝑑 𝑢 3 4
  • 236. 12/21/2022 3 Transformer Eddy Current Losses 𝑧 𝒚 𝑥 𝑥 𝒚 𝑥 𝑦 2𝑑 2ℎ 𝑥 𝑦 2ℎ 2𝑑 1 4 3 2 𝐻 = 𝑛𝐼 𝐻 𝐻 1 2 𝐻 𝑥 = 𝐻 cosh 𝛽𝑥 cosh 𝛽𝑑 𝑢 𝐽̅ = −𝐻 𝛽 sinh 𝛽𝑥 cosh 𝛽𝑑 𝑢 𝐸 = 𝐽̅ 𝜎 = − 𝐻 𝛽 𝜎 sinh 𝛽𝑥 cosh 𝛽𝑑 𝑢 𝑆̅ = 1 2 𝐸 × 𝐻∗ 𝑆̅|@ = 𝐸| × 𝐻| ∗ 𝑆̅|@ = 1 2 𝐻 𝛽 𝜎 sinh 𝛽𝑑 cosh 𝛽𝑑 (−𝑢 ) × 𝐻 (𝑢 ) 𝑆̅|@ = 1 2 𝐻 𝛽 𝜎 sinh 𝛽𝑑 cosh 𝛽𝑑 (−𝑢 ) Transformer Eddy Current Losses 𝑧 𝒚 𝑥 𝑥 𝒚 𝑥 𝑦 2𝑑 2ℎ 𝑥 𝑦 2ℎ 2𝑑 1 4 3 2 𝐻 = 𝑛𝐼 𝐻 𝐻 1 2 𝐻 𝑥 = 𝐻 cosh 𝛽𝑥 cosh 𝛽𝑑 𝑢 𝐽̅ = −𝐻 𝛽 sinh 𝛽𝑥 cosh 𝛽𝑑 𝑢 𝐸 = 𝐽̅ 𝜎 = − 𝐻 𝛽 𝜎 sinh 𝛽𝑥 cosh 𝛽𝑑 𝑢 𝑆̅ = 1 2 𝐸 × 𝐻∗ 𝑆̅|@ = 𝐸| × 𝐻| ∗ 𝑆̅|@ = 1 2 𝐻 𝛽 𝜎 sinh 𝛽𝑑 cosh 𝛽𝑑 (𝑢 ) × 𝐻 (𝑢 ) 𝑆̅|@ = 1 2 𝐻 𝛽 𝜎 sinh 𝛽𝑑 cosh 𝛽𝑑 (𝑢 ) 5 6
  • 237. 12/21/2022 4 Transformer Eddy Current Losses 𝑧 𝒚 𝑥 𝑥 𝒚 𝑥 𝑦 2𝑑 2ℎ 𝑥 𝑦 2ℎ 2𝑑 1 4 3 2 𝐻 = 𝑛𝐼 𝐻 𝐻 1 2 𝐻 𝑥 = 𝐻 cosh 𝛽𝑥 cosh 𝛽𝑑 𝑢 𝐸 = 𝐽̅ 𝜎 = − 𝐻 𝛽 𝜎 sinh 𝛽𝑥 cosh 𝛽𝑑 𝑢 𝑆̅|@ = 1 2 𝐻 𝛽 𝜎 sinh 𝛽𝑑 cosh 𝛽𝑑 (𝑢 ) 𝑆̅|@ = 1 2 𝐻 𝛽 𝜎 sinh 𝛽𝑑 cosh 𝛽𝑑 (−𝑢 ) − 𝑆̅. 𝑑𝑠 = − 𝑆̅. 𝑑𝑠 @ − 𝑆̅. 𝑑𝑠 @ = − 1 2 𝐻 𝛽 𝜎 sinh 𝛽𝑑 cosh 𝛽𝑑 (−𝑢 ). dyd𝑧 (𝑢 ) − 1 2 𝐻 𝛽 𝜎 sinh𝛽𝑑 cosh 𝛽𝑑 (𝑢 ). dyd𝑧 (−𝑢 ) = 2 ∗ 1 2 𝐻 𝛽 𝜎 sinh 𝛽𝑑 cosh 𝛽𝑑 ∗ 2ℎ ∗ 1 = 𝑃 + 𝑗𝑄 Transformer Eddy Current Losses 𝑃 + 𝑗𝑄 = 2 ∗ 1 2 𝐻 𝛽 𝜎 sinh 𝛽𝑑 cosh 𝛽𝑑 ∗ 2ℎ ∗ 1 sinh 𝛽𝑑 cosh 𝛽𝑑 cosh (𝑎 + 𝑗𝑏) = cosh 𝑎 cos 𝑏 + 𝑗 sinh 𝑎 sin 𝑏 sinh (𝑎 + 𝑗𝑏) = sinh 𝑎 cos 𝑏 + 𝑗 cosh 𝑎 sin 𝑏 = sinh 1 + 𝑗 𝛿 𝑑 cosh 1 + 𝑗 𝛿 𝑑 = sinh 𝑑 𝛿 cos 𝑑 𝛿 + 𝑗 cosh 𝑑 𝛿 sin 𝑑 𝛿 cosh 𝑑 𝛿 cos 𝑑 𝛿 + 𝑗 sinh 𝑑 𝛿 sin 𝑑 𝛿 ∗ cosh 𝑑 𝛿 cos 𝑑 𝛿 − 𝑗 sinh 𝑑 𝛿 sin 𝑑 𝛿 cosh 𝑑 𝛿 cos 𝑑 𝛿 − 𝑗 sinh 𝑑 𝛿 sin 𝑑 𝛿 = cosh 𝑑 𝛿 cos 𝑑 𝛿 + sinh 𝑑 𝛿 sin 𝑑 𝛿 sinh 𝑑 𝛿 cosh 𝑑 𝛿 cos 𝑑 𝛿 + sin 𝑑 𝛿 +𝑗 cos 𝑑 𝛿 sin 𝑑 𝛿 cosh 𝑑 𝛿 − sinh 𝑑 𝛿 = sinh 𝑑 𝛿 cosh 𝑑 𝛿 + 𝑗 cos 𝑑 𝛿 sin 𝑑 𝛿 cosh 𝑑 𝛿 cos 𝑑 𝛿 + sinh 𝑑 𝛿 sin 𝑑 𝛿 7 8
  • 238. 12/21/2022 5 Transformer Eddy Current Losses 𝑃 + 𝑗𝑄 = 2 ∗ 1 2 𝐻 𝛽 𝜎 sinh 𝛽𝑑 cosh 𝛽𝑑 ∗ 2ℎ ∗ 1 sinh 𝛽𝑑 cosh 𝛽𝑑 cosh (𝑎 + 𝑗𝑏) = cosh 𝑎 cos 𝑏 + 𝑗 sinh 𝑎 sin 𝑏 sinh (𝑎 + 𝑗𝑏) = sinh 𝑎 cos 𝑏 + 𝑗 cosh 𝑎 sin 𝑏 = sinh 𝑑 𝛿 cosh 𝑑 𝛿 + 𝑗 cos 𝑑 𝛿 sin 𝑑 𝛿 cosh 𝑑 𝛿 cos 𝑑 𝛿 + sinh 𝑑 𝛿 sin 𝑑 𝛿 sinh 𝑎 cosh 𝑎 = 1 2 sinh 2𝑎 sin 𝑎 cos 𝑎 = 1 2 sin 2𝑎 cosh 𝑎 = 1 2 1 + cosh 2𝑎 cos 𝑎 = 1 2 1 + cos 2𝑎 sinh a = −1 + cosh 2𝑎 sin 𝑎 = 1 2 1 − cos 2𝑎 = 1 2 sinh 2𝑑 𝛿 + 𝑗 sin 2𝑑 𝛿 1 4 1 + cosh 2𝑑 𝛿 1 + cos 2𝑑 𝛿 + −1 + cosh 2𝑑 𝛿 1 − cos 2𝑑 𝛿 = sinh 2𝑑 𝛿 + 𝑗 sin 2𝑑 𝛿 1 2 1 + cosh 2𝑑 𝛿 + cos 2𝑑 𝛿 + cosh 2𝑑 𝛿 cos 2𝑑 𝛿 −1 + cosh 2𝑑 𝛿 + cos 2𝑑 𝛿 − cosh 2𝑑 𝛿 cos 2𝑑 𝛿 = sinh 2𝑑 𝛿 + 𝑗 sin 2𝑑 𝛿 1 2 2 cosh 2𝑑 𝛿 + 2 cos 2𝑑 𝛿 = sinh 2𝑑 𝛿 + 𝑗 sin 2𝑑 𝛿 cosh 2𝑑 𝛿 + cos 2𝑑 𝛿 Transformer Eddy Current Losses 𝑃 + 𝑗𝑄 = 2 ∗ 1 2 𝐻 𝛽 𝜎 sinh 𝛽𝑑 cosh 𝛽𝑑 ∗ 2ℎ ∗ 1 sinh 𝛽𝑑 cosh 𝛽𝑑 cosh (𝑎 + 𝑗𝑏) = cosh 𝑎 cos 𝑏 + 𝑗 sinh 𝑎 sin 𝑏 sinh (𝑎 + 𝑗𝑏) = sinh 𝑎 cos 𝑏 + 𝑗 cosh 𝑎 sin 𝑏 sinh 𝑎 cosh 𝑎 = 1 2 sinh 2𝑎 sin 𝑎 cos 𝑎 = 1 2 sin 2𝑎 cosh 𝑎 = 1 2 cosh 2𝑎 + 1 cos 𝑎 = 1 2 cos 2𝑎 + 1 sinh a = cosh 2𝑎 − 1 sin 𝑎 = 1 2 − cos 2𝑎 + 1 = sinh 2𝑑 𝛿 + 𝑗 sin 2𝑑 𝛿 cosh 2𝑑 𝛿 + cos 2𝑑 𝛿 𝑃 + 𝑗𝑄 = 𝐻 𝛽 𝜎 sinh 𝛽𝑑 cosh 𝛽𝑑 ∗ 2ℎ ∗ 1 𝑃 + 𝑗𝑄 = 𝐻 𝜎 1 + 𝑗 𝛿 sinh 2𝑑 𝛿 + 𝑗 sin 2𝑑 𝛿 cosh 2𝑑 𝛿 + cos 2𝑑 𝛿 ∗ 2ℎ ∗ 1 𝑃 = 𝐻 𝜎 2ℎ 𝛿 sinh 2𝑑 𝛿 − sin 2𝑑 𝛿 cosh 2𝑑 𝛿 + cos 2𝑑 𝛿 𝑤/𝑚 𝑄 = 𝐻 𝜎 2ℎ 𝛿 sinh 2𝑑 𝛿 + sin 2𝑑 𝛿 cosh 2𝑑 𝛿 + cos 2𝑑 𝛿 𝑉𝐴𝑅 /𝑚 9 10
  • 239. 12/21/2022 6 Transformer Eddy Current Losses 𝑃 = (𝑛𝐼 ) 𝜎 2ℎ 𝛿 sinh 2𝑑 𝛿 − sin 2𝑑 𝛿 cosh 2𝑑 𝛿 + cos 2𝑑 𝛿 𝑤/𝑚 𝛿 = 2 𝜔𝜇𝜎 = 2 2𝜋 ∗ 50 ∗ 𝜇 ∗ 5000 ∗ 0.17 ∗ 10 ∗ 10 = 2.4413 ∗ 10 𝑃 = 100 ∗ 8 0.17 ∗ 10 ∗ 10 ∗ 0.45 ∗ 2 2.4413 ∗ 10 ∗ sinh 0.2 ∗ 10 2.4413 ∗ 10 − sin 0.2 ∗ 10 2.4413 ∗ 10 cosh 0.2 ∗ 10 2.4413 ∗ 10 + cos 0.2 ∗ 10 2.4413 ∗ 10 = 12.49 𝑤/𝑚 Transformer Eddy Current Losses From Tailor Series Expansion sin 𝑥 = 𝑥 1! − 𝑥 3! + 𝑥 5! … … . . 𝑃 = 𝐻 𝜎 2ℎ 𝛿 sinh 2𝑑 𝛿 − sin 2𝑑 𝛿 cosh 2𝑑 𝛿 + cos 2𝑑 𝛿 𝑤/𝑚 cos 𝑥 = 1 − 𝑥 2! + 𝑥 4! … … . . sinℎ 𝑥 = 𝑥 1! + 𝑥 3! + 𝑥 5! … … . . cosh 𝑥 = 1 + 𝑥 2! + 𝑥 4! … … . . 𝑃 = 𝐻 𝜎 2ℎ 𝛿 sinh 2𝑑 𝛿 − sin 2𝑑 𝛿 cosh 2𝑑 𝛿 + cos 2𝑑 𝛿 ∗ 1 2𝑑 ∗ 2ℎ 𝑤/𝑚 𝑥 𝑦 2ℎ 2𝑑 𝑃 = 𝐻 𝜎 1 2𝑑 ∗ 𝛿 2𝑑 𝛿 + 1 3! ( 2𝑑 𝛿 ) −[ 2𝑑 𝛿 − 1 3! ( 2𝑑 𝛿 ) ] 1 + 1 2! ( 2𝑑 𝛿 ) +[1 − 1 2! ( 2𝑑 𝛿 ) ] 𝑤/𝑚 𝑃 = 𝐻 𝜎 1 2𝑑 ∗ 𝛿 2 ∗ 1 3! ( 2𝑑 𝛿 ) 2 𝑤/𝑚 𝑃 = 𝐻 𝜎 1 2𝑑 ∗ 𝛿 1 3! ( 2𝑑 𝛿 ) 𝑤/𝑚 11 12
  • 240. 12/21/2022 7 Transformer Eddy Current Losses From Tailor Series Expansion sin 𝑥 = 𝑥 1! − 𝑥 3! + 𝑥 5! … … . . 𝑃 = 𝐻 𝜎 2ℎ 𝛿 sinh 2𝑑 𝛿 − sin 2𝑑 𝛿 cosh 2𝑑 𝛿 + cos 2𝑑 𝛿 𝑤/𝑚 cos 𝑥 = 1 − 𝑥 2! + 𝑥 4! … … . . sinℎ 𝑥 = 𝑥 1! + 𝑥 3! + 𝑥 5! … … . . cosh 𝑥 = 1 + 𝑥 2! + 𝑥 4! … … . . 𝑥 𝑦 2ℎ 2𝑑 𝑃 = 𝐻 𝜎 1 2𝑑 ∗ 𝛿 1 3! ( 2𝑑 𝛿 ) 𝑤/𝑚 𝑃 = 𝐻 𝜎 1 𝛿 1 3! (2𝑑) 𝑤/𝑚 𝛿 = 2 𝜔𝜇𝜎 𝑃 = 1 3! 𝐻 𝜎 1 4 ∗ 𝜔 𝜇 𝜎 (2𝑑) 𝑤/𝑚 𝑃 = 1 3! 𝐻 𝜇 4 𝜎 ∗ (2𝜋𝐹) (2𝑑) 𝑤/𝑚 𝑃 = 1 3! 𝐵 𝜎 ∗ (𝜋𝐹) (2𝑑) = 𝜋 𝜎 6 𝐹 𝐵 (2𝑑) 𝑤/𝑚 𝑃 = 𝐾 𝐹 𝐵 ∗ 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑤/𝑚 13
  • 241. 12/28/2022 1 EPMN203: Time Varying Fields Applications Magnetic Diffusion Equation Applications “Bus Bar and Transmission Line” By: Emad Fathy Yassin Faculty of Engineering Cairo University Bus Bar 𝑥 𝑦 2ℎ 2𝑑 1 2
  • 242. 12/28/2022 2 Bus Bar 𝑥 𝑦 2ℎ 2𝑑 ∇ 𝐻 + 𝛾 𝐻 = 0 ( 𝜕 𝜕𝑥 + 𝜕 𝜕𝑦 + 𝜕 𝜕𝑧 )𝐻 + 𝛾 𝐻 = 0 Assume inf. extension in length == 𝑧 → ∞ and 2ℎ ≫ 2𝑑 −−→ y → ∞ 𝜕 𝜕𝑥 𝐻 + 𝛾 𝐻 = 0 𝐻 𝑥 = 𝐴 𝑒 + 𝐶 𝑒 + + + = 𝐼 From ampere's low 𝐻. 𝑑𝑙 = 𝐼 4 3 𝐻 ∗ 2ℎ + 0 + 𝐻 ∗ 2ℎ + 0 = 𝐼 𝐻 = 𝐼 4ℎ 𝐼 𝐻 𝐻 𝑥 = 𝑑 = −𝐻 𝑥 = −𝑑 Using BCs @ 𝑥 = 𝑑 𝐻 = 𝐻 𝐼 4ℎ = 𝐻 𝑥 = 𝑑 = 𝐶 sinh 𝛽𝑑 𝑜𝑑𝑑 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑡ℎ𝑒𝑛 𝐴 = −𝐶 𝐻 𝑥 = 𝐶 sinh 𝛽𝑥 𝐶 = 𝐼 4ℎ 1 sinh 𝛽𝑑 1 2 𝐻 Bus Bar 𝑥 𝑦 2ℎ 2𝑑 ∇ 𝐻 + 𝛾 𝐻 = 0 + + + = 𝐼 From ampere's low 𝐻. 𝑑𝑙 = 𝐼 4 3 𝐻 ∗ 2ℎ + 0 + 𝐻 ∗ 2ℎ + 0 = 𝐼 𝐻 = 𝐼 4ℎ 𝐼 𝐻 1 2 𝐻 𝐻 𝑥 = 𝐼 4ℎ sinh 𝛽𝑥 sinh 𝛽𝑑 𝑢 𝐽̅ = ∇ × 𝐻 𝐽̅ = 𝑢 𝑢 𝑢 𝜕 𝜕𝑥 𝜕 𝜕𝑦 𝜕 𝜕𝑧 𝐻 𝐻 𝐻 = 𝑢 𝑢 𝑢 𝜕 𝜕𝑥 0 0 0 𝐻 0 = 𝜕 𝜕𝑥 𝐻 𝑢̅ = 𝛽 𝐼 4ℎ cosh 𝛽𝑥 sinh 𝛽𝑑 𝑢̅ 𝐸 = 𝐽̅ 𝜎 = 𝐼 4ℎ 𝛽 𝜎 cosh 𝛽𝑥 sinh 𝛽𝑑 𝑢 𝐽̅ = 𝛽 𝐼 4ℎ cosh 𝛽𝑥 sinh 𝛽𝑑 𝑢̅ Eddy currents are induced inside the main conductor due to main AC current. This causes current redistribution 3 4
  • 243. 12/28/2022 3 Bus Bar 𝑥 𝑦 2ℎ 2𝑑 + + + = 𝐼 From ampere's low 𝐻. 𝑑𝑙 = 𝐼 4 3 𝐻 ∗ 2ℎ + 0 + 𝐻 ∗ 2ℎ + 0 = 𝐼 𝐻 = 𝐼 4ℎ 𝐼 𝐻 1 2 𝐻 𝐻 𝑥 = 𝐼 4ℎ sinh 𝛽𝑥 sinh 𝛽𝑑 𝑢 𝐸 = 𝐼 4ℎ 𝛽 𝜎 cosh 𝛽𝑥 sinh 𝛽𝑑 𝑢 𝑆̅ = 1 2 𝐸 × 𝐻∗ 𝑆̅|@ = 𝐸| × 𝐻| ∗ 𝑆̅|@ = 1 2 𝐼 4ℎ 𝛽 𝜎 cosh 𝛽𝑑 sinh 𝛽𝑑 𝑢 × 𝐼 4ℎ 𝑢 𝑆̅|@ = 1 2 𝐼 𝛽 16 ℎ 𝜎 cosh 𝛽𝑑 sinh 𝛽𝑑 (−𝑢 ) 𝑆̅|@ = 1 2 𝐼 𝛽 16 ℎ 𝜎 cosh 𝛽𝑑 sinh 𝛽𝑑 (𝑢 ) 𝑆̅|@ = 1 2 𝐼 4ℎ 𝛽 𝜎 cosh 𝛽𝑑 sinh𝛽𝑑 𝑢 × 𝐼 4ℎ (−𝑢 ) Bus Bar 𝑥 𝑦 2ℎ 2𝑑 + + + = 𝐼 From ampere's low 𝐻. 𝑑𝑙 = 𝐼 4 3 𝐻 ∗ 2ℎ + 0 + 𝐻 ∗ 2ℎ + 0 = 𝐼 𝐻 = 𝐼 4ℎ 𝐼 𝐻 1 2 𝐻 𝑆̅|@ = 1 2 𝐼 𝛽 16 ℎ 𝜎 cosh 𝛽𝑑 sinh 𝛽𝑑 (−𝑢 ) 𝑆̅|@ = 1 2 𝐼 𝛽 16 ℎ 𝜎 cosh 𝛽𝑑 sinh 𝛽𝑑 (𝑢 ) − 𝑆̅. 𝑑𝑠 = − 𝑆̅. 𝑑𝑠 @ − 𝑆̅. 𝑑𝑠 @ = − 1 2 𝐼 𝛽 16 ℎ 𝜎 cosh𝛽𝑑 sinh𝛽𝑑 (−𝑢 ). dyd𝑧 (𝑢 ) − 1 2 𝐼 𝛽 16 ℎ 𝜎 cosh𝛽𝑑 sinh 𝛽𝑑 (𝑢 ). dyd𝑧 (−𝑢 ) = 2 ∗ 1 2 𝐼 𝛽 16 ℎ 𝜎 cosh 𝛽𝑑 sinh𝛽𝑑 ∗ 2ℎ ∗ 1 = 𝐼 𝛽 8ℎ 𝜎 cosh 𝛽𝑑 sinh 𝛽𝑑 = 𝑃 + 𝑗𝑄 5 6
  • 244. 12/28/2022 4 Bus Bar 𝑥 𝑦 2ℎ 2𝑑 + + + = 𝐼 From ampere's low 𝐻. 𝑑𝑙 = 𝐼 4 3 𝐻 ∗ 2ℎ + 0 + 𝐻 ∗ 2ℎ + 0 = 𝐼 𝐻 = 𝐼 4ℎ 𝐼 𝐻 1 2 𝐻 − 𝑆̅. 𝑑𝑠 = 𝐼 𝛽 8ℎ 𝜎 cosh 𝛽𝑑 sinh 𝛽𝑑 = 𝑃 + 𝑗𝑄 = 1 2 𝐼 (𝑅 + 𝑗𝑋) 𝑅 + 𝑗𝑋 = 𝛽 4ℎ 𝜎 cosh 𝛽𝑑 sinh 𝛽𝑑 𝑅 = ℜ 𝛽 4ℎ 𝜎 cosh 𝛽𝑑 sinh𝛽𝑑 = 1 4ℎ 𝛿 𝜎 sinh 2𝑑 𝛿 + sin 2𝑑 𝛿 cosh 2𝑑 𝛿 − cos 2𝑑 𝛿 Ω/𝑚 𝑅 = 𝐿 𝜎 𝐴 𝑅 𝑅 = = 1 𝜎 ∗ 2ℎ ∗ 2𝑑 = 1 4ℎ𝑑 𝜎 Ω/𝑚 𝑑 𝛿 sinh 2𝑑 𝛿 + sin 2𝑑 𝛿 cosh 2𝑑 𝛿 − cos 2𝑑 𝛿 = 𝛼 2 sinh𝛼 + sin 𝛼 cosh 𝛼 − cos 𝛼 Transmission Line 2ℎ 2𝑑 2ℎ 2𝑑 𝐼 X 𝐼 7 8
  • 245. 12/28/2022 5 Transmission Line 2ℎ 2𝑑 2ℎ 2𝑑 𝐼 X 𝐼 𝐻 = 𝐼 4ℎ 𝐻 = 𝐼 4ℎ 𝐻 = 𝐼 4ℎ 𝐻 = 𝐼 4ℎ 𝐻 = 𝐼 4ℎ 𝐻 = 𝐼 4ℎ 2ℎ 2𝑑 𝐼 2ℎ 2𝑑 X 𝐼 𝐻 = 𝐼 2ℎ 𝐻 = 0 𝐻 = 0 𝑥 𝑦 2ℎ 2𝑑 + + + = 𝐼 From ampere's low 𝐻. 𝑑𝑙 = 𝐼 4 3 𝐻 ∗ 2ℎ + 0 + 𝐻 ∗ 2ℎ + 0 = 𝐼 𝐻 = 𝐼 4ℎ 𝐼 𝐻 1 2 𝐻 2ℎ 2𝑑 𝐼 𝐻 = 𝐼 2ℎ 𝐻 = 0 𝑥 𝑦 Transmission Line ∇ 𝐻 + 𝛾 𝐻 = 0 ( 𝜕 𝜕𝑥 + 𝜕 𝜕𝑦 + 𝜕 𝜕𝑧 )𝐻 + 𝛾 𝐻 = 0 Assume inf. extension in length == 𝑧 → ∞ and 2ℎ ≫ 2𝑑 −−→ y → ∞ 𝜕 𝜕𝑥 𝐻 + 𝛾 𝐻 = 0 𝐻 𝑥 = 𝐴 𝑒 + 𝐶 𝑒 𝐻 𝑥 = 𝑑 ≠ 𝐻 𝑥 = −𝑑 Using BCs @ 𝑥 = −𝑑 𝐻 = 𝐻 0 = 𝐻 𝑥 = −𝑑 0 = 𝐴 cosh 0 + 𝐶 sinh 0 𝑁𝑜𝑡 𝑒𝑣𝑒𝑛 , 𝑁𝑜𝑡 𝑜𝑑𝑑 𝐻 𝑥 = 𝐴 cosh 𝛽(𝑥 + 𝑑) + 𝐶 sinh 𝛽(𝑥 + 𝑑) 𝐴 = 0 2ℎ 2𝑑 𝐼 𝐻 = 𝐼 2ℎ 𝑥 𝑦 𝐻 = 0 Using BCs @ 𝑥 = 𝑑 𝐻 = 𝐻 𝐼 2ℎ = 𝐻 𝑥 = 𝑑 = 𝐶 sinh 2𝛽𝑑 𝐶 = 𝐼 2ℎ 1 sinh2𝛽𝑑 𝐻 𝑥 = 𝐶 sinh 𝛽(𝑥 + 𝑑) 𝐻 𝑥 = 𝐼 2ℎ sinh 𝛽(𝑥 + 𝑑) sinh 2𝛽𝑑 𝑢 Solution 1 9 10
  • 246. 12/28/2022 6 Transmission Line ∇ 𝐻 + 𝛾 𝐻 = 0 𝐻 𝑥 = 𝐼 2ℎ sinh 𝛽(𝑥 + 𝑑) sinh 2𝛽𝑑 𝑢 𝐽̅ = ∇ × 𝐻 𝐽̅ = 𝑢 𝑢 𝑢 𝜕 𝜕𝑥 𝜕 𝜕𝑦 𝜕 𝜕𝑧 𝐻 𝐻 𝐻 = 𝑢 𝑢 𝑢 𝜕 𝜕𝑥 0 0 0 𝐻 0 = 𝜕 𝜕𝑥 𝐻 𝑢̅ = 𝛽 𝐼 2ℎ cosh 𝛽(𝑥 + 𝑑) sinh 2𝛽𝑑 𝑢̅ 𝐸 = 𝐽̅ 𝜎 = 𝐼 2ℎ 𝛽 𝜎 cosh 𝛽(𝑥 + 𝑑) sinh 2𝛽𝑑 𝑢 2ℎ 2𝑑 𝐼 𝐻 = 𝐼 2ℎ 𝑥 𝑦 𝐻 = 0 Solution 1 Transmission Line 𝐻 𝑥 = 𝐼 2ℎ sinh 𝛽(𝑥 + 𝑑) sinh 2𝛽𝑑 𝑢 𝐸 = 𝐼 2ℎ 𝛽 𝜎 cosh 𝛽(𝑥 + 𝑑) sinh 2𝛽𝑑 𝑢 𝑆̅ = 1 2 𝐸 × 𝐻∗ 𝑆̅|@ = 𝐸| × 𝐻| ∗ 𝑆̅|@ = 1 2 𝐼 2ℎ 𝛽 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 𝑢 × 𝐼 2ℎ 𝑢 𝑆̅|@ = 1 2 𝐼 𝛽 4 ℎ 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 (−𝑢 ) 𝑆̅|@ = 0 𝑆̅|@ = 1 2 𝐼 4ℎ 𝛽 𝜎 cosh 𝛽𝑑 sinh 𝛽𝑑 𝑢 × 0 2ℎ 2𝑑 𝐼 𝐻 = 𝐼 2ℎ 𝑥 𝑦 𝐻 = 0 Solution 1 11 12
  • 247. 12/28/2022 7 Transmission Line 𝑆̅|@ = 1 2 𝐼 𝛽 4 ℎ 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 (−𝑢 ) 𝑆̅|@ = 0 − 𝑆̅. 𝑑𝑠 = − 𝑆̅. 𝑑𝑠 @ − 𝑆̅. 𝑑𝑠 @ = − 1 2 𝐼 𝛽 4 ℎ 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 (−𝑢 ). dyd𝑧 (𝑢 ) = 1 2 𝐼 𝛽 4 ℎ 𝜎 cosh2𝛽𝑑 sinh 2𝛽𝑑 ∗ 2ℎ ∗ 1 = 𝐼 𝛽 4ℎ 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 = 𝑃 + 𝑗𝑄 2ℎ 2𝑑 𝐼 𝐻 = 𝐼 2ℎ 𝑥 𝑦 𝐻 = 0 Solution 1 Transmission Line − 𝑆̅. 𝑑𝑠 = 𝐼 𝛽 4ℎ 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 = 𝑃 + 𝑗𝑄 = 1 2 𝐼 (𝑅 + 𝑗𝑋) 𝑅 + 𝑗𝑋 = 𝛽 2ℎ 𝜎 cosh 2𝛽𝑑 sinh2𝛽𝑑 𝑅 = ℜ 𝛽 2ℎ 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 = 1 2ℎ 𝛿 𝜎 sinh 4𝑑 𝛿 + sin 4𝑑 𝛿 cosh 4𝑑 𝛿 − cos 4𝑑 𝛿 Ω/𝑚 𝑋 = Ι𝑚 𝛽 2ℎ 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 = 1 2ℎ 𝛿 𝜎 sinh 4𝑑 𝛿 − sin 4𝑑 𝛿 cosh 4𝑑 𝛿 − cos 4𝑑 𝛿 Ω/𝑚 2ℎ 2𝑑 𝐼 𝐻 = 𝐼 2ℎ 𝑥 𝑦 𝐻 = 0 Solution 1 13 14
  • 248. 12/28/2022 8 Transmission Line 2ℎ 2𝑑 2ℎ 2𝑑 𝐼 X 𝐼 𝐻 = 𝐼 4ℎ 𝐻 = 𝐼 4ℎ 𝐻 = 𝐼 4ℎ 𝐻 = 𝐼 4ℎ 𝐻 = 𝐼 4ℎ 𝐻 = 𝐼 4ℎ 2ℎ 2𝑑 𝐼 2ℎ 2𝑑 X 𝐼 𝐻 = 𝐼 2ℎ 𝐻 = 0 𝐻 = 0 𝑥 𝑦 2ℎ 2𝑑 + + + = 𝐼 From ampere's low 𝐻. 𝑑𝑙 = 𝐼 4 3 𝐻 ∗ 2ℎ + 0 + 𝐻 ∗ 2ℎ + 0 = 𝐼 𝐻 = 𝐼 4ℎ 𝐼 𝐻 1 2 𝐻 𝑥 𝑦 𝐻 = 𝐼 2ℎ 2ℎ 2𝑑 X 𝐻 = 0 Solution 2 Transmission Line ∇ 𝐻 + 𝛾 𝐻 = 0 ( 𝜕 𝜕𝑥 + 𝜕 𝜕𝑦 + 𝜕 𝜕𝑧 )𝐻 + 𝛾 𝐻 = 0 Assume inf. extension in length == 𝑧 → ∞ and 2ℎ ≫ 2𝑑 −−→ y → ∞ 𝜕 𝜕𝑥 𝐻 + 𝛾 𝐻 = 0 𝐻 𝑥 = 𝐴 𝑒 + 𝐶 𝑒 𝐻 𝑥 = 𝑑 ≠ 𝐻 𝑥 = −𝑑 Using BCs @ 𝑥 = 𝑑 𝐻 = 𝐻 0 = 𝐻 𝑥 = 𝑑 0 = 𝐴 cosh 0 + 𝐶 sinh 0 𝑁𝑜𝑡 𝑒𝑣𝑒𝑛 , 𝑁𝑜𝑡 𝑜𝑑𝑑 𝐻 𝑥 = 𝐴 cosh 𝛽(𝑥 − 𝑑) + 𝐶 sinh 𝛽(𝑥 − 𝑑) 𝐴 = 0 Using BCs @ 𝑥 = −𝑑 𝐻 = 𝐻 𝐼 2ℎ = 𝐻 𝑥 = −𝑑 = −𝐶 sinh2𝛽𝑑 𝐶 = − 𝐼 2ℎ 1 sinh 2𝛽𝑑 𝐻 𝑥 = 𝐶 sinh 𝛽(𝑥 − 𝑑) 𝐻 𝑥 = − 𝐼 2ℎ sinh 𝛽(𝑥 − 𝑑) sinh 2𝛽𝑑 𝑢 𝑥 𝑦 𝐻 = 𝐼 2ℎ 2ℎ 2𝑑 X 𝐻 = 0 Solution 2 15 16
  • 249. 12/28/2022 9 Transmission Line ∇ 𝐻 + 𝛾 𝐻 = 0 𝐻 𝑥 = − 𝐼 2ℎ sinh 𝛽(𝑥 − 𝑑) sinh 2𝛽𝑑 𝑢 𝐽̅ = ∇ × 𝐻 𝐽̅ = 𝑢 𝑢 𝑢 𝜕 𝜕𝑥 𝜕 𝜕𝑦 𝜕 𝜕𝑧 𝐻 𝐻 𝐻 = 𝑢 𝑢 𝑢 𝜕 𝜕𝑥 0 0 0 𝐻 0 = 𝜕 𝜕𝑥 𝐻 𝑢̅ = −𝛽 𝐼 2ℎ cosh 𝛽(𝑥 − 𝑑) sinh 2𝛽𝑑 𝑢̅ 𝐸 = 𝐽̅ 𝜎 = − 𝐼 2ℎ 𝛽 𝜎 cosh 𝛽(𝑥 − 𝑑) sinh 2𝛽𝑑 𝑢 𝐻 = 𝐼 2ℎ 2ℎ 2𝑑 X 𝐻 = 0 Solution 2 Transmission Line 𝐻 𝑥 = − 𝐼 2ℎ sinh 𝛽(𝑥 − 𝑑) sinh 2𝛽𝑑 𝑢 𝐸 = − 𝐼 2ℎ 𝛽 𝜎 cosh 𝛽(𝑥 − 𝑑) sinh 2𝛽𝑑 𝑢 𝑆̅ = 1 2 𝐸 × 𝐻∗ 𝑆̅|@ = 𝐸| × 𝐻| ∗ 𝑆̅|@ = − 1 2 𝐼 2ℎ 𝛽 𝜎 cosh 2𝛽𝑑 sinh2𝛽𝑑 𝑢 × 𝐼 2ℎ (𝑢 ) 𝑆̅|@ = 1 2 𝐼 𝛽 4 ℎ 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 (𝑢 ) 𝑆̅|@ = 0 𝑆̅|@ = 1 2 𝐼 4ℎ 𝛽 𝜎 cosh 0 sinh2𝛽𝑑 𝑢 × 0 𝐻 = 𝐼 2ℎ 2ℎ 2𝑑 X 𝐻 = 0 Solution 2 17 18
  • 250. 12/28/2022 10 Transmission Line 𝑆̅|@ = 1 2 𝐼 𝛽 4 ℎ 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 (𝑢 ) 𝑆̅|@ = 0 − 𝑆̅. 𝑑𝑠 = − 𝑆̅. 𝑑𝑠 @ − 𝑆̅. 𝑑𝑠 @ = − 1 2 𝐼 𝛽 4 ℎ 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 (𝑢 ). dyd𝑧 (−𝑢 ) = 1 2 𝐼 𝛽 4 ℎ 𝜎 cosh2𝛽𝑑 sinh 2𝛽𝑑 ∗ 2ℎ ∗ 1 = 𝐼 𝛽 4ℎ 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 = 𝑃 + 𝑗𝑄 𝐻 = 𝐼 2ℎ 2ℎ 2𝑑 X 𝐻 = 0 Solution 2 Transmission Line − 𝑆̅. 𝑑𝑠 = 𝐼 𝛽 4ℎ 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 = 𝑃 + 𝑗𝑄 = 1 2 𝐼 (𝑅 + 𝑗𝑋) 𝑅 + 𝑗𝑋 = 𝛽 2ℎ 𝜎 cosh 2𝛽𝑑 sinh2𝛽𝑑 𝑅 = ℜ 𝛽 2ℎ 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 = 1 2ℎ 𝛿 𝜎 sinh 4𝑑 𝛿 + sin 4𝑑 𝛿 cosh 4𝑑 𝛿 − cos 4𝑑 𝛿 Ω/𝑚 𝑋 = Ι𝑚 𝛽 2ℎ 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 = 1 2ℎ 𝛿 𝜎 sinh 4𝑑 𝛿 − sin 4𝑑 𝛿 cosh 4𝑑 𝛿 − cos 4𝑑 𝛿 Ω/𝑚 𝐻 = 𝐼 2ℎ 2ℎ 2𝑑 X 𝐻 = 0 Solution 2 19 20
  • 251. 12/28/2022 11 Transmission Line ∇ 𝐻 + 𝛾 𝐻 = 0 ( 𝜕 𝜕𝑥 + 𝜕 𝜕𝑦 + 𝜕 𝜕𝑧 )𝐻 + 𝛾 𝐻 = 0 Assume inf. extension in length == 𝑧 → ∞ and 2ℎ ≫ 2𝑑 −−→ y → ∞ 𝜕 𝜕𝑥 𝐻 + 𝛾 𝐻 = 0 𝐻 𝑥 = 𝐴 𝑒 + 𝐶 𝑒 𝐻 𝑥 = 𝑑 ≠ 𝐻 𝑥 = −𝑑 Using BCs @ 𝑥 = 0 𝐻 = 𝐻 0 = 𝐻 𝑥 = 0 0 = 𝐴 cosh 0 + 𝐶 sinh 0 𝑁𝑜𝑡 𝑒𝑣𝑒𝑛 , 𝑁𝑜𝑡 𝑜𝑑𝑑 𝐻 𝑥 = 𝐴 cosh 𝛽𝑥 + 𝐶 sinh 𝛽𝑥 𝐴 = 0 Using BCs @ 𝑥 = 2𝑑 𝐻 = 𝐻 𝐼 2ℎ = 𝐻 𝑥 = 2𝑑 = 𝐶 sinh 2𝛽𝑑 𝐶 = 𝐼 2ℎ 1 sinh2𝛽𝑑 𝐻 𝑥 = 𝐶 sinh 𝛽𝑥 𝐻 𝑥 = 𝐼 2ℎ sinh 𝛽𝑥 sinh 2𝛽𝑑 𝑢 2ℎ 2𝑑 𝐼 𝐻 = 𝐼 2ℎ 𝑥 𝑦 𝐻 = 0 Solution 3 Transmission Line ∇ 𝐻 + 𝛾 𝐻 = 0 𝐻 𝑥 = 𝐼 2ℎ sinh 𝛽𝑥 sinh 2𝛽𝑑 𝑢 𝐽̅ = ∇ × 𝐻 𝐽̅ = 𝑢 𝑢 𝑢 𝜕 𝜕𝑥 𝜕 𝜕𝑦 𝜕 𝜕𝑧 𝐻 𝐻 𝐻 = 𝑢 𝑢 𝑢 𝜕 𝜕𝑥 0 0 0 𝐻 0 = 𝜕 𝜕𝑥 𝐻 𝑢̅ = 𝛽 𝐼 2ℎ cosh 𝛽𝑥 sinh 2𝛽𝑑 𝑢̅ 𝐸 = 𝐽̅ 𝜎 = 𝐼 2ℎ 𝛽 𝜎 cosh 𝛽𝑥 sinh 2𝛽𝑑 𝑢 2ℎ 2𝑑 𝐼 𝑥 𝑦 𝐻 = 0 Solution 3 21 22
  • 252. 12/28/2022 12 Transmission Line 𝐻 𝑥 = 𝐼 2ℎ sinh 𝛽𝑥 sinh 2𝛽𝑑 𝑢 𝐸 = 𝐼 2ℎ 𝛽 𝜎 cosh 𝛽𝑥 sinh 2𝛽𝑑 𝑢 𝑆̅ = 1 2 𝐸 × 𝐻∗ 𝑆̅|@ = 𝐸| × 𝐻| ∗ 𝑆̅|@ = 1 2 𝐼 2ℎ 𝛽 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 𝑢 × 𝐼 2ℎ (𝑢 ) 𝑆̅|@ = 1 2 𝐼 𝛽 4 ℎ 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 (−𝑢 ) 𝑆̅|@ = 0 𝑆̅|@ = 1 2 𝐼 4ℎ 𝛽 𝜎 cosh 0 sinh 2𝛽𝑑 𝑢 × 0 2ℎ 2𝑑 𝐼 𝑥 𝑦 𝐻 = 0 Solution 3 Transmission Line 𝑆̅|@ = 1 2 𝐼 𝛽 4 ℎ 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 (−𝑢 ) 𝑆̅|@ = 0 − 𝑆̅. 𝑑𝑠 = − 𝑆̅. 𝑑𝑠 @ − 𝑆̅. 𝑑𝑠 @ = − 1 2 𝐼 𝛽 4 ℎ 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 (−𝑢 ). dyd𝑧 (𝑢 ) = 1 2 𝐼 𝛽 4 ℎ 𝜎 cosh2𝛽𝑑 sinh 2𝛽𝑑 ∗ 2ℎ ∗ 1 = 𝐼 𝛽 4ℎ 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 = 𝑃 + 𝑗𝑄 2ℎ 2𝑑 𝐼 𝑥 𝑦 𝐻 = 0 Solution 3 23 24
  • 253. 12/28/2022 13 Transmission Line − 𝑆̅. 𝑑𝑠 = 𝐼 𝛽 4ℎ 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 = 𝑃 + 𝑗𝑄 = 1 2 𝐼 (𝑅 + 𝑗𝑋) 𝑅 + 𝑗𝑋 = 𝛽 2ℎ 𝜎 cosh 2𝛽𝑑 sinh2𝛽𝑑 𝑅 = ℜ 𝛽 2ℎ 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 = 1 2ℎ 𝛿 𝜎 sinh 4𝑑 𝛿 + sin 4𝑑 𝛿 cosh 4𝑑 𝛿 − cos 4𝑑 𝛿 Ω/𝑚 𝑋 = Ι𝑚 𝛽 2ℎ 𝜎 cosh 2𝛽𝑑 sinh 2𝛽𝑑 = 1 2ℎ 𝛿 𝜎 sinh 4𝑑 𝛿 − sin 4𝑑 𝛿 cosh 4𝑑 𝛿 − cos 4𝑑 𝛿 Ω/𝑚 2ℎ 2𝑑 𝐼 𝑥 𝑦 𝐻 = 0 Solution 3 Proximity Effect Proximity effect is the current redistribution mechanism due to changing magnetic fields from currents in other nearby conductors Litz Wire, HF-Litz, High Frequency Litz Wire, Litz Wire for High Efficiency | ELEKTRISOLA 25 26
  • 254. 12/27/2022 1 EPE2020: Time Varying Fields Applications Magnetic Diffusion Equation Applications “Electromagnetic Shielding” By: Emad Fathy Yassin Faculty of Engineering Cairo University Electromagnetic Shielding 1 2
  • 255. 12/27/2022 2 Electromagnetic Shielding ∇ 𝐻 + 𝛾 𝐻 = 0 ( 𝜕 𝜕𝑥 + 𝜕 𝜕𝑦 + 𝜕 𝜕𝑧 )𝐻 + 𝛾 𝐻 = 0 Assume inf. extension in height == 𝑧 → ∞ and h >> t then y → ∞ Electromagnetic Shielding 𝒙 𝒚 𝒛 𝜕 𝜕𝑥 𝐻 + 𝛾 𝐻 = 0 𝐻 𝑥 = 𝐴 𝑒 + 𝐶 𝑒 𝑢 𝐻 𝑥 = 𝑎 ≠ 𝐻 𝑥 = 𝑎 + 𝑡 𝑁𝑜𝑡 𝑒𝑣𝑒𝑛 , 𝑁𝑜𝑡 𝑜𝑑𝑑 𝐻 𝐻 𝐻 Using BCs @ 𝑥 = 𝑎 𝐻 = 𝐻 𝐻 = 𝐴 𝑒 + 𝐶 𝑒 (1) Using BCs @ 𝑥 = 𝑎 + 𝑡 𝐻 = 𝐻 𝐻 = 𝐴 𝑒 ( ) + 𝐶 𝑒 ( ) (2) 3 4
  • 256. 12/27/2022 3 Electromagnetic Shielding 𝒙 𝒚 𝒛 𝐻 𝐻 𝐻 𝐻 = 𝐴 𝑒 + 𝐶 𝑒 (1) 𝐻 = 𝐴 𝑒 ( ) + 𝐶 𝑒 ( ) (2) 𝐻 𝑥 = 𝐴 𝑒 + 𝐶 𝑒 𝑢 𝐽̅ = ∇ × 𝐻 𝐽̅ = 𝑢̅ 𝑢̅ 𝑢̅ 𝜕 𝜕𝑥 0 0 0 𝐻 0 = 𝜕 𝜕𝑥 𝐻 𝑢̅ 𝐽̅ 𝑥 = 𝛽 −𝐴 𝑒 + 𝐶 𝑒 𝑢 𝐸 𝑥 = −𝐴 𝑒 + 𝐶 𝑒 𝑢 𝐹𝑟𝑜𝑚 𝐹𝑎𝑟𝑎𝑑𝑎𝑦 𝑠 𝑙𝑜𝑤 𝑒𝑚𝑓 = − 𝑑𝜙 𝑑𝑡 𝑒𝑚𝑓 = −𝑗𝜔 𝐵 ∗ 𝐴𝑟𝑒𝑎 𝑒𝑚𝑓 = −𝑗𝜔 𝜇 𝐻 ∗ 𝐴𝑟𝑒𝑎 𝐻 Electromagnetic Shielding 𝒙 𝒚 𝒛 𝐻 𝐻 𝐻 𝐻 = 𝐴 𝑒 + 𝐶 𝑒 (1) 𝐻 = 𝐴 𝑒 ( ) + 𝐶 𝑒 ( ) (2) 𝐸 𝑥 = −𝐴 𝑒 + 𝐶 𝑒 𝑢 𝐹𝑟𝑜𝑚 𝐹𝑎𝑟𝑎𝑑𝑎𝑦 𝑠 𝑙𝑜𝑤 𝑒𝑚𝑓 = −𝑗𝜔 𝐵 ∗ 𝐴𝑟𝑒𝑎 𝑒𝑚𝑓 = −𝑗𝜔 𝜇 𝐻 ∗ 𝐴𝑟𝑒𝑎 𝐻 𝐸. 𝑑𝑙 = −𝑗𝜔 𝜇 𝐻 ∗ 𝐴𝑟𝑒𝑎 𝐸(𝑥 = 𝑎). 𝑑𝑙 ≈ −𝑗𝜔 𝜇 𝐻 ∗ 2𝑎 ∗ 𝐿 𝐸 𝑥 = 𝑎 ∗ 2𝐿 ≈ −𝑗𝜔 𝜇 𝐻 ∗ 2𝑎 ∗ 𝐿 𝛽 𝜎 −𝐴 𝑒 + 𝐶 𝑒 ≈ −𝑗𝜔 𝜇 𝐻 ∗ 𝑎 𝛽 −𝐴 𝑒 + 𝐶 𝑒 ≈ −𝑗𝜔 𝜇 𝜎 𝐻 ∗ 𝑎 𝛾 = −𝑗𝜔 𝜇 𝜎 𝛽 = 𝑗 𝛾 𝛽 = −𝛾 𝛽 −𝐴 𝑒 + 𝐶 𝑒 ≈ −𝛽 𝐻 ∗ 𝑎 −𝛽 𝐻 𝑎 = −𝐴 𝑒 + 𝐶 𝑒 (3) 5 6
  • 257. 12/27/2022 4 Electromagnetic Shielding 𝒙 𝒚 𝒛 𝐻 𝐻 𝐻 𝐻 = 𝐴 𝑒 + 𝐶 𝑒 (1) 𝐻 = 𝐴 𝑒 ( ) + 𝐶 𝑒 ( ) (2) 𝐻 −𝛽 𝐻 𝑎 = −𝐴 𝑒 + 𝐶 𝑒 (3) 𝑒𝑞𝑛. 1 + 𝑒𝑞𝑛. (3) 𝐻 (1 − 𝛽𝑎) = 2𝐶 𝑒 𝐶 = 𝐻 1 − 𝛽𝑎 2 ∗ 𝑒 𝑠𝑢𝑏. 𝑖𝑛 𝑒𝑞𝑛. 1 𝐴 = 𝐻 1 + 𝛽𝑎 2 ∗ 𝑒 𝑠𝑢𝑏. 𝑖𝑛 𝑒𝑞𝑛. 2 𝑡𝑜 𝑔𝑒𝑡 𝑡 𝐻 = 𝐻 1 + 𝛽𝑎 2 ∗ 𝑒 𝑒 ( ) + 𝐻 1 − 𝛽𝑎 2 ∗ 𝑒 𝑒 ( ) Electromagnetic Shielding 𝒙 𝒚 𝒛 𝐻 𝐻 𝐻 𝐻 = 𝐴 𝑒 + 𝐶 𝑒 (1) 𝐻 = 𝐴 𝑒 ( ) + 𝐶 𝑒 ( ) (2) 𝐻 −𝛽 𝐻 𝑎 = −𝐴 𝑒 + 𝐶 𝑒 (3) 𝐶 = 𝐻 1 − 𝛽𝑎 2 ∗ 𝑒 𝐴 = 𝐻 1 + 𝛽𝑎 2 ∗ 𝑒 𝑠𝑢𝑏. 𝑖𝑛 𝑒𝑞𝑛. 2 𝑡𝑜 𝑔𝑒𝑡 𝑡 𝐻 = 𝐻 1 + 𝛽𝑎 2 ∗ 𝑒 𝑒 ( ) + 𝐻 1 − 𝛽𝑎 2 ∗ 𝑒 𝑒 ( ) 𝐻 𝐻 = 1 + 𝛽𝑎 2 𝑒 + 1 − 𝛽𝑎 2 𝑒 𝐻 𝐻 = 𝑒 + 𝑒 2 − 𝛽𝑎 𝑒 − 𝑒 2 𝐻 𝐻 = cosh 𝛽𝑡 − 𝛽𝑎 sinh 𝛽𝑡 cosh 𝑥 = 1 + 𝑥 2! + 𝑥 4! … … … sinh 𝑥 = 𝑥 1! + 𝑥 3! + 𝑥 5! … … … 𝐻 𝐻 ≈ 1 − 𝛽𝑎 ∗ 𝛽𝑡 7 8
  • 258. 12/27/2022 5 Electromagnetic Shielding 𝒙 𝒚 𝒛 𝐻 𝐻 𝐻 𝐻 = 𝐴 𝑒 + 𝐶 𝑒 (1) 𝐻 = 𝐴 𝑒 ( ) + 𝐶 𝑒 ( ) (2) 𝐻 −𝛽 𝐻 𝑎 = −𝐴 𝑒 + 𝐶 𝑒 (3) 𝐶 = 𝐻 1 − 𝛽𝑎 2 ∗ 𝑒 𝐴 = 𝐻 1 + 𝛽𝑎 2 ∗ 𝑒 cosh 𝑥 = 1 + 𝑥 2! + 𝑥 4! sinh𝑥 = 𝑥 1! + 𝑥 3! + 𝑥 5! 𝐻 𝐻 ≈ 1 − 𝛽 𝑎𝑡 𝐻 𝐻 ≈ 1 − 𝑗𝜔 𝜇 𝜎𝑎𝑡 𝛾 = −𝑗𝜔 𝜇 𝜎 𝛽 = −𝛾 𝐻 𝐻 ≈ 1 + 𝜔 𝜇 𝜎𝑎𝑡 𝑡 ≈ 1 𝜔 𝜇 𝜎𝑎 𝐻 𝐻 − 1 Electromagnetic Shielding 𝒙 𝒚 𝒛 𝐻 𝐻 𝐻 𝐻 𝑡 ≈ 1 𝜔 𝜇 𝜎𝑎 𝐻 𝐻 − 1 𝑡 ≈ 1 2𝜋 ∗ 50 ∗ 𝜇 ∗ 10 ∗ 3 4 1 − 1 ≈ 0.327 mm 𝑡 ≈ 1 2𝜋 ∗ 50 ∗ 𝜇 ∗ 10 ∗ 3 8 1 − 1 ≈ 0.67 mm 𝑐𝑎𝑠𝑒 (𝑎) 𝑐𝑎𝑠𝑒 (𝑏) 9 10