SlideShare a Scribd company logo
王 俊 鑫 (Chun-Hsin Wang)
中華大學 資訊工程系
Fall 2002
Chap 1 First-Order
Differential Equations
Page 2
Outline
 Basic Concepts
 Separable Differential Equations
 substitution Methods
 Exact Differential Equations
 Integrating Factors
 Linear Differential Equations
 Bernoulli Equations
Page 3
Basic Concepts
 Differentiation
x
e
x
x
x
a
a
a
e
e
nx
x
a
a
x
x
x
x
n
n
log
)
(log
1
)
(ln
ln
)
(
)
(
)
( 1









 
x
x
x
x
x
x
x
x
x
x
x
x
x
x
cot
csc
)
(csc
tan
sec
)
(sec
csc
)
(cot
sec
)
(tan
sin
)
(cos
cos
)
(sin
2
2















Page 4
Basic Concepts
 Differentiation
x
x
x
x
sinh
)
(cosh
cosh
)
(sinh




2
1
2
1
2
1
2
1
1
1
)
(cot
1
1
)
(tan
1
1
)
(cos
1
1
)
(sin
x
x
x
x
x
x
x
x


















Page 5
Basic Concepts
 Integration
c
a
a
dx
a
c
e
dx
e
c
x
dx
x
dx
x
c
n
x
dx
x
x
x
x
x
n
n

















ln
ln
1
1
1
1



















vdx
u
uv
dx
v
u
vdu
uv
udv
udx
c
cudx
vdx
udx
dx
v
u )
(
Page 6
Basic Concepts
 Integration
c
x
x
xdx
c
x
x
xdx
c
x
xdx
c
x
xdx
c
x
xdx
c
x
xdx






















cot
csc
ln
csc
tan
sec
ln
sec
sin
ln
cot
cos
ln
tan
sin
cos
cos
sin
Page 7
Basic Concepts
 Integration
c
a
x
dx
a
x
c
a
x
dx
a
x
c
a
x
dx
x
a
c
a
x
a
dx
a
x




















1
2
2
1
2
2
1
2
2
1
2
2
cosh
1
sinh
1
sin
1
tan
1
1
Page 8
Basic Concepts
 ODE vs. PDE
 Dependent Variables vs. Independent
Variables
 Order
 Linear vs. Nonlinear
 Solutions
Page 9
Basic Concepts
 Ordinary Differential Equations
 An unknown function (dependent variable) y
of one independent variable x
x
dx
dy
y cos



0
4 


 y
y
2
2
2
)
2
(
2 y
x
y
e
y
y
x x









Page 10
Basic Concepts
 Partial Differential Equations
 An unknown function (dependent variable)
z of two or more independent variables
(e.g. x and y)
y
x
x
z
4
6 



y
x
y
x
z





2
2
Page 11
Basic Concepts
 The order of a differential equation is
the order of the highest derivative that
appears in the equation.
0
)
( 2
2
3






 y
n
x
y
x
y
x Order 2
2
2
1
y
x
dx
dy

 Order 1
1
)
( 4
3
2
2

 y
dx
y
d
Order 2
Page 12
Basic Concept
 The first-order differential equation contain only y’
and may contain y and given function of x.
 A solution of a given first-order differential equation
(*) on some open interval a<x<b is a function
y=h(x) that has a derivative y’=h(x) and satisfies
(*) for all x in that interval.
)
,
(
'
0
)
'
,
,
(
y
x
F
y
y
y
x
F


or (*)
Page 13
Basic Concept
 Example : Verify the solution
x
2
y
2y
xy'


Page 14
Basic Concepts
 Explicit Solution
 Implicit Solution
)
(x
h
y 
0
)
,
( 
y
x
H
Page 15
Basic Concept
 General solution vs. Particular solution
 General solution
 arbitrary constant c
 Particular solution
 choose a specific c
,....
2
,
3
'






c
c
sinx
y
cosx
y
Page 16
Basic Concept
 Singular solutions
 Def : A differential equation may sometimes have an
additional solution that cannot be obtained from the
general solution and is then called a singular
solution.
 Example
The general solution : y=cx-c2
A singular solution : y=x2/4
0
' 

 y
xy
y'
2
Page 17
Basic Concepts
 General Solution
 Particular Solution for y(0)=2 (initial condition)
kt
ce
t
y 
)
(
kt
e
t
y 2
)
( 
ky
y 

Page 18
Basic Concept
 Def: A differential equation together
with an initial condition is called an
initial value problem
0
0)
(
),
,
(
' y
x
y
y
x
f
y 

Page 19
Separable Differential Equations
 Def: A first-order differential equation of
the form
is called a separable differential
equation
dx
x
f
dy
y
g
f(x)
g(y)y
)
(
)
(
'


Page 20
Separable Differential Equations
 Example :
Sol:
0
4
9 

 x
y
y
Page 21
Separable Differential Equations
 Example :
Sol:
2
1 y
y 


Page 22
Separable Differential Equations
 Example :
Sol:
ky
y 

Page 23
Separable Differential Equations
 Example :
Sol:
1
)
0
(
,
2 


 y
xy
y
Page 24
Separable Differential Equations
 Substitution Method:
A differential equation of the form
can be transformed into a separable
differential equation
)
(
x
y
g
y 

Page 25
Separable Differential Equations
 Substitution Method:
ux
y  u
x
u
y 



x
dx
u
u
g
du
u
u
g
x
u
u
g
u
x
u










)
(
)
(
)
(
Page 26
Separable Differential Equations
 Example :
Sol:
2
2
2 x
y
y
xy 


cx
y
x
x
c
x
y
x
c
u
c
x
c
x
u
x
dx
u
udu
u
u
u
x
u
y
x
x
y
xy
x
xy
y
y
x
y
y
xy








































2
2
2
2
1
1
2
2
2
2
2
2
1
1
1
ln
ln
)
1
ln(
1
2
)
1
(
2
1
)
(
2
1
2
2
2
Page 27
Separable Differential Equations
 Exercise 1
2
01
.
0
1 y
y 


2
/
xy
y 

y
y
y
x 

 2
2
)
2
(
,
0
' 


 y
y
xy
Page 28
Exact Differential Equations
 Def: A first-order differential equation of
the form
is said to be exact if
0
)
,
(
)
,
( 
 dy
y
x
N
dx
y
x
M
x
y
x
N
y
y
x
M



)
,
(
)
,
(
Page 29
Exact Differential Equations
 Proof:
0
)
,
(
)
,
(
0
)
,
(









dy
y
x
N
dx
y
x
M
dy
y
u
dx
x
u
y
x
du
x
y
x
N
y
y
x
M
y
x
y
x
u






 )
,
(
)
,
(
)
,
(
Page 30
Exact Differential Equations
 Example :
Sol:
0
)
3
(
)
3
( 3
2
2
3



 dy
y
y
x
dx
xy
x
Exact
xy
x
N
y
M
xy
x
y
y
x
xy
y
xy
x
,
6
6
3
6
3
3
2
2
3













Page 31
Exact Differential Equations
Sol:
)
(
2
3
4
1
)
(
)
3
(
)
(
2
2
4
2
3
y
k
y
x
x
y
k
dx
xy
x
y
k
Mdx
u










1
4
3
2
2
4
)
(
3
)
(
3
c
y
y
k
y
y
x
N
dy
y
dk
y
x
y
u










Page 32
Exact Differential Equations
Sol:
c
y
y
x
x
y
x
u 


 )
6
(
4
1
)
,
( 4
2
2
4
Page 33
Exact Differential Equations
 Example
3
)
0
(
0
)
sinh
(cos
)
cosh
(sin



y
dy
y
x
dx
y
x
Page 34
Non-Exactness
 Example : 0


 xdy
ydx
Page 35
Integrating Factor
 Def: A first-order differential equation of the form
is not exact, but it will be exact if multiplied by
F(x, y)
then F(x,y) is called an integrating factor of this
equation
0
)
,
(
)
,
( 
 dy
y
x
Q
dx
y
x
P
0
)
,
(
)
,
(
)
,
(
)
,
( 
 dy
y
x
Q
y
x
F
dx
y
x
P
y
x
F
Page 36
Exact Differential Equations
 How to find integrating factor
 Golden Rule
x
x
y
y FQ
Q
F
FP
P
F
Exact
x
FQ
y
FP
FQdy
FPdx












,
0
)
(
1
1
0
Let
x
y
x
y
Q
P
Q
dx
dF
F
FQ
Q
dx
dF
FP
P
F(x)
F








Page 37
Exact Differential Equations
 Example :
Sol:
0


 xdy
ydx
Exact
x
N
x
y
M
dy
x
dx
x
y
x
xdy
ydx
x
F
,
1
1
1
2
2
2
2













Page 38
Exact Differential Equations
Sol:
cx
y
c
x
y
x
y
d
dy
x
dx
x
y







 0
)
(
1
2
Page 39
Exact Differential Equations
 Example :
2
)
2
(
0
)
cos(
)
sin(
2 2
2




y
dy
y
xy
dx
y
Page 40
Exact Differential Equations
 Exercise 2
0
2 2

 dy
x
xydx 0
)
( 2
2





d
r
rdr
e
x
e
F
ydy
ydx 

 ,
0
cos
sin
b
a
y
x
F
xdy
b
ydx
a 



 ,
0
)
1
(
)
1
(
0
)
1
(
)
1
( 


 dy
x
dx
y
Page 41
Linear Differential Equations
 Def: A first-order differential equation is
said to be linear if it can be written
 If r(x) = 0, this equation is said to be
homogeneous
)
(
)
( x
r
y
x
p
y 


Page 42
Linear Differential Equations
 How to solve first-order linear homogeneous
ODE ?
Sol:
0
)
( 

 y
x
p
y




 















dx
x
p
c
dx
x
p
c
dx
x
p
ce
e
e
e
y
c
dx
x
p
y
dx
x
p
y
dy
y
x
p
dx
dy
)
(
)
(
)
(
1
1
1
)
(
ln
)
(
0
)
(
Page 43
Linear Differential Equations
 Example :
Sol:
0


 y
y
x
c
x
c
x
dx
dx
x
p
e
c
e
ce
ce
ce
ce
x
y
2
)
1
(
)
(
1
1
)
(











Page 44
Linear Differential Equations
 How to solve first-order linear nonhomogeneous
ODE ?
Sol:
)
(
)
( x
r
y
x
p
y 


)
(
))
(
)
(
(
)
(
1
1
0
))
(
)
(
(
)
(
)
(
x
p
x
r
y
x
p
y
Q
P
Q
dx
dF
F
dy
dx
x
r
y
x
p
x
r
y
x
p
dx
dy
x
y 













Page 45
Linear Differential Equations
Sol:


dx
x
p
e
x
F
)
(
)
(





 




















c
dx
r
e
e
x
y
c
dx
r
e
y
e
r
e
y
e
py
y
e
dx
x
p
dx
x
p
dx
x
p
dx
x
p
dx
x
p
dx
x
p
dx
x
p
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
Page 46
Linear Differential Equations
 Example :
Sol:
x
e
y
y 2



 
 
x
x
x
x
x
x
x
x
dx
dx
dx
x
p
dx
x
p
e
ce
c
e
e
c
dx
e
e
e
c
dx
e
e
e
c
dx
r
e
e
x
y
2
2
2
)
1
(
)
1
(
)
(
)
(
)
(











 








 











Page 47
Linear Differential Equations
 Example :
)
2
cos
2
2
sin
3
(
2 x
x
e
y
y x
'



Page 48
Bernoulli, Jocob
Bernoulli, Jocob
1654-1705
Page 49
Linear Differential Equations
 Def: Bernoulli equations
 If a = 0, Bernoulli Eq. => First Order
Linear Eq.
 If a <> 0, let u = y1-a
a
y
x
g
y
x
p
y )
(
)
( 


g
a
pu
a
u )
1
(
)
1
( 




Page 50
Linear Differential Equations
 Example :
Sol:
2
By
Ay
y 



 
A
B
ce
u
y
A
B
ce
c
dx
e
A
B
e
c
dx
Be
e
u
B
Au
u
Ay
B
Ay
By
y
y
y
u
y
y
y
u
Ax
Ax
Ax
Ax
Ax
Ax
a














































1
1
)
( 1
2
2
2
1
2
1
1
Page 51
Linear Differential Equations
 Exercise 3
4


 y
y kx
e
ky
y 



2
2 y
y
y 


1



 xy
xy
y
)
2
(
,
sin
3 
y
x
y
y 


Page 52
Summary
可分離 Separable 
變換法 Substitution 
正合 Exact 
積分因子 Integrating Factor 
線性 Linear 
柏努利 Bernoulli 
dx
x
f
dy
y
g )
(
)
( 
dx
x
f
du
u
g )
(
)
( 
0
)
,
(
)
,
( 
 dy
y
x
N
dx
y
x
M
0

 FQdy
FPdx
)
(
)
( x
r
y
x
p
y 


a
y
x
g
y
x
p
y )
(
)
( 


Page 53
Orthogonal Trajectories of
Curves
 Angle of intersection of two curves is
defined to be the angle between the
tangents of the curves at the point of
intersection
 How to use differential equations for
finding curves that intersect given
curves at right angles ?
Page 54
How to find Orthogonal Trajectories
 1st Step: find a differential equation
for a given cure
 2nd Step: the differential equation of the
orthogonal trajectories to be found
 3rd step: solve the differential equation
as above ( in 2nd step)
)
,
( y
x
f
y 
)
,
( y
x
f
y' 
)
,
(
1
y
x
f
y' 

Page 55
Orthogonal Trajectories of Curves
 Example: given a curve y=cx2, where c
is arbitrary. Find their orthogonal
trajectories.
Sol:
Page 56
Existance and Uniqueness of Solution
 An initial value problem may have no
solutions, precisely one solution, or
more than one solution.
 Example
1
)
0
(
,
0
' 

 y
y
y
1
)
0
(
,
' 
 y
x
y
1
)
0
(
,
1
' 

 y
y
xy
No solutions
Precisely one solutions
More than one solutions
Page 57
Existence and uniqueness theorems
 Problem of existence
 Under what conditions does an initial
value problem have at least one
solution ?
 Existence theorem, see page 53
 Problem of uniqueness
 Under what conditions does that the
problem have at most one solution ?
 Uniqueness theorem, see page54

More Related Content

PDF
Answers to Problems for Advanced Engineering Mathematics 6th Edition Internat...
PPT
First_Order_Differential_Equations_PPT.ppt
PDF
First Order Differential Equations
PPT
First order differential equations
PPT
first order ode with its application
PDF
MRS EMMAH.pdf
PPTX
Differential equations of first order
PDF
microproject@math (1).pdf
Answers to Problems for Advanced Engineering Mathematics 6th Edition Internat...
First_Order_Differential_Equations_PPT.ppt
First Order Differential Equations
First order differential equations
first order ode with its application
MRS EMMAH.pdf
Differential equations of first order
microproject@math (1).pdf

Similar to fode1.ppt (20)

PPT
Ordinary differential equation Presentation
PDF
Chapter 1: First-Order Ordinary Differential Equations/Slides
PDF
Solutions for Problems in "A First Course in Differential Equations" (11th Ed...
PPTX
ODE & Vector Calculus .pptx
PDF
Differential equation study guide for exam (formula sheet)
PDF
PPT
1st order differential equations
PPTX
Automobile 3rd sem aem ppt.2016
PDF
Documents.mx eduv
PPTX
ORDINARY DIFFERENTIAL EQUATION
PDF
258 lecnot2
PDF
Answers to Problems for Advanced Engineering Mathematics, 7th Edition by Denn...
PPTX
differentiol equation.pptx
PPTX
First Order Ordinary Differential Equations FAHAD SHAHID.pptx
PDF
UNIT-III.pdf
PPTX
Differential Equations
PPTX
odes1.pptx
PPTX
Differential equations
PPTX
Presentations Differential equation.pptx
PPTX
Ordinary differential equation
Ordinary differential equation Presentation
Chapter 1: First-Order Ordinary Differential Equations/Slides
Solutions for Problems in "A First Course in Differential Equations" (11th Ed...
ODE & Vector Calculus .pptx
Differential equation study guide for exam (formula sheet)
1st order differential equations
Automobile 3rd sem aem ppt.2016
Documents.mx eduv
ORDINARY DIFFERENTIAL EQUATION
258 lecnot2
Answers to Problems for Advanced Engineering Mathematics, 7th Edition by Denn...
differentiol equation.pptx
First Order Ordinary Differential Equations FAHAD SHAHID.pptx
UNIT-III.pdf
Differential Equations
odes1.pptx
Differential equations
Presentations Differential equation.pptx
Ordinary differential equation
Ad

Recently uploaded (20)

PPTX
Seminar Hypertension and Kidney diseases.pptx
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PPTX
Pharmacology of Autonomic nervous system
PDF
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PDF
BET Eukaryotic signal Transduction BET Eukaryotic signal Transduction.pdf
PPTX
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
PDF
CHAPTER 3 Cell Structures and Their Functions Lecture Outline.pdf
PPTX
perinatal infections 2-171220190027.pptx
PPTX
Overview of calcium in human muscles.pptx
PPTX
C1 cut-Methane and it's Derivatives.pptx
PPT
veterinary parasitology ````````````.ppt
PPT
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
PPTX
BIOMOLECULES PPT........................
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PPTX
TOTAL hIP ARTHROPLASTY Presentation.pptx
PPTX
Introduction to Cardiovascular system_structure and functions-1
PPTX
Microbes in human welfare class 12 .pptx
PPTX
Science Quipper for lesson in grade 8 Matatag Curriculum
Seminar Hypertension and Kidney diseases.pptx
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
Pharmacology of Autonomic nervous system
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
BET Eukaryotic signal Transduction BET Eukaryotic signal Transduction.pdf
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
CHAPTER 3 Cell Structures and Their Functions Lecture Outline.pdf
perinatal infections 2-171220190027.pptx
Overview of calcium in human muscles.pptx
C1 cut-Methane and it's Derivatives.pptx
veterinary parasitology ````````````.ppt
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
BIOMOLECULES PPT........................
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
TOTAL hIP ARTHROPLASTY Presentation.pptx
Introduction to Cardiovascular system_structure and functions-1
Microbes in human welfare class 12 .pptx
Science Quipper for lesson in grade 8 Matatag Curriculum
Ad

fode1.ppt

  • 1. 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 1 First-Order Differential Equations
  • 2. Page 2 Outline  Basic Concepts  Separable Differential Equations  substitution Methods  Exact Differential Equations  Integrating Factors  Linear Differential Equations  Bernoulli Equations
  • 3. Page 3 Basic Concepts  Differentiation x e x x x a a a e e nx x a a x x x x n n log ) (log 1 ) (ln ln ) ( ) ( ) ( 1            x x x x x x x x x x x x x x cot csc ) (csc tan sec ) (sec csc ) (cot sec ) (tan sin ) (cos cos ) (sin 2 2               
  • 4. Page 4 Basic Concepts  Differentiation x x x x sinh ) (cosh cosh ) (sinh     2 1 2 1 2 1 2 1 1 1 ) (cot 1 1 ) (tan 1 1 ) (cos 1 1 ) (sin x x x x x x x x                  
  • 5. Page 5 Basic Concepts  Integration c a a dx a c e dx e c x dx x dx x c n x dx x x x x x n n                  ln ln 1 1 1 1                    vdx u uv dx v u vdu uv udv udx c cudx vdx udx dx v u ) (
  • 6. Page 6 Basic Concepts  Integration c x x xdx c x x xdx c x xdx c x xdx c x xdx c x xdx                       cot csc ln csc tan sec ln sec sin ln cot cos ln tan sin cos cos sin
  • 7. Page 7 Basic Concepts  Integration c a x dx a x c a x dx a x c a x dx x a c a x a dx a x                     1 2 2 1 2 2 1 2 2 1 2 2 cosh 1 sinh 1 sin 1 tan 1 1
  • 8. Page 8 Basic Concepts  ODE vs. PDE  Dependent Variables vs. Independent Variables  Order  Linear vs. Nonlinear  Solutions
  • 9. Page 9 Basic Concepts  Ordinary Differential Equations  An unknown function (dependent variable) y of one independent variable x x dx dy y cos    0 4     y y 2 2 2 ) 2 ( 2 y x y e y y x x         
  • 10. Page 10 Basic Concepts  Partial Differential Equations  An unknown function (dependent variable) z of two or more independent variables (e.g. x and y) y x x z 4 6     y x y x z      2 2
  • 11. Page 11 Basic Concepts  The order of a differential equation is the order of the highest derivative that appears in the equation. 0 ) ( 2 2 3        y n x y x y x Order 2 2 2 1 y x dx dy   Order 1 1 ) ( 4 3 2 2   y dx y d Order 2
  • 12. Page 12 Basic Concept  The first-order differential equation contain only y’ and may contain y and given function of x.  A solution of a given first-order differential equation (*) on some open interval a<x<b is a function y=h(x) that has a derivative y’=h(x) and satisfies (*) for all x in that interval. ) , ( ' 0 ) ' , , ( y x F y y y x F   or (*)
  • 13. Page 13 Basic Concept  Example : Verify the solution x 2 y 2y xy'  
  • 14. Page 14 Basic Concepts  Explicit Solution  Implicit Solution ) (x h y  0 ) , (  y x H
  • 15. Page 15 Basic Concept  General solution vs. Particular solution  General solution  arbitrary constant c  Particular solution  choose a specific c ,.... 2 , 3 '       c c sinx y cosx y
  • 16. Page 16 Basic Concept  Singular solutions  Def : A differential equation may sometimes have an additional solution that cannot be obtained from the general solution and is then called a singular solution.  Example The general solution : y=cx-c2 A singular solution : y=x2/4 0 '    y xy y' 2
  • 17. Page 17 Basic Concepts  General Solution  Particular Solution for y(0)=2 (initial condition) kt ce t y  ) ( kt e t y 2 ) (  ky y  
  • 18. Page 18 Basic Concept  Def: A differential equation together with an initial condition is called an initial value problem 0 0) ( ), , ( ' y x y y x f y  
  • 19. Page 19 Separable Differential Equations  Def: A first-order differential equation of the form is called a separable differential equation dx x f dy y g f(x) g(y)y ) ( ) ( '  
  • 20. Page 20 Separable Differential Equations  Example : Sol: 0 4 9    x y y
  • 21. Page 21 Separable Differential Equations  Example : Sol: 2 1 y y   
  • 22. Page 22 Separable Differential Equations  Example : Sol: ky y  
  • 23. Page 23 Separable Differential Equations  Example : Sol: 1 ) 0 ( , 2     y xy y
  • 24. Page 24 Separable Differential Equations  Substitution Method: A differential equation of the form can be transformed into a separable differential equation ) ( x y g y  
  • 25. Page 25 Separable Differential Equations  Substitution Method: ux y  u x u y     x dx u u g du u u g x u u g u x u           ) ( ) ( ) (
  • 26. Page 26 Separable Differential Equations  Example : Sol: 2 2 2 x y y xy    cx y x x c x y x c u c x c x u x dx u udu u u u x u y x x y xy x xy y y x y y xy                                         2 2 2 2 1 1 2 2 2 2 2 2 1 1 1 ln ln ) 1 ln( 1 2 ) 1 ( 2 1 ) ( 2 1 2 2 2
  • 27. Page 27 Separable Differential Equations  Exercise 1 2 01 . 0 1 y y    2 / xy y   y y y x    2 2 ) 2 ( , 0 '     y y xy
  • 28. Page 28 Exact Differential Equations  Def: A first-order differential equation of the form is said to be exact if 0 ) , ( ) , (   dy y x N dx y x M x y x N y y x M    ) , ( ) , (
  • 29. Page 29 Exact Differential Equations  Proof: 0 ) , ( ) , ( 0 ) , (          dy y x N dx y x M dy y u dx x u y x du x y x N y y x M y x y x u        ) , ( ) , ( ) , (
  • 30. Page 30 Exact Differential Equations  Example : Sol: 0 ) 3 ( ) 3 ( 3 2 2 3     dy y y x dx xy x Exact xy x N y M xy x y y x xy y xy x , 6 6 3 6 3 3 2 2 3             
  • 31. Page 31 Exact Differential Equations Sol: ) ( 2 3 4 1 ) ( ) 3 ( ) ( 2 2 4 2 3 y k y x x y k dx xy x y k Mdx u           1 4 3 2 2 4 ) ( 3 ) ( 3 c y y k y y x N dy y dk y x y u          
  • 32. Page 32 Exact Differential Equations Sol: c y y x x y x u     ) 6 ( 4 1 ) , ( 4 2 2 4
  • 33. Page 33 Exact Differential Equations  Example 3 ) 0 ( 0 ) sinh (cos ) cosh (sin    y dy y x dx y x
  • 34. Page 34 Non-Exactness  Example : 0    xdy ydx
  • 35. Page 35 Integrating Factor  Def: A first-order differential equation of the form is not exact, but it will be exact if multiplied by F(x, y) then F(x,y) is called an integrating factor of this equation 0 ) , ( ) , (   dy y x Q dx y x P 0 ) , ( ) , ( ) , ( ) , (   dy y x Q y x F dx y x P y x F
  • 36. Page 36 Exact Differential Equations  How to find integrating factor  Golden Rule x x y y FQ Q F FP P F Exact x FQ y FP FQdy FPdx             , 0 ) ( 1 1 0 Let x y x y Q P Q dx dF F FQ Q dx dF FP P F(x) F        
  • 37. Page 37 Exact Differential Equations  Example : Sol: 0    xdy ydx Exact x N x y M dy x dx x y x xdy ydx x F , 1 1 1 2 2 2 2             
  • 38. Page 38 Exact Differential Equations Sol: cx y c x y x y d dy x dx x y         0 ) ( 1 2
  • 39. Page 39 Exact Differential Equations  Example : 2 ) 2 ( 0 ) cos( ) sin( 2 2 2     y dy y xy dx y
  • 40. Page 40 Exact Differential Equations  Exercise 2 0 2 2   dy x xydx 0 ) ( 2 2      d r rdr e x e F ydy ydx    , 0 cos sin b a y x F xdy b ydx a      , 0 ) 1 ( ) 1 ( 0 ) 1 ( ) 1 (     dy x dx y
  • 41. Page 41 Linear Differential Equations  Def: A first-order differential equation is said to be linear if it can be written  If r(x) = 0, this equation is said to be homogeneous ) ( ) ( x r y x p y   
  • 42. Page 42 Linear Differential Equations  How to solve first-order linear homogeneous ODE ? Sol: 0 ) (    y x p y                      dx x p c dx x p c dx x p ce e e e y c dx x p y dx x p y dy y x p dx dy ) ( ) ( ) ( 1 1 1 ) ( ln ) ( 0 ) (
  • 43. Page 43 Linear Differential Equations  Example : Sol: 0    y y x c x c x dx dx x p e c e ce ce ce ce x y 2 ) 1 ( ) ( 1 1 ) (           
  • 44. Page 44 Linear Differential Equations  How to solve first-order linear nonhomogeneous ODE ? Sol: ) ( ) ( x r y x p y    ) ( )) ( ) ( ( ) ( 1 1 0 )) ( ) ( ( ) ( ) ( x p x r y x p y Q P Q dx dF F dy dx x r y x p x r y x p dx dy x y              
  • 45. Page 45 Linear Differential Equations Sol:   dx x p e x F ) ( ) (                            c dx r e e x y c dx r e y e r e y e py y e dx x p dx x p dx x p dx x p dx x p dx x p dx x p ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (
  • 46. Page 46 Linear Differential Equations  Example : Sol: x e y y 2        x x x x x x x x dx dx dx x p dx x p e ce c e e c dx e e e c dx e e e c dx r e e x y 2 2 2 ) 1 ( ) 1 ( ) ( ) ( ) (                                  
  • 47. Page 47 Linear Differential Equations  Example : ) 2 cos 2 2 sin 3 ( 2 x x e y y x '   
  • 49. Page 49 Linear Differential Equations  Def: Bernoulli equations  If a = 0, Bernoulli Eq. => First Order Linear Eq.  If a <> 0, let u = y1-a a y x g y x p y ) ( ) (    g a pu a u ) 1 ( ) 1 (     
  • 50. Page 50 Linear Differential Equations  Example : Sol: 2 By Ay y       A B ce u y A B ce c dx e A B e c dx Be e u B Au u Ay B Ay By y y y u y y y u Ax Ax Ax Ax Ax Ax a                                               1 1 ) ( 1 2 2 2 1 2 1 1
  • 51. Page 51 Linear Differential Equations  Exercise 3 4    y y kx e ky y     2 2 y y y    1     xy xy y ) 2 ( , sin 3  y x y y   
  • 52. Page 52 Summary 可分離 Separable  變換法 Substitution  正合 Exact  積分因子 Integrating Factor  線性 Linear  柏努利 Bernoulli  dx x f dy y g ) ( ) (  dx x f du u g ) ( ) (  0 ) , ( ) , (   dy y x N dx y x M 0   FQdy FPdx ) ( ) ( x r y x p y    a y x g y x p y ) ( ) (   
  • 53. Page 53 Orthogonal Trajectories of Curves  Angle of intersection of two curves is defined to be the angle between the tangents of the curves at the point of intersection  How to use differential equations for finding curves that intersect given curves at right angles ?
  • 54. Page 54 How to find Orthogonal Trajectories  1st Step: find a differential equation for a given cure  2nd Step: the differential equation of the orthogonal trajectories to be found  3rd step: solve the differential equation as above ( in 2nd step) ) , ( y x f y  ) , ( y x f y'  ) , ( 1 y x f y'  
  • 55. Page 55 Orthogonal Trajectories of Curves  Example: given a curve y=cx2, where c is arbitrary. Find their orthogonal trajectories. Sol:
  • 56. Page 56 Existance and Uniqueness of Solution  An initial value problem may have no solutions, precisely one solution, or more than one solution.  Example 1 ) 0 ( , 0 '    y y y 1 ) 0 ( , '   y x y 1 ) 0 ( , 1 '    y y xy No solutions Precisely one solutions More than one solutions
  • 57. Page 57 Existence and uniqueness theorems  Problem of existence  Under what conditions does an initial value problem have at least one solution ?  Existence theorem, see page 53  Problem of uniqueness  Under what conditions does that the problem have at most one solution ?  Uniqueness theorem, see page54