Microwave Filter Design
By
Professor Syed Idris Syed Hassan
Sch of Elect. & Electron Eng
Engineering Campus USM
Nibong Tebal 14300
SPS Penang
Contents
2
1. Composite filter
2. LC ladder filter
3. Microwave filter
Composite filter
3
m=0.6 m=0.6m-
derived
m<0.6
constant
k
T
π2
1
π2
1
Matching
section
Matching
section
High-f
cutoff
Sharp
cutoff
Z iT
Z iT Z iT
Z o
Z o
m<0.6 for m-derived section is to place the pole near the cutoff frequency(ωc)
oZZZZZ =+ 2121 '4/'1''
iTZZZZZ =+ 2121 '4/'1/''
For 1/2 π matching network , we choose the Z’1 and Z’2 of the circuit so that
Image method






DC
BA
Z i1 Z i2
I 1 I 2
+
V 1
-
+
V 2
-
Z in1 Z in2
221
221
DICVI
BIAVV
+=
+=
Let’s say we have image impedance for the network Zi1 and Zi2
Where
Zi1= input impedance at port 1 when port 2 is terminated with Zi2
Zi2= input impedance at port 2 when port 1 is terminated with Zi1
Then
4
@
Where Zi2= V2 / I2
and V1 = -Zi1 I1
ABCD for T and π network
5
Z 1 /2 Z 1 /2
Z 2
Z 1
2Z 2 2Z 2
T-network π -network












++
+
2
1
2
2
1
2
1
2
1
2
1
4
1
2
1
Z
Z
Z
Z
Z
Z
Z
Z












+
++
2
1
2
2
2
1
1
2
1
2
1
1
42
1
Z
Z
Z
Z
Z
Z
Z
Z
Image impedance in T and π network
6
Z 1 /2 Z 1 /2
Z 2
Z 1
2Z 2 2Z 2
T-network π -network
2121 4/1 ZZZZZiT +=
( ) ( )2
2
2
12121 4//2/1 ZZZZZZe +++=γ
iTi ZZZZZZZZ /4/1/ 212121 =+=π
( ) ( )2
2
2
12121 4//2/1 ZZZZZZe +++=γ
Image impedance Image impedance
Propagation constant Propagation constant
Substitute ABCD in terms of Z1 and Z2 Substitute ABCD in terms of Z1 and Z2
Composite filter
7
m=0.6 m=0.6m-
derived
m<0.6
constant
k
T
π2
1
π2
1
Matching
section
Matching
section
High-f
cutoff
Sharp
cutoff
Z iT
Z iT Z iT
Z o
Z o
Constant-k section for Low-pass filter
using T-network
8
L/2
C
L/2
4
14/1
2
2121
LC
C
L
ZZZZZiT
ω
−=+=
LjZ ω=1
CjZ ω/12 =
If we define a cutoff frequency
LC
c
2
=ω
And nominal characteristic impedance
C
L
Zo =
Then
c
oiT ZZ 2
2
1
ω
ω
−= Zi T= Zo when ω=0
continue
9
Propagation constant (from page 11), we have
( ) ( ) 1
22
14//2/1 2
2
2
2
2
2
2
12121 −+−=+++=
ccc
ZZZZZZe
ω
ω
ω
ω
ω
ωγ
Two regions can be considered
∀ω<ωc : passband of filter --> Zit become real and γ is imaginary (γ= jβ )
since ω2
/ωc
2
-1<1
∀ω>ωc : stopband of filter_--> Zit become imaginary and γ is real (γ= α )
since ω2
/ωc
2
-1<1
ωc
ω
Mag
ωcα,β
ω
π
β
α
passband stopband
Constant-k section for Low-pass filter
using π-network
10
LjZ ω=1
CjZ ω/12 =








−
=








−
==
2
2
2
2
2
21
11
/
c
o
c
o
o
iTi
Z
Z
Z
ZZZZ
ω
ω
ω
ω
π
( ) ( ) 1
22
14//2/1 2
2
2
2
2
2
2
12121 −+−=+++=
ccc
ZZZZZZe
ω
ω
ω
ω
ω
ωγ
Zi π= Zo when ω=0
Propagation constant is the same as T-network
C/2
L
C/2
Constant-k section for high-pass filter
using T-network
11
LCC
L
ZZZZZiT 22121
4
1
14/1
ω
−=+=
CjZ ω/11 =
LjZ ω=2
If we define a cutoff frequency
LC
c
2
1
=ω
And nominal characteristic impedance
C
L
Zo =
Then
2
2
1
ω
ωc
oiT ZZ −= Zi T= Zo when ω = ∞
2C
L
2C
Constant-k section for high-pass filter
using π-network
12
CjZ ω/11 =
LjZ ω=2








−
=








−
==
2
2
2
2
2
21
11
/
c
c
o
c
o
o
iTi
Z
Z
Z
ZZZZ
ω
ω
ω
ω
π
( ) ( ) 1
22
14//2/1 2
2
2
2
2
2
2
12121 −+−=+++=
ω
ω
ω
ω
ω
ωγ ccc
ZZZZZZe
Zi π= Zo when ω=
Propagation constant is the same for both T and π-network
∞
2L
C
2L
Composite filter
13
m=0.6 m=0.6m-
derived
m<0.6
constant
k
T
π2
1
π2
1
Matching
section
Matching
section
High-f
cutoff
Sharp
cutoff
Z iT
Z iT Z iT
Z o
Z o
m-derived filter T-section
14
Z 1 /2 Z 1 /2
Z 2
Z' 1
/2 Z' 1
/2
Z' 2
mZ 1
/2 mZ 1
/2
Z 2 /m
1
2
4
1
Z
m
m−
Constant-k section suffers from very slow attenuation rate and non-constant
image impedance . Thus we replace Z1 and Z2 to Z’1 and Z’2 respectively.
Let’s Z’1 = m Z1 and Z’2 to obtain the same ZiT as in constant-k section.
4
'
4
'
''
4
2
1
2
21
2
1
21
2
1
21
Zm
ZmZ
Z
ZZ
Z
ZZZiT +=+=+=
4
'
4
2
1
2
21
2
1
21
Zm
ZmZ
Z
ZZ +=+
Solving for Z’2, we have
( )
m
Zm
m
Z
Z
4
1
'
2
1
2
2
2
−
+=
Low -pass m-derived T-section
15
L
m
m
4
1 2
−
mC
mL/2mL/2
LjZ ω=1
CjZ ω/12 =
For constant-k
section
LmjZ ω=1'
( ) Lj
m
m
Cmj
Z ω
ω 4
11
'
2
2
−
+=and
( ) ( )2
2
2
12121 '4/''/''2/'1 ZZZZZZe +++=γ
( ) ( )
( )
( )( )22
2
2
2
1
/11
/2
4/1/1'
'
c
c
m
m
mmLjCmj
Lmj
Z
Z
ωω
ωω
ωω
ω
−−
−
=
−+
=
( )
( )( )22
2
2
1
/11
/1
'4
'
1
c
c
mZ
Z
ωω
ωω
−−
−
=+
Propagation constant
LC
c
2
1
=ωwhere
continue
16
( )
( )2
2
2
1
/1
/1
'4
'
1
op
c
Z
Z
ωω
ωω
−
−
=+( )
( )2
2
2
1
/1
/2
'
'
op
cm
Z
Z
ωω
ωω
−
−
=
If we restrict 0 < m < 1 and
2
1 m
c
op
−
=
ω
ω
Thus, both equation reduces to
( )
( )
( )
( )
( )
( ) 







−
−








−
−
+
−
−
+= 2
2
2
2
2
2
/1
/1
/1
/2
/1
/2
1
op
c
op
c
op
c mm
e
ωω
ωω
ωω
ωω
ωω
ωωγ
Then
When ω < ωc, eγ
is imaginary. Then the wave is propagated in the
network. When ωc<ω <ωop, eγ
is positive and the wave will be attenuated.
When ω = ωop, eγ
becomes infinity which implies infinity attenuation.
When ω>ωop, then eγ
become positif but decreasing.,which meant
decreasing in attenuation.
Comparison between m-derived section
and constant-k section
17
Typical attenuation
0
5
10
15
0 2 4ω c
attenuation
m-derived
const-k
composite
ωop
M-derived section attenuates rapidly but after ω>ωop , the attenuation
reduces back . By combining the m-derived section and the constant-k will
form so called composite filter.This is because the image impedances are
nonconstant.
High -pass m-derived T-section
18
2C/m
L/m
2C/m
C
m
m
2
1
4
−
CjmZ ω/'1 =
( )
Cmj
m
m
Lj
Z
ω
ω
4
1
'
2
2
−
+=
and
( ) ( )2
2
2
12121 '4/''/''2/'1 ZZZZZZe +++=γ
( ) ( )
( )
( )( )22
2
2
2
1
/11
/2
4/1/
/
'
'
ωω
ωω
ωω
ω
c
c
m
m
CmjmmLj
Cjm
Z
Z
−−
−
=
−+
=
( )
( )( )22
2
2
1
/11
/1
'4
'
1
ωω
ωω
c
c
mZ
Z
−−
−
=+
Propagation constant
LC
c
2
1
=ωwhere
continue
19
( )
( )2
2
2
1
/1
/1
'4
'
1
ωω
ωω
op
c
Z
Z
−
−
=+( )
( )2
2
2
1
/1
/2
'
'
ωω
ωω
op
c m
Z
Z
−
−
=
If we restrict 0 < m < 1 and cop m ωω 2
1−=
Thus, both equation reduces to
( )
( )
( )
( )
( )
( ) 







−
−








−
−
+
−
−
+= 2
2
2
2
2
2
/1
/1
/1
/2
/1
/2
1
ωω
ωω
ωω
ωω
ωω
ωωγ
op
c
op
c
op
c mm
e
Then
When ω < ωop , eγ
is positive. Then the wave is gradually attenuated in
the networ as function of frequency. When ω = ωop, eγ
becomes infinity
which implies infinity attenuation. When ωχ>ω >ωop, eγ
is becoming
negative and the wave will be propagted.
Thus ωop< ωc
continue
20
α
ωωop ωc
M-derived section seem to be resonated at ω=ωop due to serial LC circuit.
By combining the m-derived section and the constant-k will form composite
filter which will act as proper highpass filter.
m-derived filter π-section
21
mZ 1
m
Z22
m
Z22
( )
m
Zm
4
12 1
2
−( )
m
Zm
4
12 1
2
−
( )
( )2
22
121
21
/1
4/1
/''
co
iTi
Z
mZZZ
ZZZZ
ωω
π
−
−+
==
11' mZZ =
( )
m
Zm
m
Z
Z
4
1
'
2
1
2
2
2
−
+=
Note that
The image impedance is
Low -pass m-derived π-section
22
mL
2
mC
2
mC
( )
m
Lm
4
12 2
−( )
m
Lm
4
12 2
−
LjZ ω=1
CjZ ω/12 =
For constant-k
section
2
21 / oZCLZZ == ( )22222
1 /4 coZLZ ωωω −=−=
Then
and
Therefore, the image impedance reduces to
( )( )
( )
o
c
c
i Z
m
Z
2
22
/1
/11
ωω
ωω
π
−
−−
=
The best result for m is 0.6which give a good constant Ziπ . This type of
m-derived section can be used at input and output of the filter to provide
constant impedance matching to or from Zo .
Composite filter
23
m=0.6 m=0.6m-
derived
m<0.6
constant
k
T
π2
1
π2
1
Matching
section
Matching
section
High-f
cutoff
Sharp
cutoff
Z iT
Z iT Z iT
Z o
Z o
Matching between constant-k and m-derived
24
πiiT ZZ ≠The image impedance ZiT does not match Ziπ, I.e
The matching can be done by using half- π section as shown below and the
image impedance should be Zi1= ZiT and Zi2=Ziπ
Z' 1
/2
2Z' 2
Z i2
=Z iπZ i1
=Z iT












+
1
'2
1
2
'
'4
'
1
2
1
2
1
Z
Z
Z
Z
12121 '4/'1'' iiT ZZZZZZ =+=
22121 '4/'1/'' ii ZZZZZZ =+=π
It can be shown that
11' mZZ =
( )
m
Zm
m
Z
Z
4
1
'
2
1
2
2
2
−
+=
Note that
Example #1
25
Design a low-pass composite filter with cutoff frequency of 2GHz and
impedance of 75Ω . Place the infinite attenuation pole at 2.05GHz, and plot
the frequency response from 0 to 4GHz.
Solution
For high f- cutoff constant -k T - section
C
L/2 L/2
LC
c
2
=ω
C
L
Zo =
L
C
c
12
2






=
ω
2
oZ
L
C = 2
oCZL =or
C
L
c
12
2






=
ω
Rearrange for ωc and substituting, we have
nHZL co 94.11)1022/()752(/2 9
=×××== πω
pFZC co 122.2)10275/(2/2 9
=××== πω
continue
26
cop m ωω 2
1−=
( ) ( ) 2195.01005.2/1021/1
2992
=××−=−= opcm ωω
For m-derived T section sharp cutoff
nH
nHmL
31.1
2
94.112195.0
2
=
×
=
pFpFmC 4658.0122.22195.0 =×=
nHnHL
m
m
94.1294.11
2195.04
2195.01
4
1 22
=
×
−
=
−
L
m
m
4
1 2
−
mC
mL/2mL/2
continue
27
For matching section
mL/2
mC/2mC/2
( )
m
Lm
2
1 2
−( )
m
Lm
2
1 2
−
mL/2
Z iT
Z o
Z o
m=0.6
nH
nHmL
582.3
2
94.116.0
2
=
×
=
pF
pFmC
6365.0
2
122.26.0
2
=
×
=
nHnHL
m
m
368.694.11
6.02
6.01
2
1 22
=
×
−
=
−
continue
28
3.582nH 5.97nH 1.31nH
6.368nH
0.6365pF
2.122pF
12.94nH
0.4658pF
3.582nH
6.368nH
0.6365pF
1.31nH5.97nH
Canbeadded
together
Canbeadded
together
Canbeadded
together
A full circuit of the filter
Simplified circuit
12.94nH
9.552nH
6.368nH
7.28nH 4.892nH
0.6365pF 0.6365pF0.4658pF
2.122pF
6.368nH
continue
30
Freq response of low-pass filter
-60
-40
-20
0
0 1 2 3 4
Frequency (GHz)
S11
Pole due to
m=0.2195
section
Pole due to
m=0.6
section
N-section LC ladder circuit
(low-pass filter prototypes)
31
g o
=G o
g 1
g 2
g 3
g 4
g n+1
g o
=R o
g 1
g 2
g 3
g 4
g n+1
Prototype beginning with serial element
Prototype beginning with shunt element
Type of responses for n-section prototype filter
32
•Maximally flat or Butterworth
•Equal ripple or Chebyshev
•Elliptic function
•Linear phase
Maximally flat Equal ripple Elliptic Linear phase
Maximally flat or Butterworth filter
33
( )
12
2
1
−














+=
n
c
CH
ω
ω
ω
For low -pass power ratio response
( )



 −
=
n
k
gk
2
12
sin2
π
g0 = gn+1 = 1
( )
( )c
A
n
ωω /log2
110log
110
10/
10 −
= co
k
k
Z
g
C
ω
=
c
ko
k
gZ
L
ω
=
where
C=1 for -3dB cutoff point
n= order of filter
ωc= cutoff frequency
No of order (or no of elements)
Where A is the attenuation at ω1 point and ω1>ωc
Prototype elements
k= 1,2,3…….n
Series element
Shunt element
Series R=Zo
Shunt G=1/Zo
Example #2
34
Calculate the inductance and capacitance values for a maximally-flat low-
pass filter that has a 3dB bandwidth of 400MHz. The filter is to be
connected to 50 ohm source and load impedance.The filter must has a high
attenuation of 20 dB at 1 GHz.
( )
( )c
A
n
ωω /log2
110log
110
10/
10 −
=
( ) 1
32
12
sin21 =



×
−
=
π
g
g0 = g 3+1 = 1First , determine the number of elements
Solution
( )
( )
51.2
400/1000log2
110log
10
10/20
10
>
−
=
c
Thus choose an integer value , I.e n=3
Prototype values
( ) 2
32
122
sin22 =



×
−×
=
π
g
( ) 1
32
132
sin23 =



×
−×
=
π
g
continue
35
nH
gZ
LL
c
o
9.19
104002
150
6
1
13 =
×××
×
===
πω
pF
Z
g
C
co
9.15
10400250
2
6
2
2 =
××××
==
πω
15.9pF
19.9nH
50ohm
50ohm 19.9nH
or
36
nH
gZ
L
c
o
8.39
104002
250
6
2
2 =
×××
×
==
πω
pF
Z
g
CC
co
95.7
10400250
1
6
1
13 =
××××
===
πω
7.95pF
39.8nH
50ohm
50ohm
7.95pF
Equi-ripple filter
37
( )
1
2
1
−














+=
c
noCFH
ω
ω
ω
For low -pass power ratio response
110 10/
−= Lr
oF
where
Cn(x)=Chebyshev polinomial for n order
and argument of x
n= order of filter
ωc= cutoff frequency
Fo=constant related to passband ripple
Chebyshev polinomial
Where Lr is the ripple attenuation in pass-band
(x)(x)-CCx(x)C n-n-n 212=
x(x)C =1
cn ei)(C ωω == .11
1=(x)Co
Continue
38
Prototype elements












=
372.17
cothln
4
1
1
Lr
F
( )


=+
evennforF
oddnfor
gn
1
21
coth
1
ckk
kk
k
bb
aa
g
1
1
−
−
=
2
1
1
F
a
g =
where






=
n
F
F 1
2
2
sinh
( ) nk
n
k
ak ,....2,1
2
1
sin2 =





 −
=
π
nk
n
k
Fbk ,....2,1
2
sin22
2 =





+=
π
c
ko
k
gZ
L
ω
=
co
k
k
Z
g
C
ω
=
Series element
Shunt element
Example #3
39
Design a 3 section Chebyshev low-pass filter that has a ripple of 0.05dB
and cutoff frequency of 1 GHz.
From the formula given we have
g2= 1.1132
g1 = g3 = 0.8794
F1=1.4626 F2= 1.1371
a1=1.0 a2=2.0
b1=2.043
nHLL 7
102
8794.050
931 =
×
×
==
π
pFC 543.3
10250
1132.1
92 =
××
=
π
3.543pF
7nH
50ohm
50ohm 7nH
Transformation from low-pass to high-pass
40
•Series inductor Lk must be replaced by capacitor C’k
•Shunts capacitor Ck must be replaced by inductor L’k
ck
o
k
g
Z
L
ω
=
cko
k
gZ
C
ω
1
=
ω
ω
ω
ω c
c
−→
g o =R o
g 1
g 2
g 3
g 4
g n+1
Transformation from low-pass to band-pass
41
•Thus , series inductor Lk must be replaced by serial Lsk and Csk
o
k
sk
L
L
ωΩ
=
ko
sk
L
C
ω
Ω
=






−
Ω
→
ω
ω
ω
ω
ω
ω o
oc
1
where
oω
ωω 12 −
=Ω 21 ωωω =oand
sk
skk
o
k
o
k
o
o C
j
LjLjLjLjjX
'
'
111
ω
ω
ω
ω
ω
ω
ω
ω
ω
ω
−=
Ω
−
Ω
=





−
Ω
=
Now we consider the series inductor
kok gZL =
Impedance= series
normalized
continue
42
•Shunts capacitor Ck must be replaced by parallel Lpk and Cpk
ko
pk
C
L
ω
Ω
=
o
k
pk
C
C
ωΩ
=
pk
pkk
o
k
o
k
o
o
k
L
j
CjCjCjCjjB
'
'
111
ω
ω
ω
ω
ω
ω
ω
ω
ω
ω
−=
Ω
−
Ω
=





−
Ω
=
Now we consider the shunt capacitor
o
k
k
Z
g
C =
Admittance= parallel
Transformation from low-pass to band-stop
43
•Thus , series inductor Lk must be replaced by parallel Lpk and Cskp
o
k
pk
L
L
ω
Ω
=
ko
pk
L
C
Ω
=
ω
1
1
1
−






−
Ω
→
ω
ω
ω
ω
ω
ω o
oc
where
oω
ωω 12 −
=Ω 21 ωωω =oand
pk
pk
k
o
ko
o
okk L
j
Cj
L
j
L
j
L
j
X
j
'
'
1111
ω
ω
ω
ω
ω
ω
ω
ω
ω
ω
−=
Ω
−
Ω
=





−
Ω
=
Now we consider the series inductor --convert to admittance
kok gZL =
admittance = parallel
Continue
44
•Shunts capacitor Ck must be replaced by parallel Lpk and Cpk
ko
sk
C
L
ωΩ
=
1
o
k
pk
C
C
ω
Ω
=
sk
sk
k
o
ko
o
okk C
j
Lj
C
j
C
j
C
j
B
j
'
'
1111
ω
ω
ω
ω
ω
ω
ω
ω
ω
ω
−=
Ω
−
Ω
=





−
Ω
=
Now we consider the shunt capacitor --> convert to impedance
o
k
k
Z
g
C =
Example #4
45
Design a band-pass filter having a 0.5 dB ripple response, with N=3. The
center frequency is 1GHz, the bandwidth is 10%, and the impedance is 50Ω.
Solution
From table 8.4 Pozar pg 452.
go=1 , g1=1.5963, g2=1.0967, g3= 1.5963, g4= 1.000
Let’s first and third elements are equivalent to series inductance and g1=g3, thus
nH
gZ
LL
o
o
ss 127
1021.0
5963.150
9
1
31 =
××
×
=
Ω
==
πω
pF
gZ
CC
oo
ss 199.0
5963.150102
1.0
9
1
31 =
×××
=
Ω
==
πω
kok gZL =
continue
46
Second element is equivalent to parallel capacitance, thus
nH
g
Z
L
o
o
p 726.0
0967.1102
501.0
9
2
2 =
××
×
=
Ω
=
πω
pF
Z
g
C
oo
p 91.34
1021.050
0967.1
9
2
2 =
×××
=
Ω
=
πω
o
k
k
Z
g
C =
50 Ω 127nH 0.199pF
0.726nH 34.91pF
127nH 0.199pF
50 Ω
Implementation in microstripline
47
Equivalent circuit
A short transmission line can be equated to T and π circuit of lumped
circuit. Thus from ABCD parameter( refer to Fooks and Zakareviius
‘Microwave Engineering using microstrip circuits” pg 31-34), we have
jω L=jZ o sin( β d)
jω C/2=jY o ta n( β d)/2 jω C/2=jY o ta n( β d/2)
jω L/2=jZ o tan( β d/2)jω L/2=jZ o ta n( β d/2)
jω C=jY o
si n( β d)
Model for series inductor
with fringing capacitors
Model for shunt capacitor
with fringing inductors
48
d
Z o
L
Z oL
Z o






=
d
oC
fC
dZ
L
λ
π
ω
tan





=
doL
fL
d
Z
C
λ
π
ω
tan
1
π-model with C as fringing
capacitance
Τ-model with L as fringing
inductance
ZoL should be high impedance
ZoC should be low impedance
d
Z o
Z oC
C Z o






= −
oL
d
Z
L
d
ω
π
λ 1
sin
2
( )oC
d
CZd ω
π
λ 1
sin
2
−
=
Example #5
49
From example #3, we have the solution for low-pass Chebyshev of ripple
0.5dB at 1GHz, Design a filter using in microstrip on FR4 (εr=4.5 h=1.5mm)
nHLL 731 == pFC 543.32 =
Let’s choose ZoL=100Ω and ZoC =20 Ω.
mm
Z
L
d
oL
d
25.10
100
107102
sin
2
1414.0
sin
2
99
11
3,1 =






 ×××
=





=
−
−− π
π
ω
π
λ
cm
f
c
r
d 14.14
5.410
103
9
8
=
×
==
ε
λ
pF
d
Z
C
doL
fL 369.0
1414.0
01025.0
tan
102100
1
tan
1
9
=




 ×
××
=





=
λ
π
πλ
π
ω
Note: For more accurate
calculate for difference Zo
continue
50
( ) ( ) mmCZd oC
d
38.102010543.3102sin
2
1414.0
sin
2
12911
2 =××××== −−−
π
π
ω
π
λ
nH
dZ
L
d
oC
fC 75.0
1414.0
01038.
tan
102
20
tan 9
=




 ×
×
=





=
λ
π
πλ
π
ω
pFC 543.32 =
The new values for L1=L3= 7nH-0.75nH= 6.25nH and C2=3.543pF-0.369pF=3.174pF
Thus the corrected value for d1,d2 and d3 are
mmd 08.9
100
1025.6102
sin
2
1414.0 99
1
3,1 =






 ×××
=
−
− π
π
( ) mmd 22.9201017.3102sin
2
1414.0 1291
2 =××××= −−
π
π
More may be needed to obtain sufficiently stable solutions
51
mmmmh
Z
w
roL
31.05.157.1
5.4100
377
57.1
377
100 =





−=








−=
ε
mmmmh
Z
w
roL
97.105.157.1
5.420
377
57.1
377
20 =





−=








−=
ε






−
=
57.1
377
h
w
Z
r
o
ε
Now we calculate the microstrip width using this formula
(approximation)
mmmmh
Z
w
roL
97.25.157.1
5.450
377
57.1
377
50 =





−=








−=
ε
10.97mm
2.97mm
0.31mm
9.08mm
9.22mm
9.08mm
2.97mm
0.31mm
Implementation using stub
52
Richard’s transformation
βξ tanjLLjjXL == βξ tanjCCjjBc ==
At cutoff unity frequency,we have ξ=1. Then
1tan =β
8
λ
=
L
C
jX L
jB c
λ /8
S.C
O.C
Z o =L
Z o =1/C
jX L
jB c
λ /8
The length of the stub will be
the same with length equal
to λ/8. The Zo will be
difference with short circuit
for L and open circuit for
C.These lines are called
commensurate lines.
Kuroda identity
53
It is difficult to implement a series stub in microstripline.
Using Kuroda identity, we would be able to transform S.C
series stub to O.C shunt stub
d
d d d
S.Cseries
stub
O.Cshunt
stub
Z 1
Z 2
/n 2
n 2
=1+Z 2 /Z 1
Z 1 /n 2
Z 2
d=λ/8
Example #6
54
Design a low-pass filter for fabrication using micro strip lines .The
specification: cutoff frequency of 4GHz , third order, impedance 50 Ω, and a
3 dB equal-ripple characteristic.
Protype Chebyshev low-pass filter element values are
g1=g3= 3.3487 = L1= L3 , g2 = 0.7117 = C2 , g4=1=RL
1
1 3.3487
0.7117
3.3487
Using Richard’s transform we have
ZoL= L=3.3487 Zoc=1/ C=1/0.7117=1.405and
1
λ/ 8
1
λ/ 8
λ/ 8
λ/ 8
λ/ 8
Z oc =1.405
Z oL =3.3487Z oL =3.3487
Zo
Zo
Using Kuroda identity to convert S.C series stub to O.C shunt stub.
299.1
3487.3
1
11
1
22
=+=+=
Z
Z
n
3487.3
1
1
2
=
Z
Z
3487.3/ 2
1 == oLZnZ 1/ 2
2 == oZnZ
thus
We have
and
Substitute again, we have
35.43487.3299.12
1 =×== oLZnZ 299.1299.112
2 =×== nZZ oand
55
d d d
S.Cseries
stub
O.Cshunt
stub
Z 1
Z 2 /n 2
=Z o
n 2 =1+Z 2
/Z 1
Z 1
/n 2 =Z oL
Z 2
50 Ω
217.5 Ω
64.9 Ω 70.3 Ω
λ /8
64.9 Ωλ /8
λ /8
217.5 Ω
50 Ω
56
λ /8
λ /8
λ /8
λ /8
λ /8
Z o =50 Ω
Z 2 =4.35x50
=217.5 Ω
Z 1
=1.299x50
=64.9 Ω
Zoc=1.405x50
=70.3 Ω
Z L =50 Ω
Z 1 =1.299x50
=64.9 Ω
Z 2 =4.35x50
=217.5 Ω
Band-pass filter from λ/2 parallel coupled lines
57
Input
λ /2resonator
λ /2resonator
Output
J' 0 1
+ π /2
rad
J' 23
+ π /2
rad
J' 12
+ π /2
rad
λ /4 λ /4λ /4
Microstrip
layout
Equivalent
admittance
inverter
Equivalent
LC resonator
Required admittance inverter parameters
58
2
1
10
01
2
'





 Ω
=
gg
J
π
1,...2,1
1
2
'
1
1, −=×
Ω
=
+
+ nkfor
gg
J
kk
kk
π
tionsofnon
gg
J
nn
nn sec.
2
'
2
1
1
1, =





 Ω
=
+
+
π
oω
ωω 12 −
=Ω
The normalized admittance inverter is given by
[ ]2
1,1,1, ''1, +++ ++= kkkkokkoe JJZZ
[ ]2
1,1,1,, ''1 +++ +−= kkkkokkoo JJZZ
okkkk ZJJ 1,1,' ++ =where
where A
B
C
D
E
Example #7
59
Design a coupled line bandpass filter with n=3 and a 0.5dB equi-ripple
response on substrate er=10 and h=1mm. The center frequency is 2 GHz, the
bandwidth is 10% and Zo=50Ω.
We have g0=1 , g1=1.5963, g2=1.0967, g3=1.5963, g4= 1 and Ω=0.1
3137.0
5963.112
1.0
2
'
2
1
2
1
10
01 =






××
×
=





 Ω
=
ππ
gg
J
[ ] Ω=++== 61.703137.03137.0150,, 2
4,31,0 oeoe ZZ
[ ] Ω=+−== 24.393137.03137.0150 2
4,3,1,0, oooo ZZ
3137.0
15963.12
1.0
2
'
2
1
2
1
43
4,3 =






××
×
=





 Ω
=
ππ
gg
J
A
C
D
E
60
1187.0
0967.15963.1
1
2
1.01
2
'
21
2,1 =
×
×
×
=×
Ω
=
ππ
gg
J
1187.0
5963.10967.1
1
2
1.01
2
'
32
3,2 =
×
×
×
=×
Ω
=
ππ
gg
JB
B
[ ] Ω=++== 64.561187.01187.0150,, 2
3,22,1 oeoe ZZ
[ ] Ω=+−== 77.441187.01187.0150 2
3,2,2,1, oooo ZZ
D
E
Using the graph Fig 7.30 in Pozar pg388 we would be able to determine the
required s/h and w/h of microstripline with εr=10. For others use other means.
m
f r
r 01767.0
101024
103
2
103
4/ 9
88
=
××
×
=
×
=
ε
λThe required resonator
61
Thus we have
For sections 1 and 4 s/h=0.45 --> s=0.45mm and w/h=0.7--> w=0.7mm
For sections 2 and 3 s/h=1.3 --> s=1.3mm and w/h=0.95--> w=0.95mm
50 Ω
50 Ω
0.7mm
0.45mm
0.95mm
1.3mm
0.95mm
1.3mm
0.45mm
0.7mm
17.67mm 17.67mm 17.67mm 17.67mm
Band-pass and band-stop filter using quarter-wave stubs
62
n
o
on
g
Z
Z
4
Ω
=
π
n
o
on
g
Z
Z
Ω
=
π
4
Band-pass
Band-stop
....
Z 01
Z 02 Z on-1
Z on
Z o
Z oZ oZ o
Z o
λ /4
λ /4λ /4λ /4λ /4
λ /4
....
Z 01
Z 02
Z on-1 Z on
Z o
Z oZ oZ o
Z o
λ /4
λ /4λ /4λ /4λ /4
λ /4
Example #8
63
Design a band-stop filter using three quarter-wave open-circuit stubs . The
center frequency is 2GHz , the bandwidth is 15%, and the impedance is 50W.
Use an equi-ripple response, with a 0.5dB ripple level.
We have g0=1 , g1=1.5963, g2=1.0967, g3=1.5963, g4= 1 and Ω=0.1
n
o
on
g
Z
Znote
Ω
=
π
4
:
Ω=
××
×
== 9.265
5963.115.0
504
031
π
ZZo
Ω=
××
×
= 387
0967.115.0
504
2
π
oZ
50 Ω
λ /4
265.9Ω
387Ω
265.9Ω
λ /4
λ/4
λ/4
λ/4
Note that: It is difficult to
impliment on microstripline
or stripline for characteristic
> 150Ω.
Capacitive coupled resonator band-pass filter
64
Z o Z oZ oZ o
....
B 2B 1
θ 2θ 1
B n+1
Z o
θ n
2
1
10
01
2
'





 Ω
=
gg
J
π
1,...2,1
1
2
'
1
1, −=×
Ω
=
+
+ nkfor
gg
J
kk
kk
π
tionsofnon
gg
J
nn
nn sec.
2
'
2
1
1
1, =





 Ω
=
+
+
π
oω
ωω 12 −
=Ωwhere
( )2
1 io
i
i
JZ
J
B
−
=
( )[ ] ( )[ ]1
11
2tan
2
1
2tan
2
1
+
−−
++= ioioi BZBZπθ
i=1,2,3….n
Example #9
65
Design a band-pass filter using capacitive coupled resonators , with a
0.5dB equal-ripple pass-band characteristic . The center frequency is 2GHz,
the bandwidth is 10%, and the impedance 50W. At least 20dB attenuation
is required at 2.2GHz.
First , determine the order of filter, thus calculate
91.1
2.2
2
2
2.2
1.0
11
=





−=





−
Ω ω
ω
ω
ω o
o
91.0191.11 =−=−
cω
ω
From Pozar ,Fig 8.27 pg 453 , we have N=3
prototype
n gn ZoJn Bn Cn θn
1 1.5963 0.3137 6.96x10-3
0.554pF 155.8o
2 1.0967 0.1187 2.41x10-3
0.192pF 166.5o
3 1.0967 0.1187 2.41x10-3
0.192pF 155.8o
4 1.0000 0.3137 6.96x10-3
0.554pF -
Other shapes of microstripline filter
66
Rectangular resonator filter
U type filter
λ /4
In
Out
λ /4
In Out
Interdigital filterλ /2
in
out
Wiggly coupled line
ϕ 1
ϕ 2
67
ϕ1= π/2
ϕ2= π/4
The design is similar to conventional edge coupled line but the layout is
modified to reduce space.
ϕ 1
Modified Wiggly coupled line to improve 2nd and 3rd harmonic rejection. λ/8
stubs are added.

More Related Content

PPTX
Frequency translation
PPTX
Pin Diode & Varactor Diode
PPTX
Mathematical model for communication channels
PPT
S parameters
PPTX
Lecture Notes: EEEC6440315 Communication Systems - Inter Symbol Interference...
PPTX
NYQUIST CRITERION FOR ZERO ISI
PPTX
RF System design concepts
PDF
Low-Pass Filter Design using Microstrip
Frequency translation
Pin Diode & Varactor Diode
Mathematical model for communication channels
S parameters
Lecture Notes: EEEC6440315 Communication Systems - Inter Symbol Interference...
NYQUIST CRITERION FOR ZERO ISI
RF System design concepts
Low-Pass Filter Design using Microstrip

What's hot (20)

PPTX
Multistage amplifier
PPTX
Two port network
PPTX
ADC and DAC Best Ever Pers
PPT
MOSFET Operation
PPT
Pass Transistor Logic
PPTX
Low pass filters
PPTX
Band pass filter
PPTX
Power amplifiers
PPT
inverse z-transform ppt
PPTX
Band pass filter
PPTX
Discrete fourier transform
PPTX
Two port network
PDF
IIR filter realization using direct form I & II
PPTX
Butterworth filter design
PPTX
discrete time signals and systems
PPTX
Pass Transistor Logic
PDF
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
PPTX
Resonance in series and parallel circuits
PPTX
CMOS LOGIC STRUCTURES
PPTX
Butterworth filter
Multistage amplifier
Two port network
ADC and DAC Best Ever Pers
MOSFET Operation
Pass Transistor Logic
Low pass filters
Band pass filter
Power amplifiers
inverse z-transform ppt
Band pass filter
Discrete fourier transform
Two port network
IIR filter realization using direct form I & II
Butterworth filter design
discrete time signals and systems
Pass Transistor Logic
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
Resonance in series and parallel circuits
CMOS LOGIC STRUCTURES
Butterworth filter
Ad

Similar to Filter design1 (20)

PDF
Unit 1
PPTX
Design of infinite impulse response digital filters 2
PDF
Chapter 5(1).pdf
PPT
Microwave filters.ppt hehebshshheyeyeheh7378
PDF
Df3211051114
PDF
EC6503 tlwg question bank
PPT
BUTTERWORTH FILTER AND CHEBYSHEW FILTERS
PPTX
Signal Processing Digital and Continuous part2.pptx
PPTX
Notes 1 - Transmission Line Theory Theory
PPTX
Mcrowave and Radar engineering
PDF
Design, Simulation and Fabrication of a Microstrip Bandpass Filter
PDF
ActiveCircuits_lec05_shrt.pdf
PPTX
FOURIER__ANALYSIS,[1].pptx
PPTX
Note and assignment mis3 5.3
PDF
Solved problems in waveguides
PDF
Bandpass Filter in S-Band by D.C.Vaghela,LJIET,Ahmedabad,Gujarat.
PPT
Microwave PPT.ppt
PPTX
Unit 1
Design of infinite impulse response digital filters 2
Chapter 5(1).pdf
Microwave filters.ppt hehebshshheyeyeheh7378
Df3211051114
EC6503 tlwg question bank
BUTTERWORTH FILTER AND CHEBYSHEW FILTERS
Signal Processing Digital and Continuous part2.pptx
Notes 1 - Transmission Line Theory Theory
Mcrowave and Radar engineering
Design, Simulation and Fabrication of a Microstrip Bandpass Filter
ActiveCircuits_lec05_shrt.pdf
FOURIER__ANALYSIS,[1].pptx
Note and assignment mis3 5.3
Solved problems in waveguides
Bandpass Filter in S-Band by D.C.Vaghela,LJIET,Ahmedabad,Gujarat.
Microwave PPT.ppt
Ad

Recently uploaded (20)

PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
HVAC Specification 2024 according to central public works department
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PDF
Uderstanding digital marketing and marketing stratergie for engaging the digi...
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
International_Financial_Reporting_Standa.pdf
PPTX
20th Century Theater, Methods, History.pptx
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
advance database management system book.pdf
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
My India Quiz Book_20210205121199924.pdf
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PPTX
Introduction to pro and eukaryotes and differences.pptx
PDF
Empowerment Technology for Senior High School Guide
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
HVAC Specification 2024 according to central public works department
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
Uderstanding digital marketing and marketing stratergie for engaging the digi...
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
International_Financial_Reporting_Standa.pdf
20th Century Theater, Methods, History.pptx
What if we spent less time fighting change, and more time building what’s rig...
advance database management system book.pdf
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
My India Quiz Book_20210205121199924.pdf
Weekly quiz Compilation Jan -July 25.pdf
Practical Manual AGRO-233 Principles and Practices of Natural Farming
Paper A Mock Exam 9_ Attempt review.pdf.
Introduction to pro and eukaryotes and differences.pptx
Empowerment Technology for Senior High School Guide
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx

Filter design1

  • 1. Microwave Filter Design By Professor Syed Idris Syed Hassan Sch of Elect. & Electron Eng Engineering Campus USM Nibong Tebal 14300 SPS Penang
  • 2. Contents 2 1. Composite filter 2. LC ladder filter 3. Microwave filter
  • 3. Composite filter 3 m=0.6 m=0.6m- derived m<0.6 constant k T π2 1 π2 1 Matching section Matching section High-f cutoff Sharp cutoff Z iT Z iT Z iT Z o Z o m<0.6 for m-derived section is to place the pole near the cutoff frequency(ωc) oZZZZZ =+ 2121 '4/'1'' iTZZZZZ =+ 2121 '4/'1/'' For 1/2 π matching network , we choose the Z’1 and Z’2 of the circuit so that
  • 4. Image method       DC BA Z i1 Z i2 I 1 I 2 + V 1 - + V 2 - Z in1 Z in2 221 221 DICVI BIAVV += += Let’s say we have image impedance for the network Zi1 and Zi2 Where Zi1= input impedance at port 1 when port 2 is terminated with Zi2 Zi2= input impedance at port 2 when port 1 is terminated with Zi1 Then 4 @ Where Zi2= V2 / I2 and V1 = -Zi1 I1
  • 5. ABCD for T and π network 5 Z 1 /2 Z 1 /2 Z 2 Z 1 2Z 2 2Z 2 T-network π -network             ++ + 2 1 2 2 1 2 1 2 1 2 1 4 1 2 1 Z Z Z Z Z Z Z Z             + ++ 2 1 2 2 2 1 1 2 1 2 1 1 42 1 Z Z Z Z Z Z Z Z
  • 6. Image impedance in T and π network 6 Z 1 /2 Z 1 /2 Z 2 Z 1 2Z 2 2Z 2 T-network π -network 2121 4/1 ZZZZZiT += ( ) ( )2 2 2 12121 4//2/1 ZZZZZZe +++=γ iTi ZZZZZZZZ /4/1/ 212121 =+=π ( ) ( )2 2 2 12121 4//2/1 ZZZZZZe +++=γ Image impedance Image impedance Propagation constant Propagation constant Substitute ABCD in terms of Z1 and Z2 Substitute ABCD in terms of Z1 and Z2
  • 8. Constant-k section for Low-pass filter using T-network 8 L/2 C L/2 4 14/1 2 2121 LC C L ZZZZZiT ω −=+= LjZ ω=1 CjZ ω/12 = If we define a cutoff frequency LC c 2 =ω And nominal characteristic impedance C L Zo = Then c oiT ZZ 2 2 1 ω ω −= Zi T= Zo when ω=0
  • 9. continue 9 Propagation constant (from page 11), we have ( ) ( ) 1 22 14//2/1 2 2 2 2 2 2 2 12121 −+−=+++= ccc ZZZZZZe ω ω ω ω ω ωγ Two regions can be considered ∀ω<ωc : passband of filter --> Zit become real and γ is imaginary (γ= jβ ) since ω2 /ωc 2 -1<1 ∀ω>ωc : stopband of filter_--> Zit become imaginary and γ is real (γ= α ) since ω2 /ωc 2 -1<1 ωc ω Mag ωcα,β ω π β α passband stopband
  • 10. Constant-k section for Low-pass filter using π-network 10 LjZ ω=1 CjZ ω/12 =         − =         − == 2 2 2 2 2 21 11 / c o c o o iTi Z Z Z ZZZZ ω ω ω ω π ( ) ( ) 1 22 14//2/1 2 2 2 2 2 2 2 12121 −+−=+++= ccc ZZZZZZe ω ω ω ω ω ωγ Zi π= Zo when ω=0 Propagation constant is the same as T-network C/2 L C/2
  • 11. Constant-k section for high-pass filter using T-network 11 LCC L ZZZZZiT 22121 4 1 14/1 ω −=+= CjZ ω/11 = LjZ ω=2 If we define a cutoff frequency LC c 2 1 =ω And nominal characteristic impedance C L Zo = Then 2 2 1 ω ωc oiT ZZ −= Zi T= Zo when ω = ∞ 2C L 2C
  • 12. Constant-k section for high-pass filter using π-network 12 CjZ ω/11 = LjZ ω=2         − =         − == 2 2 2 2 2 21 11 / c c o c o o iTi Z Z Z ZZZZ ω ω ω ω π ( ) ( ) 1 22 14//2/1 2 2 2 2 2 2 2 12121 −+−=+++= ω ω ω ω ω ωγ ccc ZZZZZZe Zi π= Zo when ω= Propagation constant is the same for both T and π-network ∞ 2L C 2L
  • 14. m-derived filter T-section 14 Z 1 /2 Z 1 /2 Z 2 Z' 1 /2 Z' 1 /2 Z' 2 mZ 1 /2 mZ 1 /2 Z 2 /m 1 2 4 1 Z m m− Constant-k section suffers from very slow attenuation rate and non-constant image impedance . Thus we replace Z1 and Z2 to Z’1 and Z’2 respectively. Let’s Z’1 = m Z1 and Z’2 to obtain the same ZiT as in constant-k section. 4 ' 4 ' '' 4 2 1 2 21 2 1 21 2 1 21 Zm ZmZ Z ZZ Z ZZZiT +=+=+= 4 ' 4 2 1 2 21 2 1 21 Zm ZmZ Z ZZ +=+ Solving for Z’2, we have ( ) m Zm m Z Z 4 1 ' 2 1 2 2 2 − +=
  • 15. Low -pass m-derived T-section 15 L m m 4 1 2 − mC mL/2mL/2 LjZ ω=1 CjZ ω/12 = For constant-k section LmjZ ω=1' ( ) Lj m m Cmj Z ω ω 4 11 ' 2 2 − +=and ( ) ( )2 2 2 12121 '4/''/''2/'1 ZZZZZZe +++=γ ( ) ( ) ( ) ( )( )22 2 2 2 1 /11 /2 4/1/1' ' c c m m mmLjCmj Lmj Z Z ωω ωω ωω ω −− − = −+ = ( ) ( )( )22 2 2 1 /11 /1 '4 ' 1 c c mZ Z ωω ωω −− − =+ Propagation constant LC c 2 1 =ωwhere
  • 16. continue 16 ( ) ( )2 2 2 1 /1 /1 '4 ' 1 op c Z Z ωω ωω − − =+( ) ( )2 2 2 1 /1 /2 ' ' op cm Z Z ωω ωω − − = If we restrict 0 < m < 1 and 2 1 m c op − = ω ω Thus, both equation reduces to ( ) ( ) ( ) ( ) ( ) ( )         − −         − − + − − += 2 2 2 2 2 2 /1 /1 /1 /2 /1 /2 1 op c op c op c mm e ωω ωω ωω ωω ωω ωωγ Then When ω < ωc, eγ is imaginary. Then the wave is propagated in the network. When ωc<ω <ωop, eγ is positive and the wave will be attenuated. When ω = ωop, eγ becomes infinity which implies infinity attenuation. When ω>ωop, then eγ become positif but decreasing.,which meant decreasing in attenuation.
  • 17. Comparison between m-derived section and constant-k section 17 Typical attenuation 0 5 10 15 0 2 4ω c attenuation m-derived const-k composite ωop M-derived section attenuates rapidly but after ω>ωop , the attenuation reduces back . By combining the m-derived section and the constant-k will form so called composite filter.This is because the image impedances are nonconstant.
  • 18. High -pass m-derived T-section 18 2C/m L/m 2C/m C m m 2 1 4 − CjmZ ω/'1 = ( ) Cmj m m Lj Z ω ω 4 1 ' 2 2 − += and ( ) ( )2 2 2 12121 '4/''/''2/'1 ZZZZZZe +++=γ ( ) ( ) ( ) ( )( )22 2 2 2 1 /11 /2 4/1/ / ' ' ωω ωω ωω ω c c m m CmjmmLj Cjm Z Z −− − = −+ = ( ) ( )( )22 2 2 1 /11 /1 '4 ' 1 ωω ωω c c mZ Z −− − =+ Propagation constant LC c 2 1 =ωwhere
  • 19. continue 19 ( ) ( )2 2 2 1 /1 /1 '4 ' 1 ωω ωω op c Z Z − − =+( ) ( )2 2 2 1 /1 /2 ' ' ωω ωω op c m Z Z − − = If we restrict 0 < m < 1 and cop m ωω 2 1−= Thus, both equation reduces to ( ) ( ) ( ) ( ) ( ) ( )         − −         − − + − − += 2 2 2 2 2 2 /1 /1 /1 /2 /1 /2 1 ωω ωω ωω ωω ωω ωωγ op c op c op c mm e Then When ω < ωop , eγ is positive. Then the wave is gradually attenuated in the networ as function of frequency. When ω = ωop, eγ becomes infinity which implies infinity attenuation. When ωχ>ω >ωop, eγ is becoming negative and the wave will be propagted. Thus ωop< ωc
  • 20. continue 20 α ωωop ωc M-derived section seem to be resonated at ω=ωop due to serial LC circuit. By combining the m-derived section and the constant-k will form composite filter which will act as proper highpass filter.
  • 21. m-derived filter π-section 21 mZ 1 m Z22 m Z22 ( ) m Zm 4 12 1 2 −( ) m Zm 4 12 1 2 − ( ) ( )2 22 121 21 /1 4/1 /'' co iTi Z mZZZ ZZZZ ωω π − −+ == 11' mZZ = ( ) m Zm m Z Z 4 1 ' 2 1 2 2 2 − += Note that The image impedance is
  • 22. Low -pass m-derived π-section 22 mL 2 mC 2 mC ( ) m Lm 4 12 2 −( ) m Lm 4 12 2 − LjZ ω=1 CjZ ω/12 = For constant-k section 2 21 / oZCLZZ == ( )22222 1 /4 coZLZ ωωω −=−= Then and Therefore, the image impedance reduces to ( )( ) ( ) o c c i Z m Z 2 22 /1 /11 ωω ωω π − −− = The best result for m is 0.6which give a good constant Ziπ . This type of m-derived section can be used at input and output of the filter to provide constant impedance matching to or from Zo .
  • 24. Matching between constant-k and m-derived 24 πiiT ZZ ≠The image impedance ZiT does not match Ziπ, I.e The matching can be done by using half- π section as shown below and the image impedance should be Zi1= ZiT and Zi2=Ziπ Z' 1 /2 2Z' 2 Z i2 =Z iπZ i1 =Z iT             + 1 '2 1 2 ' '4 ' 1 2 1 2 1 Z Z Z Z 12121 '4/'1'' iiT ZZZZZZ =+= 22121 '4/'1/'' ii ZZZZZZ =+=π It can be shown that 11' mZZ = ( ) m Zm m Z Z 4 1 ' 2 1 2 2 2 − += Note that
  • 25. Example #1 25 Design a low-pass composite filter with cutoff frequency of 2GHz and impedance of 75Ω . Place the infinite attenuation pole at 2.05GHz, and plot the frequency response from 0 to 4GHz. Solution For high f- cutoff constant -k T - section C L/2 L/2 LC c 2 =ω C L Zo = L C c 12 2       = ω 2 oZ L C = 2 oCZL =or C L c 12 2       = ω Rearrange for ωc and substituting, we have nHZL co 94.11)1022/()752(/2 9 =×××== πω pFZC co 122.2)10275/(2/2 9 =××== πω
  • 26. continue 26 cop m ωω 2 1−= ( ) ( ) 2195.01005.2/1021/1 2992 =××−=−= opcm ωω For m-derived T section sharp cutoff nH nHmL 31.1 2 94.112195.0 2 = × = pFpFmC 4658.0122.22195.0 =×= nHnHL m m 94.1294.11 2195.04 2195.01 4 1 22 = × − = − L m m 4 1 2 − mC mL/2mL/2
  • 27. continue 27 For matching section mL/2 mC/2mC/2 ( ) m Lm 2 1 2 −( ) m Lm 2 1 2 − mL/2 Z iT Z o Z o m=0.6 nH nHmL 582.3 2 94.116.0 2 = × = pF pFmC 6365.0 2 122.26.0 2 = × = nHnHL m m 368.694.11 6.02 6.01 2 1 22 = × − = −
  • 30. continue 30 Freq response of low-pass filter -60 -40 -20 0 0 1 2 3 4 Frequency (GHz) S11 Pole due to m=0.2195 section Pole due to m=0.6 section
  • 31. N-section LC ladder circuit (low-pass filter prototypes) 31 g o =G o g 1 g 2 g 3 g 4 g n+1 g o =R o g 1 g 2 g 3 g 4 g n+1 Prototype beginning with serial element Prototype beginning with shunt element
  • 32. Type of responses for n-section prototype filter 32 •Maximally flat or Butterworth •Equal ripple or Chebyshev •Elliptic function •Linear phase Maximally flat Equal ripple Elliptic Linear phase
  • 33. Maximally flat or Butterworth filter 33 ( ) 12 2 1 −               += n c CH ω ω ω For low -pass power ratio response ( )     − = n k gk 2 12 sin2 π g0 = gn+1 = 1 ( ) ( )c A n ωω /log2 110log 110 10/ 10 − = co k k Z g C ω = c ko k gZ L ω = where C=1 for -3dB cutoff point n= order of filter ωc= cutoff frequency No of order (or no of elements) Where A is the attenuation at ω1 point and ω1>ωc Prototype elements k= 1,2,3…….n Series element Shunt element Series R=Zo Shunt G=1/Zo
  • 34. Example #2 34 Calculate the inductance and capacitance values for a maximally-flat low- pass filter that has a 3dB bandwidth of 400MHz. The filter is to be connected to 50 ohm source and load impedance.The filter must has a high attenuation of 20 dB at 1 GHz. ( ) ( )c A n ωω /log2 110log 110 10/ 10 − = ( ) 1 32 12 sin21 =    × − = π g g0 = g 3+1 = 1First , determine the number of elements Solution ( ) ( ) 51.2 400/1000log2 110log 10 10/20 10 > − = c Thus choose an integer value , I.e n=3 Prototype values ( ) 2 32 122 sin22 =    × −× = π g ( ) 1 32 132 sin23 =    × −× = π g
  • 37. Equi-ripple filter 37 ( ) 1 2 1 −               += c noCFH ω ω ω For low -pass power ratio response 110 10/ −= Lr oF where Cn(x)=Chebyshev polinomial for n order and argument of x n= order of filter ωc= cutoff frequency Fo=constant related to passband ripple Chebyshev polinomial Where Lr is the ripple attenuation in pass-band (x)(x)-CCx(x)C n-n-n 212= x(x)C =1 cn ei)(C ωω == .11 1=(x)Co
  • 38. Continue 38 Prototype elements             = 372.17 cothln 4 1 1 Lr F ( )   =+ evennforF oddnfor gn 1 21 coth 1 ckk kk k bb aa g 1 1 − − = 2 1 1 F a g = where       = n F F 1 2 2 sinh ( ) nk n k ak ,....2,1 2 1 sin2 =       − = π nk n k Fbk ,....2,1 2 sin22 2 =      += π c ko k gZ L ω = co k k Z g C ω = Series element Shunt element
  • 39. Example #3 39 Design a 3 section Chebyshev low-pass filter that has a ripple of 0.05dB and cutoff frequency of 1 GHz. From the formula given we have g2= 1.1132 g1 = g3 = 0.8794 F1=1.4626 F2= 1.1371 a1=1.0 a2=2.0 b1=2.043 nHLL 7 102 8794.050 931 = × × == π pFC 543.3 10250 1132.1 92 = ×× = π 3.543pF 7nH 50ohm 50ohm 7nH
  • 40. Transformation from low-pass to high-pass 40 •Series inductor Lk must be replaced by capacitor C’k •Shunts capacitor Ck must be replaced by inductor L’k ck o k g Z L ω = cko k gZ C ω 1 = ω ω ω ω c c −→ g o =R o g 1 g 2 g 3 g 4 g n+1
  • 41. Transformation from low-pass to band-pass 41 •Thus , series inductor Lk must be replaced by serial Lsk and Csk o k sk L L ωΩ = ko sk L C ω Ω =       − Ω → ω ω ω ω ω ω o oc 1 where oω ωω 12 − =Ω 21 ωωω =oand sk skk o k o k o o C j LjLjLjLjjX ' ' 111 ω ω ω ω ω ω ω ω ω ω −= Ω − Ω =      − Ω = Now we consider the series inductor kok gZL = Impedance= series normalized
  • 42. continue 42 •Shunts capacitor Ck must be replaced by parallel Lpk and Cpk ko pk C L ω Ω = o k pk C C ωΩ = pk pkk o k o k o o k L j CjCjCjCjjB ' ' 111 ω ω ω ω ω ω ω ω ω ω −= Ω − Ω =      − Ω = Now we consider the shunt capacitor o k k Z g C = Admittance= parallel
  • 43. Transformation from low-pass to band-stop 43 •Thus , series inductor Lk must be replaced by parallel Lpk and Cskp o k pk L L ω Ω = ko pk L C Ω = ω 1 1 1 −       − Ω → ω ω ω ω ω ω o oc where oω ωω 12 − =Ω 21 ωωω =oand pk pk k o ko o okk L j Cj L j L j L j X j ' ' 1111 ω ω ω ω ω ω ω ω ω ω −= Ω − Ω =      − Ω = Now we consider the series inductor --convert to admittance kok gZL = admittance = parallel
  • 44. Continue 44 •Shunts capacitor Ck must be replaced by parallel Lpk and Cpk ko sk C L ωΩ = 1 o k pk C C ω Ω = sk sk k o ko o okk C j Lj C j C j C j B j ' ' 1111 ω ω ω ω ω ω ω ω ω ω −= Ω − Ω =      − Ω = Now we consider the shunt capacitor --> convert to impedance o k k Z g C =
  • 45. Example #4 45 Design a band-pass filter having a 0.5 dB ripple response, with N=3. The center frequency is 1GHz, the bandwidth is 10%, and the impedance is 50Ω. Solution From table 8.4 Pozar pg 452. go=1 , g1=1.5963, g2=1.0967, g3= 1.5963, g4= 1.000 Let’s first and third elements are equivalent to series inductance and g1=g3, thus nH gZ LL o o ss 127 1021.0 5963.150 9 1 31 = ×× × = Ω == πω pF gZ CC oo ss 199.0 5963.150102 1.0 9 1 31 = ××× = Ω == πω kok gZL =
  • 46. continue 46 Second element is equivalent to parallel capacitance, thus nH g Z L o o p 726.0 0967.1102 501.0 9 2 2 = ×× × = Ω = πω pF Z g C oo p 91.34 1021.050 0967.1 9 2 2 = ××× = Ω = πω o k k Z g C = 50 Ω 127nH 0.199pF 0.726nH 34.91pF 127nH 0.199pF 50 Ω
  • 47. Implementation in microstripline 47 Equivalent circuit A short transmission line can be equated to T and π circuit of lumped circuit. Thus from ABCD parameter( refer to Fooks and Zakareviius ‘Microwave Engineering using microstrip circuits” pg 31-34), we have jω L=jZ o sin( β d) jω C/2=jY o ta n( β d)/2 jω C/2=jY o ta n( β d/2) jω L/2=jZ o tan( β d/2)jω L/2=jZ o ta n( β d/2) jω C=jY o si n( β d) Model for series inductor with fringing capacitors Model for shunt capacitor with fringing inductors
  • 48. 48 d Z o L Z oL Z o       = d oC fC dZ L λ π ω tan      = doL fL d Z C λ π ω tan 1 π-model with C as fringing capacitance Τ-model with L as fringing inductance ZoL should be high impedance ZoC should be low impedance d Z o Z oC C Z o       = − oL d Z L d ω π λ 1 sin 2 ( )oC d CZd ω π λ 1 sin 2 − =
  • 49. Example #5 49 From example #3, we have the solution for low-pass Chebyshev of ripple 0.5dB at 1GHz, Design a filter using in microstrip on FR4 (εr=4.5 h=1.5mm) nHLL 731 == pFC 543.32 = Let’s choose ZoL=100Ω and ZoC =20 Ω. mm Z L d oL d 25.10 100 107102 sin 2 1414.0 sin 2 99 11 3,1 =        ××× =      = − −− π π ω π λ cm f c r d 14.14 5.410 103 9 8 = × == ε λ pF d Z C doL fL 369.0 1414.0 01025.0 tan 102100 1 tan 1 9 =      × ×× =      = λ π πλ π ω Note: For more accurate calculate for difference Zo
  • 50. continue 50 ( ) ( ) mmCZd oC d 38.102010543.3102sin 2 1414.0 sin 2 12911 2 =××××== −−− π π ω π λ nH dZ L d oC fC 75.0 1414.0 01038. tan 102 20 tan 9 =      × × =      = λ π πλ π ω pFC 543.32 = The new values for L1=L3= 7nH-0.75nH= 6.25nH and C2=3.543pF-0.369pF=3.174pF Thus the corrected value for d1,d2 and d3 are mmd 08.9 100 1025.6102 sin 2 1414.0 99 1 3,1 =        ××× = − − π π ( ) mmd 22.9201017.3102sin 2 1414.0 1291 2 =××××= −− π π More may be needed to obtain sufficiently stable solutions
  • 51. 51 mmmmh Z w roL 31.05.157.1 5.4100 377 57.1 377 100 =      −=         −= ε mmmmh Z w roL 97.105.157.1 5.420 377 57.1 377 20 =      −=         −= ε       − = 57.1 377 h w Z r o ε Now we calculate the microstrip width using this formula (approximation) mmmmh Z w roL 97.25.157.1 5.450 377 57.1 377 50 =      −=         −= ε 10.97mm 2.97mm 0.31mm 9.08mm 9.22mm 9.08mm 2.97mm 0.31mm
  • 52. Implementation using stub 52 Richard’s transformation βξ tanjLLjjXL == βξ tanjCCjjBc == At cutoff unity frequency,we have ξ=1. Then 1tan =β 8 λ = L C jX L jB c λ /8 S.C O.C Z o =L Z o =1/C jX L jB c λ /8 The length of the stub will be the same with length equal to λ/8. The Zo will be difference with short circuit for L and open circuit for C.These lines are called commensurate lines.
  • 53. Kuroda identity 53 It is difficult to implement a series stub in microstripline. Using Kuroda identity, we would be able to transform S.C series stub to O.C shunt stub d d d d S.Cseries stub O.Cshunt stub Z 1 Z 2 /n 2 n 2 =1+Z 2 /Z 1 Z 1 /n 2 Z 2 d=λ/8
  • 54. Example #6 54 Design a low-pass filter for fabrication using micro strip lines .The specification: cutoff frequency of 4GHz , third order, impedance 50 Ω, and a 3 dB equal-ripple characteristic. Protype Chebyshev low-pass filter element values are g1=g3= 3.3487 = L1= L3 , g2 = 0.7117 = C2 , g4=1=RL 1 1 3.3487 0.7117 3.3487 Using Richard’s transform we have ZoL= L=3.3487 Zoc=1/ C=1/0.7117=1.405and 1 λ/ 8 1 λ/ 8 λ/ 8 λ/ 8 λ/ 8 Z oc =1.405 Z oL =3.3487Z oL =3.3487 Zo Zo
  • 55. Using Kuroda identity to convert S.C series stub to O.C shunt stub. 299.1 3487.3 1 11 1 22 =+=+= Z Z n 3487.3 1 1 2 = Z Z 3487.3/ 2 1 == oLZnZ 1/ 2 2 == oZnZ thus We have and Substitute again, we have 35.43487.3299.12 1 =×== oLZnZ 299.1299.112 2 =×== nZZ oand 55 d d d S.Cseries stub O.Cshunt stub Z 1 Z 2 /n 2 =Z o n 2 =1+Z 2 /Z 1 Z 1 /n 2 =Z oL Z 2
  • 56. 50 Ω 217.5 Ω 64.9 Ω 70.3 Ω λ /8 64.9 Ωλ /8 λ /8 217.5 Ω 50 Ω 56 λ /8 λ /8 λ /8 λ /8 λ /8 Z o =50 Ω Z 2 =4.35x50 =217.5 Ω Z 1 =1.299x50 =64.9 Ω Zoc=1.405x50 =70.3 Ω Z L =50 Ω Z 1 =1.299x50 =64.9 Ω Z 2 =4.35x50 =217.5 Ω
  • 57. Band-pass filter from λ/2 parallel coupled lines 57 Input λ /2resonator λ /2resonator Output J' 0 1 + π /2 rad J' 23 + π /2 rad J' 12 + π /2 rad λ /4 λ /4λ /4 Microstrip layout Equivalent admittance inverter Equivalent LC resonator
  • 58. Required admittance inverter parameters 58 2 1 10 01 2 '       Ω = gg J π 1,...2,1 1 2 ' 1 1, −=× Ω = + + nkfor gg J kk kk π tionsofnon gg J nn nn sec. 2 ' 2 1 1 1, =       Ω = + + π oω ωω 12 − =Ω The normalized admittance inverter is given by [ ]2 1,1,1, ''1, +++ ++= kkkkokkoe JJZZ [ ]2 1,1,1,, ''1 +++ +−= kkkkokkoo JJZZ okkkk ZJJ 1,1,' ++ =where where A B C D E
  • 59. Example #7 59 Design a coupled line bandpass filter with n=3 and a 0.5dB equi-ripple response on substrate er=10 and h=1mm. The center frequency is 2 GHz, the bandwidth is 10% and Zo=50Ω. We have g0=1 , g1=1.5963, g2=1.0967, g3=1.5963, g4= 1 and Ω=0.1 3137.0 5963.112 1.0 2 ' 2 1 2 1 10 01 =       ×× × =       Ω = ππ gg J [ ] Ω=++== 61.703137.03137.0150,, 2 4,31,0 oeoe ZZ [ ] Ω=+−== 24.393137.03137.0150 2 4,3,1,0, oooo ZZ 3137.0 15963.12 1.0 2 ' 2 1 2 1 43 4,3 =       ×× × =       Ω = ππ gg J A C D E
  • 60. 60 1187.0 0967.15963.1 1 2 1.01 2 ' 21 2,1 = × × × =× Ω = ππ gg J 1187.0 5963.10967.1 1 2 1.01 2 ' 32 3,2 = × × × =× Ω = ππ gg JB B [ ] Ω=++== 64.561187.01187.0150,, 2 3,22,1 oeoe ZZ [ ] Ω=+−== 77.441187.01187.0150 2 3,2,2,1, oooo ZZ D E Using the graph Fig 7.30 in Pozar pg388 we would be able to determine the required s/h and w/h of microstripline with εr=10. For others use other means. m f r r 01767.0 101024 103 2 103 4/ 9 88 = ×× × = × = ε λThe required resonator
  • 61. 61 Thus we have For sections 1 and 4 s/h=0.45 --> s=0.45mm and w/h=0.7--> w=0.7mm For sections 2 and 3 s/h=1.3 --> s=1.3mm and w/h=0.95--> w=0.95mm 50 Ω 50 Ω 0.7mm 0.45mm 0.95mm 1.3mm 0.95mm 1.3mm 0.45mm 0.7mm 17.67mm 17.67mm 17.67mm 17.67mm
  • 62. Band-pass and band-stop filter using quarter-wave stubs 62 n o on g Z Z 4 Ω = π n o on g Z Z Ω = π 4 Band-pass Band-stop .... Z 01 Z 02 Z on-1 Z on Z o Z oZ oZ o Z o λ /4 λ /4λ /4λ /4λ /4 λ /4 .... Z 01 Z 02 Z on-1 Z on Z o Z oZ oZ o Z o λ /4 λ /4λ /4λ /4λ /4 λ /4
  • 63. Example #8 63 Design a band-stop filter using three quarter-wave open-circuit stubs . The center frequency is 2GHz , the bandwidth is 15%, and the impedance is 50W. Use an equi-ripple response, with a 0.5dB ripple level. We have g0=1 , g1=1.5963, g2=1.0967, g3=1.5963, g4= 1 and Ω=0.1 n o on g Z Znote Ω = π 4 : Ω= ×× × == 9.265 5963.115.0 504 031 π ZZo Ω= ×× × = 387 0967.115.0 504 2 π oZ 50 Ω λ /4 265.9Ω 387Ω 265.9Ω λ /4 λ/4 λ/4 λ/4 Note that: It is difficult to impliment on microstripline or stripline for characteristic > 150Ω.
  • 64. Capacitive coupled resonator band-pass filter 64 Z o Z oZ oZ o .... B 2B 1 θ 2θ 1 B n+1 Z o θ n 2 1 10 01 2 '       Ω = gg J π 1,...2,1 1 2 ' 1 1, −=× Ω = + + nkfor gg J kk kk π tionsofnon gg J nn nn sec. 2 ' 2 1 1 1, =       Ω = + + π oω ωω 12 − =Ωwhere ( )2 1 io i i JZ J B − = ( )[ ] ( )[ ]1 11 2tan 2 1 2tan 2 1 + −− ++= ioioi BZBZπθ i=1,2,3….n
  • 65. Example #9 65 Design a band-pass filter using capacitive coupled resonators , with a 0.5dB equal-ripple pass-band characteristic . The center frequency is 2GHz, the bandwidth is 10%, and the impedance 50W. At least 20dB attenuation is required at 2.2GHz. First , determine the order of filter, thus calculate 91.1 2.2 2 2 2.2 1.0 11 =      −=      − Ω ω ω ω ω o o 91.0191.11 =−=− cω ω From Pozar ,Fig 8.27 pg 453 , we have N=3 prototype n gn ZoJn Bn Cn θn 1 1.5963 0.3137 6.96x10-3 0.554pF 155.8o 2 1.0967 0.1187 2.41x10-3 0.192pF 166.5o 3 1.0967 0.1187 2.41x10-3 0.192pF 155.8o 4 1.0000 0.3137 6.96x10-3 0.554pF -
  • 66. Other shapes of microstripline filter 66 Rectangular resonator filter U type filter λ /4 In Out λ /4 In Out Interdigital filterλ /2 in out
  • 67. Wiggly coupled line ϕ 1 ϕ 2 67 ϕ1= π/2 ϕ2= π/4 The design is similar to conventional edge coupled line but the layout is modified to reduce space. ϕ 1 Modified Wiggly coupled line to improve 2nd and 3rd harmonic rejection. λ/8 stubs are added.