SlideShare a Scribd company logo
FLOW MEASUREMENT
PART II
ER. FARUK BIN POYEN, Asst. Professor
DEPT. OF AEIE, UIT, BU, BURDWAN, WB, INDIA
faruk.poyen@gmail.com
Contents:
Variable Head or Differential Meter
 Orifice Plates
 Venturi Tubes
 Flow Nozzle
 Dall Tubes
 Pitot Tube
 Annubar Tube
 Elbow Tap
 Weir
 Flume
2
Variable Head or Differential Meter
 Working: A restriction in the line of a flowing fluid, introduced by the orifice plate or
venturi tube or elbow, produces a differential pressure across the restriction element
which is proportional to the flow rate. Head flow meters operate on the principle
of placing a restriction in the line to cause a differential pressure head. The
differential pressure, which is caused by the head, is measured and converted to a flow
measurement.
 The devices in general, can therefore be termed as “obstruction type” flow meters.
3
Variable Head or Differential Meter
 The proportionality is not a linear one but has a square root of relationship in that flow
rate is proportional to the square root of the differential pressure. This is derived from
Bernoulli’s theorem. Velocity head is defined as the vertical distance through which a
liquid would fall to attain a given velocity. Pressure head is the vertical distance
through which a column of the flowing liquid would rise in an open-end tube as a
result of the static pressure.
𝑉 = 𝐾
2𝑔ℎ
𝜌
𝑄 = 𝐾𝐴
2𝑔ℎ
𝜌
𝑊 = 𝐾𝐴 2𝑔ℎ
𝜌 where 𝐾 =
𝐴1 𝐴2
𝐴1
2−𝐴2
2
2𝑔
Coefficient of discharge: 𝐶 𝑑 =
𝑄 𝑎𝑐𝑡𝑢𝑎𝑙
𝑄 𝑖𝑑𝑒𝑎𝑙
4
V = velocity of flowing fluid
Q = volume flow rate
W = mass flow rate
A = cross – sectional area of pipe through which fluid
is flowing
h = differential head (pressure) across the restriction
element
g = acceleration due to gravity
ρ = density of the flowing fluid
𝐾 =
𝐶
1− 𝛽4
C = discharge coefficient
β = diameter ratio = d (diameter of restriction element)/D (inside diameter of the pipe)
Variable Head Flow Meters
 Rate of Discharge: 𝑄 = 𝐴1 𝑉1 = 𝐴2 𝑉2
 Applying Bernoulli’s equation (ideal flow assumption)
𝑝1 +
𝜌𝑉1
2
2
= 𝑝2 +
𝜌𝑉2
2
2
 The differential pressure head ∆ℎ is given by:
𝑝1 − 𝑝2
𝜌𝑔
= ∆ℎ
 𝑄 𝑎𝑐𝑡𝑢𝑎𝑙 is always less than 𝑄𝑖𝑑𝑒𝑎𝑙as there are losses due to friction and eddying
motions.
5
Merits and Demerits – Differential Flow Meter
 Advantages of Differential Flow meter
 Relatively low cost for large lines
 Offers widest application coverage of any type of meter
 High accuracy (0.25 to 2 %)
 Easily removable without tripping of the process
 Highly adaptable
 Disadvantages & Limitations
 Relatively higher permanent pressure loss is involved
 Difficult to use for slurry services
 Exhibits square root relationship between head and flow rate, rather than linear characteristics,
which limits the usable flow range ability to a 3:1 to 5:1 range.
 Low flow rates are not easily measured
 Faces difficulty to measure pulsating flow.
The position of minimum pressure is located slightly downstream from the restriction at a point where the
stream is the narrowest and is called the vena – contracta. Beyond this point, the pressure again rises but
does not return to the upstream value resulting in a permanent pressure loss.
6
Parts of a Differential Flow meter
 It comprises two parts:
Primary Element
Secondary Element
7
Parts of a Differential Flow meter – Primary Elements
Primary element causes restriction in the path of flow and produces differential pressure. It
comprises
 i) Orifice plates
 ii) Venturi tubes
 iii) Flow nozzle
 iv) Dall tubes
 v) Pitot tubes
 vi) Annubar tubes
 vii) Elbow taps
 viii) Weir
 ix) Flume
8
Parts of a Differential Flow meter – Secondary Elements
Secondary element measures the differential pressure. It comprises
 manometer
 bellow meter
 force balance
 ring balance.
9
Orifice
 The orifice meter when installed in small to moderate sized pipes is probably the
cheapest and simplest flow measuring device at present available for metering liquids,
gases and vapours.
 It is not suitable for high viscous liquids or fluids in a pulsating or extremely turbulent
condition.
 When the fluid flows through the orifice, its velocity increases and the diameter of the
jet decreases to minimum at a point v, known as the vena contracta.
 The jet expands until it again occupies the full bore of the pipe.
 The static pressure profile first shows a gradual decrease over the distance L to M due
to friction losses in the pipe.
10
Orifice
 From M to P, as light rise occurs due to the resistance of the orifice plate.
 A sharp drop in the pressure occurs from P to R due to the fluid velocity through the
orifice. Finally, there is a partial recovery of pressure from R to S.
 The net pressure loss due to friction and turbulence across the orifice is, typically,
about 65% of the pressure difference measured by d/p diaphragm.
 The fluid flow is proportional to the square root of the pressure difference.
11
Orifice
 Advantages of Orifice
- Simple construction.
- Inexpensive.
- Easily fitted between flanges.
- No moving parts.
- Large range of sizes and opening ratios.
- Suitable for most gases and liquids.
- Well understood and proven.
- Price does not increase dramatically with size.
12
Orifice
 Disadvantages of Orifice
- Inaccuracy, typically 1%.
- Low rangeability, typically 4:1.
- Accuracy is affected by density, pressure and viscosity fluctuations.
- Erosion and physical damage to the restriction affects measurement accuracy.
- Cause some unrecoverable pressure loss.
- Viscosity limits measuring range.
- Require straight pipe runs to ensure accuracy is maintained.
- Pipeline must be full (typically for liquids).
13
Orifice
 Orifice Plate Designs:
1. Concentric – commonly used for general applications (gas, liquid & vapour).
2. Eccentric – recommended for fluids with extraneous matter to a degree that would clog
up concentric type.
3. Segmental – recommended for fluids combine with vapour or vapour with fluids.
 Types of Orifice Plate Entrance
1. Square Edge – applicable for higher pipe Reynolds Number; typical Re 500 to 10,000
2. Quadrant – for lower pipe Reynolds Number; typically ranges from Re 250 to 3300.
3. Conical – for Reynolds Number typically range from Re 25 to 75.
14
Venturi Tubes
 Venturi meter is used instead of an orifice plate in process systems where it is
important to minimize permanent pressure loss across the restriction device.
 In venturi, the restricting element is a tapered tube instead of sharp-edge orifice.
 The tube gives a smoother velocity change which results in a small permanent pressure
loss of approximately 10% of the differential pressure measurement.
15
Venturi Tubes
 Advantages of Venturi
- Less significant pressure drop across restriction.
- Less unrecoverable pressure loss.
- Requires less straight pipe up and downstream.
 Disadvantages of Venturi
- More expensive.
- Bulky - requires large section for installation.
16
Comparison Orifice and Venturi Meters
1. Orifice reducing element is sharp edged while venturi is tapered tube.
2. Permanent pressure loss of orifice is 65% of measured d/p while venturi is only 10%.
3. Venturi tube is less sensitive to Reynolds Number and gives more accurate
measurement when the process flow varies over a wide range.
4. Venturi tube is less affected by dirty fluid which build up deposits at orifice plates and
pressure tap connections.
5. Venturi tube meter is more costly compared to orifice plate costly compared to orifice
plate and requires greater length of pipeline.
6. Orifice plate is relatively easy to change for new range.
17
Flow Nozzle
 Flow nozzle is a restriction consisting of an elliptical contoured inlet and a cylindrical
throat section.
 Pressure taps used to measure the difference in static pressure created by flow nozzle
are commonly located one pipe diameter (1D) upstream and ½ pipe diameter (1/2D)
downstream from the inlet face of the nozzle.
 The Flow Nozzle is similar to the venturi but are in the shape of an ellipse. They have
a higher flow capacity than orifice plates.
 Another main difference between the flow nozzle and the venturi is that although they
have similar inlet nozzles, the flow nozzle has no exit section.
 These devices are more cost effective, but as such they provide less accuracy than
venturis, and have a higher unrecoverable pressure loss.
18
Flow Nozzle
 Flow Nozzles can handle larger solids and be used for higher velocities, greater
turbulence and high temperature applications.
 They are often used with fluid or steam applications containing some suspended solids,
and in applications where the product is being discharged from service.
19
Flow Nozzle
 Advantages of Flow nozzle
- High velocity applications.
- Operate in higher turbulence.
- Used with fluids containing suspended solids.
- More cost effective than venturis.
- Physically smaller than the venturi.
 Disadvantages of Flow nozzle
- More expensive than orifice plates.
- Higher unrecoverable pressure loss.
20
Dall Tube
 Dall tube consists of two conical reducers inserted into the fluid – carrying pipe. It has
a shape very similar to venturi without throat.
 The construction of Dall is much simpler than that of venture which needs complex
machinery.
 It is much shorter in length which makes its insertion into flow line easier.
 Its perimeter pressure loss is only 5 % of measured pressure differential and thus it is
only half that due to a venturi.
 On the basis of maintenance and operational life, Dall and venturi are similar.
21
Dall Tube
 Advantages of Dall
- Shorter lay length.
- Lower unrecoverable pressure loss.
 Disadvantages of Dall
- More complex to manufacture.
- Sensitive to turbulence.
- Accuracy based on flow data.
22
Pitot Tube
 The pitot tube is a tube with an open end facing the incoming fluid stream.
 The Pitot tube measures flow based on differential pressure and is primarily used with
gas flows.
 The Pitot tube is a small tube that is directed into the flow stream.
 This measures the total pressure (dynamic and static combined). A second
measurement is required, being of static pressure.
 The difference between the two measurements gives a value for dynamic pressure.
 The flow rate, like other devices, is calculated from the square root of the pressure.
 In calculating the flow rate from the pressure, the calculation is dependent on such
factors as tube design and the location of the static tap.
 The Pitot-static probe incorporates the static holes in the tube system to eliminate this
parameter.
23
Pitot Tube
 The Pitot tube is also used to determine the velocity profile in a pipe.
 This is done by measuring points at various distances from the pipe wall to construct a
velocity profile.
 The Pitot tube is the primary device.
 It has the advantage over orifice meters of practically no pressure drop.
 Its usefulness is limited to clean gases and liquids as the sensing element is a small
orifice.
 Foreign materials tend to plug the openings in the tube, and the classical Pitot tube
senses impact pressure at one point only, thus decreasing accuracy.
 Assuming a steady, one – dimensional flow of an incompressible, frictionless fluid
with no heat loss for free stream velocity and applying Bernoulli’s principle between a
point in the free stream and another at the tip of the stagnation tube, we may write
𝑝𝑠𝑡𝑎𝑡
𝜌
+
𝑉2
2
=
𝑝𝑠𝑡𝑎𝑔
𝜌
24
Pitot Tube
𝑉 =
2(𝑝𝑠𝑡𝑎𝑔 − 𝑝𝑠𝑡𝑎𝑡)
𝜌
∆𝑝 =
1
2
𝜌𝑉2 →→→→ 𝑉 ∝ ∆𝑝 𝑤ℎ𝑒𝑟𝑒 ∆𝑝 = 𝑝𝑠𝑡𝑎𝑔 − 𝑝𝑠𝑡𝑎𝑡
 Pitot tubes develop a very low differential pressure, which can often be difficult to
measure with the secondary element.
 Also the accuracy of the device is dependent on the velocity profile of the fluid.
 The velocity profile is also affected by turbulence in the flow stream.
25
Pitot Tube
 Advantages of Pitot tube
- Low cost.
- Low permanent pressure loss.
- Ease of installation into existing systems.
 Disadvantages of Pitot tube
- Low accuracy.
- Low Rangeability.
- Requires clean liquid, gas or vapour as holes are easily clogged.
26
Annubar Tube
 An annubar is very similar to a pitot tube.
 The difference is that there is more than one hole into the pressure measuring
chambers.
 The pressure in the high pressure chamber represents an average of the velocity across
the pipe.
 Annubars are more accurate than pitot tubes as they are not as position sensitive to the
velocity to the velocity profile of the fluid.
27
Elbow Tap
 Elbow-Tap flow meter operates on the principle that when a fluid moves around a curved
path, the acceleration of the fluid creates centrifugal force.
 In operation, the centrifugal force results in a higher pressure on the outside of the elbow
than on the inside.
 Thus, a d/p is produced which is proportional to the square of the flow through the elbow.
 A pipe elbow can be used as a primary device.
 Elbow taps have an advantage in that most piping systems have elbows that can be used.
 In applications where cost is a factor and additional pressure loss from an orifice plate is
not permitted, the elbow meter is a viable differential pressure device.
 If an existing elbow is used then no additional pressure drop occurs and the expense
involved is minimal.
 They can also be produced in-situ from an existing bend, and are typically formed by two
tapings drilled at an angle of 45o through the bend.
 These tapings provide the high and low pressure tapping points respectively.
28
Elbow Tap
 Tappings at 22.5° have shown to provide more stable and reliable readings and are less
affected by upstream piping.
 However 45° tapings are more suited to bi-directional flow measurement.
 Velocity, pressure and elevation above the datum level for pressure taps on the inside
and outside surfaces of a 90° elbow can be related like
𝐶 𝑘
𝑣2
2𝑔
=
𝑃0
𝜌𝑔
+ 𝑍0 −
𝑃𝑖
𝜌𝑔
− 𝑍𝑖
𝑍𝑖 and 𝑍 𝑜are the lowest and highest points of tapping respectively.
 The volume flow rate is expressed as
𝑄 = 𝐴𝑣 =
𝐴
𝐶 𝑘
2𝑔(
𝑃𝑜
𝜌𝑔
+ 𝑍0 −
𝑃𝑖
𝜌𝑔
− 𝑍𝑖) = 𝐶. 𝐴 2𝑔(
𝑃𝑜
𝜌𝑔
+ 𝑍0 −
𝑃𝑖
𝜌𝑔
− 𝑍𝑖)
The value of C ranges from 0.56 to 0.88 and A is the area of cross – section of the pipe
29
Elbow Tap
 Advantages of Elbow
 - Simplified installation.
 - Inexpensive.
 Disadvantages of Elbow
 - Low accuracy
30
Open Channel Meters – Fall under Differential Flow meters
 The "open channel" refers to any conduit in which liquid flows with a free surface.
 Included are tunnels, non-pressurized sewers, partially filled pipes, canals, streams, and
rivers.
 Of the many techniques available for monitoring open-channel flows, depth-related
methods are the most common.
 These techniques presume that the instantaneous flow rate may be determined from a
measurement of the water depth, or head.
 Weirs and flumes are the oldest and most widely used primary devices for measuring
open-channel flows.
31
Weir
 The flow rate over a weir is a function of the weir geometry and of the weir head (the
weir head is defined as the vertical distance between the weir crest and the liquid
surface in the undisturbed region of the upstream flow).
 Weirs are variable head, variable area flow meters employed for measuring large
volumes of liquids in open channels.
 The device operates on the principle that if a restriction of specified shape and form is
introduced in flow path, a rise in the upstream liquid occurs which is a function of the
flow rate through the restriction.
 Weirs operate on the principle that an obstruction in a channel will cause water to back
up, creating a high level (head) behind the barrier.
 The head is a function of flow velocity, and, therefore, the flow rate through the
device. Weirs consist of vertical plates with sharp crests.
 The top of the plate can be straight or notched. Weirs are classified in accordance with
the shape of the notch. The basic types are V-notch, rectangular, and trapezoidal.
32
Weir
 Applying Bernoulli’s equation at undisturbed region of upstream flow and at the crest
of the weir, we get
𝐻 +
𝑉1
2
2𝑔
= 𝐻 − 𝑦 +
𝑉2
2
2𝑔
 Where 𝑉1 and 𝑉2 are the upstream flow and flow at the crest respectively
𝑉2 = 2𝑔(ℎ +
𝑉1
2
2𝑔
)
 If 𝑉1 is small compared to 𝑉2, then
𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 = 2𝑔𝑦,
𝑦 = depth from the top surface of water level.
33
Weir
𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 2𝑔𝑦𝐿 𝑊 𝑑𝑦
𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑜𝑓 𝑡ℎ𝑖𝑛 𝑙𝑎𝑦𝑒𝑟 = 𝐶 𝑑√2𝑔𝑦 𝐿_𝑊 𝑑𝑦,
 𝐶 𝑑 is the coefficient of discharge valuing between 0.57 and 0.64
 𝐿 𝑊 is the actual crest length
𝑄 𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐶 𝑑 𝐿 𝑊 2𝑔𝑦
0
𝐻
𝑦𝑑𝑦 =
2
3
𝐶 𝑑 𝐿 𝑊 2𝑔(𝐻)
3
2
 For rectangular weir,
𝑄 =
2
3
𝐶 𝑑(𝐿 𝑊−0.2𝐻) 2𝑔(𝐻)
3
2
 For triangular weir,
𝑄 =
8
15
𝑡𝑎𝑛
𝜃
2
2𝑔(𝐻)
5
2
34
Flume
 Flumes are generally used when head loss must be kept to a minimum, or if the
flowing liquid contains large amounts of suspended solids.
 Flumes are to open channels what venturi tubes are to closed pipes. Popular flumes are
the Parshall and Palmer-Bowlus designs.
 The Parshall flume consists of a converging upstream section, a throat, and a diverging
downstream section.
 Flume walls are vertical and the floor of the throat is inclined downward.
 Head loss through Parshall flumes is lower than for other types of open-channel flow
measuring devices.
 High flow velocities help make the flume self-cleaning. Flow can be measured
accurately under a wide range of conditions.
35
Flume
 Palmer-Bowlus flumes have a trapezoidal throat of uniform cross section and a length
about equal to the diameter of the pipe in which it is installed.
 It is comparable to a Parshall flume in accuracy and in ability to pass debris without
cleaning.
 A principal advantage is the comparative ease with which it can be installed in existing
circular conduits, because a rectangular approach section is not required.
 Discharge through weirs and flumes is a function of level, so level measurement
techniques must be used with the equipment to determine flow rates.
 Staff gages and float-operated units are the simplest devices used for this purpose.
 Various electronic sensing, totalizing, and recording systems are also available.
36
Flume 37
References:
 Chapter 11: Flow Measurement, “Industrial Instrumentation and
Control” by S K Singh. Tata McGraw Hill, 3rd Edition. 2009, New
Delhi. ISBN-13: 978-0-07-026222-5.
 Chapter 12: Flow Measurement, “Instrumentation, Measurement and
Analysis”. 2nd Edition, B C Nakra, K K Chaudhry, Tata McGraw-Hill,
New Delhi, 2005. ISBN: 0-07-048296-9.
 Chapter 7: Flowmeter, “Fundamentals of Industrial Instrumentation”,
1st Edition, Alok Barua, Wiley India Pvt. Ltd. New Delhi, 2011. ISBN:
978-81-265-2882-0.
 Chapter 5: Flow Measurement, “Principles of Industrial
Instrumentation”, 2nd Edition. D. Patranabis, Tata McGaw-Hill, New
Delhi, 2004. ISBN: 0-07-462334-6.
38

More Related Content

PDF
Flow measurement part III
PDF
Flow measurement part i
PDF
Flow measurement part IV
PPT
Flowmeters
PPTX
Flow measurement
PPTX
Level measurement
PPTX
Flow Measurnment
PPT
Flow measurement
Flow measurement part III
Flow measurement part i
Flow measurement part IV
Flowmeters
Flow measurement
Level measurement
Flow Measurnment
Flow measurement

What's hot (20)

PPTX
Flow measuring devices
PPT
various flow meter
PDF
Flowmeter - Brief
PPS
Basic flow measurement
PPT
Pressure Measurements | Comprehensive search
PPT
Pressure Measurement
PPTX
Flow measurement
PPT
Level measurement
PPSX
Principle of mass flow meter
PPT
Pressure measurement
PPTX
Level measurement ppt
PDF
Thermal Mass Flowmeter (ABB N.V.)
PPTX
Pitot tube
PDF
Flow measurement pdf
PPSX
Instrumentation measurement principles
PPTX
flow meters
PPT
Pressure measurement
ODP
Working Principle of Turbine Flow Meter
PPT
Basic Instrument Presentation ( pressure )
PPTX
Flow measurement
Flow measuring devices
various flow meter
Flowmeter - Brief
Basic flow measurement
Pressure Measurements | Comprehensive search
Pressure Measurement
Flow measurement
Level measurement
Principle of mass flow meter
Pressure measurement
Level measurement ppt
Thermal Mass Flowmeter (ABB N.V.)
Pitot tube
Flow measurement pdf
Instrumentation measurement principles
flow meters
Pressure measurement
Working Principle of Turbine Flow Meter
Basic Instrument Presentation ( pressure )
Flow measurement
Ad

Viewers also liked (17)

PDF
Variable Area Flow Meters Basics and Practices
PPT
Fluid flow and measurement
PDF
Analytical instrumentation introduction
PDF
Pressure Measurement Part I
PDF
Level Measurement
PDF
Mass Spectrometry
PDF
Power electronics Introduction
PDF
Optical Instrumentation - Part I Optometry Introduction - A
PDF
Pressure Measurement Part III
PDF
Bio medical instrument – introduction
PPT
Chap70
PDF
Industrial Instrumentation An Introduction
PDF
Temperature measurement part i
PDF
Temperature measurement part II
PDF
pH Measurement
PDF
Power Electronics - Power Semi – Conductor Devices
PDF
Pressure Measurement Part II
Variable Area Flow Meters Basics and Practices
Fluid flow and measurement
Analytical instrumentation introduction
Pressure Measurement Part I
Level Measurement
Mass Spectrometry
Power electronics Introduction
Optical Instrumentation - Part I Optometry Introduction - A
Pressure Measurement Part III
Bio medical instrument – introduction
Chap70
Industrial Instrumentation An Introduction
Temperature measurement part i
Temperature measurement part II
pH Measurement
Power Electronics - Power Semi – Conductor Devices
Pressure Measurement Part II
Ad

Similar to Flow measurement part II (20)

PDF
Flow measuring devices - It contents all type of Flow Measuring devices like ...
PDF
Chapter 2 Introduction to flow measurement
PDF
Flow measurement - It contents all type of Flow Measuring devices like Orifi...
PPTX
flowmeasurement-ppt modified.pptx
PPTX
process instrumentation and control lecture 2
PPTX
lecture 2 of process instrumentaiton and control
PDF
FLOW Measurement
PDF
Ch6_Flow Measurements.pdf
PPTX
Flow meters
PDF
Venturi meter. Flow experiment.. pushpendra singh
PPT
Flow-Measurement- it's definition , types, example ppt.ppt
PDF
Flowmeters is the instrument used for measuring flow in equipment.
PDF
unit-5-flowmeasurement.pdf
PPTX
Variable Headmeter
PDF
Design & analysis of laminar flow meter
PPTX
Asr flow measurement
PPTX
Ch. no. 4 flow measurement
PPT
12 Flow measurement.ppt
PDF
Measurement of flowing Fluid.pdf
PDF
INSTRUMENTATION IN EASY LANGUAGE.pdf
Flow measuring devices - It contents all type of Flow Measuring devices like ...
Chapter 2 Introduction to flow measurement
Flow measurement - It contents all type of Flow Measuring devices like Orifi...
flowmeasurement-ppt modified.pptx
process instrumentation and control lecture 2
lecture 2 of process instrumentaiton and control
FLOW Measurement
Ch6_Flow Measurements.pdf
Flow meters
Venturi meter. Flow experiment.. pushpendra singh
Flow-Measurement- it's definition , types, example ppt.ppt
Flowmeters is the instrument used for measuring flow in equipment.
unit-5-flowmeasurement.pdf
Variable Headmeter
Design & analysis of laminar flow meter
Asr flow measurement
Ch. no. 4 flow measurement
12 Flow measurement.ppt
Measurement of flowing Fluid.pdf
INSTRUMENTATION IN EASY LANGUAGE.pdf

More from Burdwan University (20)

PDF
2_MEMS - Sensors, Transducers & Actuators.pdf
PDF
1_MEMS - Introduction.pdf
PDF
Eqautions_1_Industrial Instrumentation - Flow Measurement Important Equations...
PDF
Temperature Unit Conversions.pdf
PDF
Pressure Unit Conversions.pdf
PDF
Industrial Instrumentation-Mathematical Expressions.pdf
PDF
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
PDF
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
PDF
Industrial instrumentation flow measurement important equations
PDF
Medical specializations
PDF
Electronic Measurement - Q Factor and Q Meter
PDF
Electronic Measurement - Power Factor Meter
PDF
Electronic Measurement - Insulation Resistance Measurement - Megger
PDF
pH and Conductivity Measurement
PDF
Relative Humidity Measurement
PDF
Viscosity Measurement
PDF
Electronic Measurement Flow Measurement
PDF
Electronic Measurement - Pressure Measurement
PDF
Electronic Measurement - Level Measurement
PDF
Electronic Measurement - Temperature Measurement
2_MEMS - Sensors, Transducers & Actuators.pdf
1_MEMS - Introduction.pdf
Eqautions_1_Industrial Instrumentation - Flow Measurement Important Equations...
Temperature Unit Conversions.pdf
Pressure Unit Conversions.pdf
Industrial Instrumentation-Mathematical Expressions.pdf
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
Industrial instrumentation flow measurement important equations
Medical specializations
Electronic Measurement - Q Factor and Q Meter
Electronic Measurement - Power Factor Meter
Electronic Measurement - Insulation Resistance Measurement - Megger
pH and Conductivity Measurement
Relative Humidity Measurement
Viscosity Measurement
Electronic Measurement Flow Measurement
Electronic Measurement - Pressure Measurement
Electronic Measurement - Level Measurement
Electronic Measurement - Temperature Measurement

Recently uploaded (20)

PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PPTX
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
PPTX
Geodesy 1.pptx...............................................
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PDF
737-MAX_SRG.pdf student reference guides
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
Well-logging-methods_new................
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PPTX
Construction Project Organization Group 2.pptx
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
Categorization of Factors Affecting Classification Algorithms Selection
PPTX
Artificial Intelligence
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
Geodesy 1.pptx...............................................
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
CYBER-CRIMES AND SECURITY A guide to understanding
737-MAX_SRG.pdf student reference guides
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Well-logging-methods_new................
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
Construction Project Organization Group 2.pptx
Automation-in-Manufacturing-Chapter-Introduction.pdf
Categorization of Factors Affecting Classification Algorithms Selection
Artificial Intelligence
R24 SURVEYING LAB MANUAL for civil enggi
Embodied AI: Ushering in the Next Era of Intelligent Systems

Flow measurement part II

  • 1. FLOW MEASUREMENT PART II ER. FARUK BIN POYEN, Asst. Professor DEPT. OF AEIE, UIT, BU, BURDWAN, WB, INDIA faruk.poyen@gmail.com
  • 2. Contents: Variable Head or Differential Meter  Orifice Plates  Venturi Tubes  Flow Nozzle  Dall Tubes  Pitot Tube  Annubar Tube  Elbow Tap  Weir  Flume 2
  • 3. Variable Head or Differential Meter  Working: A restriction in the line of a flowing fluid, introduced by the orifice plate or venturi tube or elbow, produces a differential pressure across the restriction element which is proportional to the flow rate. Head flow meters operate on the principle of placing a restriction in the line to cause a differential pressure head. The differential pressure, which is caused by the head, is measured and converted to a flow measurement.  The devices in general, can therefore be termed as “obstruction type” flow meters. 3
  • 4. Variable Head or Differential Meter  The proportionality is not a linear one but has a square root of relationship in that flow rate is proportional to the square root of the differential pressure. This is derived from Bernoulli’s theorem. Velocity head is defined as the vertical distance through which a liquid would fall to attain a given velocity. Pressure head is the vertical distance through which a column of the flowing liquid would rise in an open-end tube as a result of the static pressure. 𝑉 = 𝐾 2𝑔ℎ 𝜌 𝑄 = 𝐾𝐴 2𝑔ℎ 𝜌 𝑊 = 𝐾𝐴 2𝑔ℎ 𝜌 where 𝐾 = 𝐴1 𝐴2 𝐴1 2−𝐴2 2 2𝑔 Coefficient of discharge: 𝐶 𝑑 = 𝑄 𝑎𝑐𝑡𝑢𝑎𝑙 𝑄 𝑖𝑑𝑒𝑎𝑙 4 V = velocity of flowing fluid Q = volume flow rate W = mass flow rate A = cross – sectional area of pipe through which fluid is flowing h = differential head (pressure) across the restriction element g = acceleration due to gravity ρ = density of the flowing fluid 𝐾 = 𝐶 1− 𝛽4 C = discharge coefficient β = diameter ratio = d (diameter of restriction element)/D (inside diameter of the pipe)
  • 5. Variable Head Flow Meters  Rate of Discharge: 𝑄 = 𝐴1 𝑉1 = 𝐴2 𝑉2  Applying Bernoulli’s equation (ideal flow assumption) 𝑝1 + 𝜌𝑉1 2 2 = 𝑝2 + 𝜌𝑉2 2 2  The differential pressure head ∆ℎ is given by: 𝑝1 − 𝑝2 𝜌𝑔 = ∆ℎ  𝑄 𝑎𝑐𝑡𝑢𝑎𝑙 is always less than 𝑄𝑖𝑑𝑒𝑎𝑙as there are losses due to friction and eddying motions. 5
  • 6. Merits and Demerits – Differential Flow Meter  Advantages of Differential Flow meter  Relatively low cost for large lines  Offers widest application coverage of any type of meter  High accuracy (0.25 to 2 %)  Easily removable without tripping of the process  Highly adaptable  Disadvantages & Limitations  Relatively higher permanent pressure loss is involved  Difficult to use for slurry services  Exhibits square root relationship between head and flow rate, rather than linear characteristics, which limits the usable flow range ability to a 3:1 to 5:1 range.  Low flow rates are not easily measured  Faces difficulty to measure pulsating flow. The position of minimum pressure is located slightly downstream from the restriction at a point where the stream is the narrowest and is called the vena – contracta. Beyond this point, the pressure again rises but does not return to the upstream value resulting in a permanent pressure loss. 6
  • 7. Parts of a Differential Flow meter  It comprises two parts: Primary Element Secondary Element 7
  • 8. Parts of a Differential Flow meter – Primary Elements Primary element causes restriction in the path of flow and produces differential pressure. It comprises  i) Orifice plates  ii) Venturi tubes  iii) Flow nozzle  iv) Dall tubes  v) Pitot tubes  vi) Annubar tubes  vii) Elbow taps  viii) Weir  ix) Flume 8
  • 9. Parts of a Differential Flow meter – Secondary Elements Secondary element measures the differential pressure. It comprises  manometer  bellow meter  force balance  ring balance. 9
  • 10. Orifice  The orifice meter when installed in small to moderate sized pipes is probably the cheapest and simplest flow measuring device at present available for metering liquids, gases and vapours.  It is not suitable for high viscous liquids or fluids in a pulsating or extremely turbulent condition.  When the fluid flows through the orifice, its velocity increases and the diameter of the jet decreases to minimum at a point v, known as the vena contracta.  The jet expands until it again occupies the full bore of the pipe.  The static pressure profile first shows a gradual decrease over the distance L to M due to friction losses in the pipe. 10
  • 11. Orifice  From M to P, as light rise occurs due to the resistance of the orifice plate.  A sharp drop in the pressure occurs from P to R due to the fluid velocity through the orifice. Finally, there is a partial recovery of pressure from R to S.  The net pressure loss due to friction and turbulence across the orifice is, typically, about 65% of the pressure difference measured by d/p diaphragm.  The fluid flow is proportional to the square root of the pressure difference. 11
  • 12. Orifice  Advantages of Orifice - Simple construction. - Inexpensive. - Easily fitted between flanges. - No moving parts. - Large range of sizes and opening ratios. - Suitable for most gases and liquids. - Well understood and proven. - Price does not increase dramatically with size. 12
  • 13. Orifice  Disadvantages of Orifice - Inaccuracy, typically 1%. - Low rangeability, typically 4:1. - Accuracy is affected by density, pressure and viscosity fluctuations. - Erosion and physical damage to the restriction affects measurement accuracy. - Cause some unrecoverable pressure loss. - Viscosity limits measuring range. - Require straight pipe runs to ensure accuracy is maintained. - Pipeline must be full (typically for liquids). 13
  • 14. Orifice  Orifice Plate Designs: 1. Concentric – commonly used for general applications (gas, liquid & vapour). 2. Eccentric – recommended for fluids with extraneous matter to a degree that would clog up concentric type. 3. Segmental – recommended for fluids combine with vapour or vapour with fluids.  Types of Orifice Plate Entrance 1. Square Edge – applicable for higher pipe Reynolds Number; typical Re 500 to 10,000 2. Quadrant – for lower pipe Reynolds Number; typically ranges from Re 250 to 3300. 3. Conical – for Reynolds Number typically range from Re 25 to 75. 14
  • 15. Venturi Tubes  Venturi meter is used instead of an orifice plate in process systems where it is important to minimize permanent pressure loss across the restriction device.  In venturi, the restricting element is a tapered tube instead of sharp-edge orifice.  The tube gives a smoother velocity change which results in a small permanent pressure loss of approximately 10% of the differential pressure measurement. 15
  • 16. Venturi Tubes  Advantages of Venturi - Less significant pressure drop across restriction. - Less unrecoverable pressure loss. - Requires less straight pipe up and downstream.  Disadvantages of Venturi - More expensive. - Bulky - requires large section for installation. 16
  • 17. Comparison Orifice and Venturi Meters 1. Orifice reducing element is sharp edged while venturi is tapered tube. 2. Permanent pressure loss of orifice is 65% of measured d/p while venturi is only 10%. 3. Venturi tube is less sensitive to Reynolds Number and gives more accurate measurement when the process flow varies over a wide range. 4. Venturi tube is less affected by dirty fluid which build up deposits at orifice plates and pressure tap connections. 5. Venturi tube meter is more costly compared to orifice plate costly compared to orifice plate and requires greater length of pipeline. 6. Orifice plate is relatively easy to change for new range. 17
  • 18. Flow Nozzle  Flow nozzle is a restriction consisting of an elliptical contoured inlet and a cylindrical throat section.  Pressure taps used to measure the difference in static pressure created by flow nozzle are commonly located one pipe diameter (1D) upstream and ½ pipe diameter (1/2D) downstream from the inlet face of the nozzle.  The Flow Nozzle is similar to the venturi but are in the shape of an ellipse. They have a higher flow capacity than orifice plates.  Another main difference between the flow nozzle and the venturi is that although they have similar inlet nozzles, the flow nozzle has no exit section.  These devices are more cost effective, but as such they provide less accuracy than venturis, and have a higher unrecoverable pressure loss. 18
  • 19. Flow Nozzle  Flow Nozzles can handle larger solids and be used for higher velocities, greater turbulence and high temperature applications.  They are often used with fluid or steam applications containing some suspended solids, and in applications where the product is being discharged from service. 19
  • 20. Flow Nozzle  Advantages of Flow nozzle - High velocity applications. - Operate in higher turbulence. - Used with fluids containing suspended solids. - More cost effective than venturis. - Physically smaller than the venturi.  Disadvantages of Flow nozzle - More expensive than orifice plates. - Higher unrecoverable pressure loss. 20
  • 21. Dall Tube  Dall tube consists of two conical reducers inserted into the fluid – carrying pipe. It has a shape very similar to venturi without throat.  The construction of Dall is much simpler than that of venture which needs complex machinery.  It is much shorter in length which makes its insertion into flow line easier.  Its perimeter pressure loss is only 5 % of measured pressure differential and thus it is only half that due to a venturi.  On the basis of maintenance and operational life, Dall and venturi are similar. 21
  • 22. Dall Tube  Advantages of Dall - Shorter lay length. - Lower unrecoverable pressure loss.  Disadvantages of Dall - More complex to manufacture. - Sensitive to turbulence. - Accuracy based on flow data. 22
  • 23. Pitot Tube  The pitot tube is a tube with an open end facing the incoming fluid stream.  The Pitot tube measures flow based on differential pressure and is primarily used with gas flows.  The Pitot tube is a small tube that is directed into the flow stream.  This measures the total pressure (dynamic and static combined). A second measurement is required, being of static pressure.  The difference between the two measurements gives a value for dynamic pressure.  The flow rate, like other devices, is calculated from the square root of the pressure.  In calculating the flow rate from the pressure, the calculation is dependent on such factors as tube design and the location of the static tap.  The Pitot-static probe incorporates the static holes in the tube system to eliminate this parameter. 23
  • 24. Pitot Tube  The Pitot tube is also used to determine the velocity profile in a pipe.  This is done by measuring points at various distances from the pipe wall to construct a velocity profile.  The Pitot tube is the primary device.  It has the advantage over orifice meters of practically no pressure drop.  Its usefulness is limited to clean gases and liquids as the sensing element is a small orifice.  Foreign materials tend to plug the openings in the tube, and the classical Pitot tube senses impact pressure at one point only, thus decreasing accuracy.  Assuming a steady, one – dimensional flow of an incompressible, frictionless fluid with no heat loss for free stream velocity and applying Bernoulli’s principle between a point in the free stream and another at the tip of the stagnation tube, we may write 𝑝𝑠𝑡𝑎𝑡 𝜌 + 𝑉2 2 = 𝑝𝑠𝑡𝑎𝑔 𝜌 24
  • 25. Pitot Tube 𝑉 = 2(𝑝𝑠𝑡𝑎𝑔 − 𝑝𝑠𝑡𝑎𝑡) 𝜌 ∆𝑝 = 1 2 𝜌𝑉2 →→→→ 𝑉 ∝ ∆𝑝 𝑤ℎ𝑒𝑟𝑒 ∆𝑝 = 𝑝𝑠𝑡𝑎𝑔 − 𝑝𝑠𝑡𝑎𝑡  Pitot tubes develop a very low differential pressure, which can often be difficult to measure with the secondary element.  Also the accuracy of the device is dependent on the velocity profile of the fluid.  The velocity profile is also affected by turbulence in the flow stream. 25
  • 26. Pitot Tube  Advantages of Pitot tube - Low cost. - Low permanent pressure loss. - Ease of installation into existing systems.  Disadvantages of Pitot tube - Low accuracy. - Low Rangeability. - Requires clean liquid, gas or vapour as holes are easily clogged. 26
  • 27. Annubar Tube  An annubar is very similar to a pitot tube.  The difference is that there is more than one hole into the pressure measuring chambers.  The pressure in the high pressure chamber represents an average of the velocity across the pipe.  Annubars are more accurate than pitot tubes as they are not as position sensitive to the velocity to the velocity profile of the fluid. 27
  • 28. Elbow Tap  Elbow-Tap flow meter operates on the principle that when a fluid moves around a curved path, the acceleration of the fluid creates centrifugal force.  In operation, the centrifugal force results in a higher pressure on the outside of the elbow than on the inside.  Thus, a d/p is produced which is proportional to the square of the flow through the elbow.  A pipe elbow can be used as a primary device.  Elbow taps have an advantage in that most piping systems have elbows that can be used.  In applications where cost is a factor and additional pressure loss from an orifice plate is not permitted, the elbow meter is a viable differential pressure device.  If an existing elbow is used then no additional pressure drop occurs and the expense involved is minimal.  They can also be produced in-situ from an existing bend, and are typically formed by two tapings drilled at an angle of 45o through the bend.  These tapings provide the high and low pressure tapping points respectively. 28
  • 29. Elbow Tap  Tappings at 22.5° have shown to provide more stable and reliable readings and are less affected by upstream piping.  However 45° tapings are more suited to bi-directional flow measurement.  Velocity, pressure and elevation above the datum level for pressure taps on the inside and outside surfaces of a 90° elbow can be related like 𝐶 𝑘 𝑣2 2𝑔 = 𝑃0 𝜌𝑔 + 𝑍0 − 𝑃𝑖 𝜌𝑔 − 𝑍𝑖 𝑍𝑖 and 𝑍 𝑜are the lowest and highest points of tapping respectively.  The volume flow rate is expressed as 𝑄 = 𝐴𝑣 = 𝐴 𝐶 𝑘 2𝑔( 𝑃𝑜 𝜌𝑔 + 𝑍0 − 𝑃𝑖 𝜌𝑔 − 𝑍𝑖) = 𝐶. 𝐴 2𝑔( 𝑃𝑜 𝜌𝑔 + 𝑍0 − 𝑃𝑖 𝜌𝑔 − 𝑍𝑖) The value of C ranges from 0.56 to 0.88 and A is the area of cross – section of the pipe 29
  • 30. Elbow Tap  Advantages of Elbow  - Simplified installation.  - Inexpensive.  Disadvantages of Elbow  - Low accuracy 30
  • 31. Open Channel Meters – Fall under Differential Flow meters  The "open channel" refers to any conduit in which liquid flows with a free surface.  Included are tunnels, non-pressurized sewers, partially filled pipes, canals, streams, and rivers.  Of the many techniques available for monitoring open-channel flows, depth-related methods are the most common.  These techniques presume that the instantaneous flow rate may be determined from a measurement of the water depth, or head.  Weirs and flumes are the oldest and most widely used primary devices for measuring open-channel flows. 31
  • 32. Weir  The flow rate over a weir is a function of the weir geometry and of the weir head (the weir head is defined as the vertical distance between the weir crest and the liquid surface in the undisturbed region of the upstream flow).  Weirs are variable head, variable area flow meters employed for measuring large volumes of liquids in open channels.  The device operates on the principle that if a restriction of specified shape and form is introduced in flow path, a rise in the upstream liquid occurs which is a function of the flow rate through the restriction.  Weirs operate on the principle that an obstruction in a channel will cause water to back up, creating a high level (head) behind the barrier.  The head is a function of flow velocity, and, therefore, the flow rate through the device. Weirs consist of vertical plates with sharp crests.  The top of the plate can be straight or notched. Weirs are classified in accordance with the shape of the notch. The basic types are V-notch, rectangular, and trapezoidal. 32
  • 33. Weir  Applying Bernoulli’s equation at undisturbed region of upstream flow and at the crest of the weir, we get 𝐻 + 𝑉1 2 2𝑔 = 𝐻 − 𝑦 + 𝑉2 2 2𝑔  Where 𝑉1 and 𝑉2 are the upstream flow and flow at the crest respectively 𝑉2 = 2𝑔(ℎ + 𝑉1 2 2𝑔 )  If 𝑉1 is small compared to 𝑉2, then 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 = 2𝑔𝑦, 𝑦 = depth from the top surface of water level. 33
  • 34. Weir 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 2𝑔𝑦𝐿 𝑊 𝑑𝑦 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑜𝑓 𝑡ℎ𝑖𝑛 𝑙𝑎𝑦𝑒𝑟 = 𝐶 𝑑√2𝑔𝑦 𝐿_𝑊 𝑑𝑦,  𝐶 𝑑 is the coefficient of discharge valuing between 0.57 and 0.64  𝐿 𝑊 is the actual crest length 𝑄 𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐶 𝑑 𝐿 𝑊 2𝑔𝑦 0 𝐻 𝑦𝑑𝑦 = 2 3 𝐶 𝑑 𝐿 𝑊 2𝑔(𝐻) 3 2  For rectangular weir, 𝑄 = 2 3 𝐶 𝑑(𝐿 𝑊−0.2𝐻) 2𝑔(𝐻) 3 2  For triangular weir, 𝑄 = 8 15 𝑡𝑎𝑛 𝜃 2 2𝑔(𝐻) 5 2 34
  • 35. Flume  Flumes are generally used when head loss must be kept to a minimum, or if the flowing liquid contains large amounts of suspended solids.  Flumes are to open channels what venturi tubes are to closed pipes. Popular flumes are the Parshall and Palmer-Bowlus designs.  The Parshall flume consists of a converging upstream section, a throat, and a diverging downstream section.  Flume walls are vertical and the floor of the throat is inclined downward.  Head loss through Parshall flumes is lower than for other types of open-channel flow measuring devices.  High flow velocities help make the flume self-cleaning. Flow can be measured accurately under a wide range of conditions. 35
  • 36. Flume  Palmer-Bowlus flumes have a trapezoidal throat of uniform cross section and a length about equal to the diameter of the pipe in which it is installed.  It is comparable to a Parshall flume in accuracy and in ability to pass debris without cleaning.  A principal advantage is the comparative ease with which it can be installed in existing circular conduits, because a rectangular approach section is not required.  Discharge through weirs and flumes is a function of level, so level measurement techniques must be used with the equipment to determine flow rates.  Staff gages and float-operated units are the simplest devices used for this purpose.  Various electronic sensing, totalizing, and recording systems are also available. 36
  • 38. References:  Chapter 11: Flow Measurement, “Industrial Instrumentation and Control” by S K Singh. Tata McGraw Hill, 3rd Edition. 2009, New Delhi. ISBN-13: 978-0-07-026222-5.  Chapter 12: Flow Measurement, “Instrumentation, Measurement and Analysis”. 2nd Edition, B C Nakra, K K Chaudhry, Tata McGraw-Hill, New Delhi, 2005. ISBN: 0-07-048296-9.  Chapter 7: Flowmeter, “Fundamentals of Industrial Instrumentation”, 1st Edition, Alok Barua, Wiley India Pvt. Ltd. New Delhi, 2011. ISBN: 978-81-265-2882-0.  Chapter 5: Flow Measurement, “Principles of Industrial Instrumentation”, 2nd Edition. D. Patranabis, Tata McGaw-Hill, New Delhi, 2004. ISBN: 0-07-462334-6. 38