SlideShare a Scribd company logo
Algebra                                                                             Geometry
Arithmetic                                                                           Triangle                           Circle
a+b  a  b                                       a  c  ad + bc                        Area = 1 bh                        Area = πr 2
    = +                                           + =                                         2
 c   c  c                                       b  d    bd                           c2 = a 2 + b2 − 2ab cos θ          C = 2πr
  a
  b             a    d       ad
        =                =                                                                      a
  c             b    c       bc                                                                                     c                  r
                                                                                                            h
  d

                                                                                                        b
Factoring
x 2 − y 2 = (x − y)(x + y)                  x 3 − y 3 = (x − y)(x 2 + x y + y 2 )    Sector of a Circle                 Trapezoid
x 3 + y 3 = (x + y)(x 2 − x y + y 2 )       x 4 − y 4 = (x − y)(x + y)(x 2 + y 2 )
                                                                                     Area = 1 r 2 θ
                                                                                              2                         Area = 1 (a + b)h
                                                                                                                               2
                                                                                     s = rθ
Binomial                                                                             (for θ in radians only)                       a

(x + y)2 = x 2 + 2x y + y 2                 (x + y)3 = x 3 + 3x 2 y + 3x y 2 + y 3
                                                                                                                                           h
                                                                                                                s
Exponents                                                                                                                          b
                              xn
xn xm   =   x n+m                = x n−m                    (x n )m     =   x nm
                              xm                                                                r
                                                                    n
         1                                                      x        xn
x −n   = n                   (x y)n = x n y n                           = n
        x                                                       y        y           Sphere                             Cone
                                                                        √
            √                 √          √ √                    x     x n
x n/m =     m
                xn            n   xy =   n
                                           xny              n     = √                Volume = 4 πr 3                    Volume = 1 πr 2 h
                                                                y   n y
                                                                                                3                                  3      √
                                                                                     Surface Area = 4πr 2               Surface Area = πr r 2 + h 2

Lines
Slope m of line through (x0 , y0 ) and (x1 , y1 )
                                                                                                    r
                                                                                                                             h
                                        y1 − y0
                                     m=
                                        x1 − x0
                                                                                                                                  r
Through (x0 , y0 ), slope m
                                  y − y0 = m(x − x0 )
Slope m, y-intercept b
                                                                                     Cylinder
                                     y = mx + b                                      Volume = πr 2 h
                                                                                     Surface Area = 2πr h
Quadratic Formula
If ax 2 + bx + c = 0 then
                                            √
                                     −b ±        b2 − 4ac                                   h
                              x=
                                                2a                                                  r

Distance
Distance d between (x1 , y1 ) and (x2 , y2 )

                         d=        (x2 − x1 )2 + (y2 − y1 )2
Trigonometry

                             (x, y)                      sin θ =
                                                                   y                       Half-Angle
                                                                   r
                                                                                                      1 − cos 2θ                                      1 + cos 2θ
                         r                                                                 sin2 θ =                                      cos2 θ =
                                                                 x                                        2                                               2
                                                         cos θ =
                                                                 r

                                                                   y
                                                                                           Addition
                                                         tan θ =
                                                                   x                       sin(a + b) = sin a cos b + cos a sin b        cos(a + b) = cos a cos b − sin a sin b


                                                                                           Subtraction
                                                         sin θ =
                                                                   opp                     sin(a − b) = sin a cos b − cos a sin b        cos(a − b) = cos a cos b + sin a sin b
                                                                   hyp

                   hyp                                             adj                     Sum
                                             opp         cos θ =
                                                                   hyp                                          u+v      u−v
                                                                                           sin u + sin v = 2 sin     cos
                                                                                                                  2        2
                                                                   opp                                           u+v      u−v
                                                         tan θ =                           cos u + cos v = 2 cos      cos
                                                                   adj                                             2        2
                     adj
                                                                                           Product
                                                                                           sin u sin v = 1 [cos(u − v) − cos(u + v)]
                                                                                                         2
Reciprocals                                                                                cos u cos v = 1 [cos(u − v) + cos(u + v)]
                                                                                                         2

             1                                1                                 1          sin u cos v = 1 [sin(u + v) + sin(u − v)]
                                                                                                         2
cot θ =                          sec θ =                           csc θ =
           tan θ                            cos θ                             sin θ        cos u sin v = 1 [sin(u + v) − sin(u − v)]
                                                                                                         2



Definitions                                                                                                                    π/2
                                                                                                                        2π/3             π/3
        cos θ                              1                                 1                                                                  π/4
cot θ =                          sec θ =                           csc θ =                                 3π/4
        sin θ                            cos θ                             sin θ
                                                                                                      5π/6                                            π/6


Pythagorean                                                                                            π                                               0


sin2 θ + cos2 θ = 1               tan2 θ + 1 = sec2 θ              1 + cot2 θ = csc2 θ                                         Radians

                                                                                                sin(0) = 0                                cos(0) = 1
                                                                                                                                                            √
                                                                                                      π                                         π
Cofunction                                                                                      sin   6      =    1
                                                                                                                  2                       cos   6     =     2
                                                                                                                                                             3

                                                                                                                  √                                         √
                                                                                                      π                                         π
      π                                π                                 π                      sin          =      2
                                                                                                                                          cos         =      2
sin   2   − θ = cos θ            cos   2   − θ = sin θ             tan   2   − θ = cot θ              4            2                            4           2
                                                                                                                  √
                                                                                                      π                                         π
                                                                                                sin   3      =     2
                                                                                                                    3
                                                                                                                                          cos   3     =     1
                                                                                                                                                            2
                                                                                                      π                                         π
                                                                                                sin          =1                           cos         =0
Even/Odd                                                                                              2
                                                                                                                   √
                                                                                                                                                2

                                                                                                sin   2π
                                                                                                       3     =     2
                                                                                                                    3
                                                                                                                                          cos   2π
                                                                                                                                                 3     = −1
                                                                                                                                                          2
sin(−θ ) = −sin θ                cos(−θ) = cos θ                   tan(−θ) = −tan θ                                √                                             √
                                                                                                sin   3π
                                                                                                       4     =     2
                                                                                                                    2
                                                                                                                                          cos   3π
                                                                                                                                                 4     =−     2
                                                                                                                                                               2

                                                                                                                                                             √
                                                                                                sin   5π
                                                                                                       6     =     1
                                                                                                                   2                      cos   5π
                                                                                                                                                 6     =    − 23
Double-Angle                                                                                    sin(π) = 0                                cos(π ) = −1
sin 2θ = 2 sin θ cos θ           cos 2θ = cos2 θ − sin2 θ          cos 2θ = 1 − 2 sin2 θ        sin(2π) = 0                               cos(2π) = 1

More Related Content

PDF
002 equation of_a_line
PDF
5.moment of inertia13
PDF
Xi maths ch3_trigo_func_formulae
PDF
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
PPT
12 quadric surfaces
PPT
Integral (area)
PDF
110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수
PDF
Lecture 02
002 equation of_a_line
5.moment of inertia13
Xi maths ch3_trigo_func_formulae
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
12 quadric surfaces
Integral (area)
110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수
Lecture 02

What's hot (14)

PDF
calculo vectorial
PDF
009 solid geometry
PPT
21 lagrange multipliers
PDF
PDF
cswiercz-general-presentation
PDF
Sheet1 simplified
PDF
Ism et chapter_3
KEY
Unit Circle - Trigonometry
PDF
11X1 T14 04 areas
PDF
Day 9-3 Notes
PDF
11X1 T14 05 volumes
PPT
16 partial derivatives
PPT
17 tangent planes and total differentials
PDF
Lesson 8: Basic Differentiation Rules
calculo vectorial
009 solid geometry
21 lagrange multipliers
cswiercz-general-presentation
Sheet1 simplified
Ism et chapter_3
Unit Circle - Trigonometry
11X1 T14 04 areas
Day 9-3 Notes
11X1 T14 05 volumes
16 partial derivatives
17 tangent planes and total differentials
Lesson 8: Basic Differentiation Rules
Ad

Viewers also liked (20)

PPT
France 1234
PDF
Einführung von Ubiquitous Computing - Treiber und Hemmnisse im Blickfeld skep...
PPT
quickpoint
PDF
NP UPyDía noviembre
PDF
Listanatal
PDF
Adwords Success - Florida Hair Extensions
PPT
Grafik-/Soundkarte
PPTX
PDF
Imaginary sound_*
DOCX
Lab3011111
PPTX
Lego mins
PDF
Huffington Post: Jesse Jackson at Occupy Philly
PPTX
Objetivos
PDF
Brochure final lrv4
PDF
Energías alternativas
PPTX
PDF
292 townsend
DOCX
Edwar texto
DOCX
Anota las respuestas en las casillas vacias
France 1234
Einführung von Ubiquitous Computing - Treiber und Hemmnisse im Blickfeld skep...
quickpoint
NP UPyDía noviembre
Listanatal
Adwords Success - Florida Hair Extensions
Grafik-/Soundkarte
Imaginary sound_*
Lab3011111
Lego mins
Huffington Post: Jesse Jackson at Occupy Philly
Objetivos
Brochure final lrv4
Energías alternativas
292 townsend
Edwar texto
Anota las respuestas en las casillas vacias
Ad

Similar to Figures (20)

PDF
Figures
PDF
Figures
PDF
Emat 213 study guide
PDF
Chapter 17
PDF
Integral table
PDF
iTute Notes MM
PDF
Assignment6
PDF
Normal
PDF
Formula List Math 1230
PDF
Markov Tutorial CDC Shanghai 2009
PDF
P1 Graph Function Test
PDF
Integration. area undera curve
PDF
Double integration
DOCX
Graphs of trigonometric functions
PDF
X2 T07 03 addition, subtraction, multiplication & division (2011)
PDF
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
PPT
Areas of bounded regions
Figures
Figures
Emat 213 study guide
Chapter 17
Integral table
iTute Notes MM
Assignment6
Normal
Formula List Math 1230
Markov Tutorial CDC Shanghai 2009
P1 Graph Function Test
Integration. area undera curve
Double integration
Graphs of trigonometric functions
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
Areas of bounded regions

More from Drradz Maths (20)

PDF
Figures
PDF
Formulas
DOCX
Revision 7.1 7.3
PDF
Tutorial 9
PDF
Tutorial 8
PDF
MTH3101 Tutor 7 lagrange multiplier
PDF
Tutorial 6 en.mughti important
PDF
Formulas
PDF
First_attachment MTH3101
PDF
Tutorial 9 mth 3201
PDF
Tutorial 8 mth 3201
PDF
Tutorial 7 mth 3201
PDF
Tutorial 6 mth 3201
PDF
Tutorial 5 mth 3201
PDF
Tutorial 4 mth 3201
PDF
Tutorial 2, 2(e), no. 7
PPTX
Tutorial 3 mth 3201
PPTX
Tutorial 2 mth 3201
PPTX
Tutorial 3 mth 3201
PPTX
Tutorial 1 mth 3201
Figures
Formulas
Revision 7.1 7.3
Tutorial 9
Tutorial 8
MTH3101 Tutor 7 lagrange multiplier
Tutorial 6 en.mughti important
Formulas
First_attachment MTH3101
Tutorial 9 mth 3201
Tutorial 8 mth 3201
Tutorial 7 mth 3201
Tutorial 6 mth 3201
Tutorial 5 mth 3201
Tutorial 4 mth 3201
Tutorial 2, 2(e), no. 7
Tutorial 3 mth 3201
Tutorial 2 mth 3201
Tutorial 3 mth 3201
Tutorial 1 mth 3201

Recently uploaded (20)

PPTX
2025 Product Deck V1.0.pptxCATALOGTCLCIA
PDF
Susan Semmelmann: Enriching the Lives of others through her Talents and Bless...
DOCX
Hand book of Entrepreneurship 4 Chapters.docx
PPTX
operations management : demand supply ch
PPTX
Negotiation and Persuasion Skills: A Shrewd Person's Perspective
PDF
How to Get Business Funding for Small Business Fast
DOCX
Handbook of Entrepreneurship- Chapter 5: Identifying business opportunity.docx
PDF
Blood Collected straight from the donor into a blood bag and mixed with an an...
PDF
TyAnn Osborn: A Visionary Leader Shaping Corporate Workforce Dynamics
PPTX
basic introduction to research chapter 1.pptx
PDF
Nante Industrial Plug Factory: Engineering Quality for Modern Power Applications
PDF
Daniels 2024 Inclusive, Sustainable Development
PDF
Keppel_Proposed Divestment of M1 Limited
PPTX
Astra-Investor- business Presentation (1).pptx
PPTX
svnfcksanfskjcsnvvjknsnvsdscnsncxasxa saccacxsax
PDF
Module 3 - Functions of the Supervisor - Part 1 - Student Resource (1).pdf
PPT
Lecture notes on Business Research Methods
PPTX
Board-Reporting-Package-by-Umbrex-5-23-23.pptx
PDF
NEW - FEES STRUCTURES (01-july-2024).pdf
PDF
Solara Labs: Empowering Health through Innovative Nutraceutical Solutions
2025 Product Deck V1.0.pptxCATALOGTCLCIA
Susan Semmelmann: Enriching the Lives of others through her Talents and Bless...
Hand book of Entrepreneurship 4 Chapters.docx
operations management : demand supply ch
Negotiation and Persuasion Skills: A Shrewd Person's Perspective
How to Get Business Funding for Small Business Fast
Handbook of Entrepreneurship- Chapter 5: Identifying business opportunity.docx
Blood Collected straight from the donor into a blood bag and mixed with an an...
TyAnn Osborn: A Visionary Leader Shaping Corporate Workforce Dynamics
basic introduction to research chapter 1.pptx
Nante Industrial Plug Factory: Engineering Quality for Modern Power Applications
Daniels 2024 Inclusive, Sustainable Development
Keppel_Proposed Divestment of M1 Limited
Astra-Investor- business Presentation (1).pptx
svnfcksanfskjcsnvvjknsnvsdscnsncxasxa saccacxsax
Module 3 - Functions of the Supervisor - Part 1 - Student Resource (1).pdf
Lecture notes on Business Research Methods
Board-Reporting-Package-by-Umbrex-5-23-23.pptx
NEW - FEES STRUCTURES (01-july-2024).pdf
Solara Labs: Empowering Health through Innovative Nutraceutical Solutions

Figures

  • 1. Algebra Geometry Arithmetic Triangle Circle a+b a b a c ad + bc Area = 1 bh Area = πr 2 = + + = 2 c c c b d bd c2 = a 2 + b2 − 2ab cos θ C = 2πr a b a d ad = = a c b c bc c r h d b Factoring x 2 − y 2 = (x − y)(x + y) x 3 − y 3 = (x − y)(x 2 + x y + y 2 ) Sector of a Circle Trapezoid x 3 + y 3 = (x + y)(x 2 − x y + y 2 ) x 4 − y 4 = (x − y)(x + y)(x 2 + y 2 ) Area = 1 r 2 θ 2 Area = 1 (a + b)h 2 s = rθ Binomial (for θ in radians only) a (x + y)2 = x 2 + 2x y + y 2 (x + y)3 = x 3 + 3x 2 y + 3x y 2 + y 3 h s Exponents b xn xn xm = x n+m = x n−m (x n )m = x nm xm r n 1 x xn x −n = n (x y)n = x n y n = n x y y Sphere Cone √ √ √ √ √ x x n x n/m = m xn n xy = n xny n = √ Volume = 4 πr 3 Volume = 1 πr 2 h y n y 3 3 √ Surface Area = 4πr 2 Surface Area = πr r 2 + h 2 Lines Slope m of line through (x0 , y0 ) and (x1 , y1 ) r h y1 − y0 m= x1 − x0 r Through (x0 , y0 ), slope m y − y0 = m(x − x0 ) Slope m, y-intercept b Cylinder y = mx + b Volume = πr 2 h Surface Area = 2πr h Quadratic Formula If ax 2 + bx + c = 0 then √ −b ± b2 − 4ac h x= 2a r Distance Distance d between (x1 , y1 ) and (x2 , y2 ) d= (x2 − x1 )2 + (y2 − y1 )2
  • 2. Trigonometry (x, y) sin θ = y Half-Angle r 1 − cos 2θ 1 + cos 2θ r sin2 θ = cos2 θ = x 2 2 cos θ = r y Addition tan θ = x sin(a + b) = sin a cos b + cos a sin b cos(a + b) = cos a cos b − sin a sin b Subtraction sin θ = opp sin(a − b) = sin a cos b − cos a sin b cos(a − b) = cos a cos b + sin a sin b hyp hyp adj Sum opp cos θ = hyp u+v u−v sin u + sin v = 2 sin cos 2 2 opp u+v u−v tan θ = cos u + cos v = 2 cos cos adj 2 2 adj Product sin u sin v = 1 [cos(u − v) − cos(u + v)] 2 Reciprocals cos u cos v = 1 [cos(u − v) + cos(u + v)] 2 1 1 1 sin u cos v = 1 [sin(u + v) + sin(u − v)] 2 cot θ = sec θ = csc θ = tan θ cos θ sin θ cos u sin v = 1 [sin(u + v) − sin(u − v)] 2 Definitions π/2 2π/3 π/3 cos θ 1 1 π/4 cot θ = sec θ = csc θ = 3π/4 sin θ cos θ sin θ 5π/6 π/6 Pythagorean π 0 sin2 θ + cos2 θ = 1 tan2 θ + 1 = sec2 θ 1 + cot2 θ = csc2 θ Radians sin(0) = 0 cos(0) = 1 √ π π Cofunction sin 6 = 1 2 cos 6 = 2 3 √ √ π π π π π sin = 2 cos = 2 sin 2 − θ = cos θ cos 2 − θ = sin θ tan 2 − θ = cot θ 4 2 4 2 √ π π sin 3 = 2 3 cos 3 = 1 2 π π sin =1 cos =0 Even/Odd 2 √ 2 sin 2π 3 = 2 3 cos 2π 3 = −1 2 sin(−θ ) = −sin θ cos(−θ) = cos θ tan(−θ) = −tan θ √ √ sin 3π 4 = 2 2 cos 3π 4 =− 2 2 √ sin 5π 6 = 1 2 cos 5π 6 = − 23 Double-Angle sin(π) = 0 cos(π ) = −1 sin 2θ = 2 sin θ cos θ cos 2θ = cos2 θ − sin2 θ cos 2θ = 1 − 2 sin2 θ sin(2π) = 0 cos(2π) = 1