Recently Keyword

                              Keyword

•            (Artificial Intelligence)

•                (Pattern Recognition)

•            (Machine Learning)

•        (Mathematics)

•              (Ocaml, Haskell, ...)

• etc.

                                                       1
2
Haskell


•
                  OCaml
    1

•

•



                      3
•

• Haskell 1.0   Haskell 98   Haskell 2010

•

    qsort []     = []
    qsort (p:xs) = qsort lt ++ [p] ++ qsort gteq
                      where
                        lt   = [x | x <- xs, x < p]
                        gteq = [x | x <- xs, x >= p]

                                                       4
•        quicksort   4

•          2

    qs []     = []
    qs (p:xs) = qs [x|x<-xs,x<p]++[p]++qs[x|x<-xs,x>=p]



                                   www


                                                          5
•


•
    Haskell             ( )


              Haskell



                              6
OCaml

• Haskell

•                             Haskell
    Haskell

• for     while
  Haskell     for     while


          Microsoft    F#

                                         7
let rec qsort= function
  | [] -> []
  | pivot :: rest ->
      let il x = x < pivot in
      let left, right = List.partition il rest in
      qsort left @ [pivot] @ qsort right


                               (



                                                    8
ML

•

•




         9
10
11
Introduction to Machine Learning




• ML=Machine Learning

•

•

• wikipedia




                                                     12
Introduction to Machine Learning




•




•       2
    –       — Supervised learning
    –       — Unsupervised Learning




                                                                   13
Introduction to Machine Learning


                        — Supervised learning

•                                    (

•
    – SVM — Support Vector Machine
    –        — Regression
    –           — Back Propagation
    –      — Decision tree




                                                                      14
Introduction to Machine Learning


            — Unsupervised learning

•                       (

•
    –   — Clustering
    –    — Frequent Pattern Analysis




                                                               15
Introduction to Machine Learning




•         — statistical machine learning
    –
    –

•       — computational learning
    –
    –



                                                                        16
Introduction to Machine Learning




•
    –
    –
    –     &

•
    –
    –   (?)


                                           17
Introduction to Machine Learning


                (1)

•
    –

•
    –   =

•
    –       /


                                                   18
Introduction to Machine Learning


        (2)

•
    –
    –
    –

•
    –   ?
    –


                                           19
Introduction to Machine Learning


               (3)

•
    –    ? —
    –   —
    –
    –

•




                                                  20
Introduction to Machine Learning




•
    – symbol

•              (?)
    –
    –




                                                  21
Introduction to Machine Learning

PRML




                                    22
@




    23
SVM

    SVM — Support Vector Machine

•   2                   (+1, -1)




•       ( )

                                    24
SVM




•

•
                         yk (w · x − θ) ≥ 1

• Maximize Margin ≡ Minimize |w|2

• Lagurange     αk                        L
                     ∑          ∑∑                  xk · xl
               L=        αk −           αk αl yk yl
                                                      2
                     k          k   l



                                                               25
SVM




•           L   minimize

•

•                                     ?
    –   x

                           x → ψ(x)

    –


                                           26
clustering


        — Clustering

•   &




•   (

                              27
clustering




•   =




•       (   )



                       28
clustering




•                 =
    –
                 ||x − y||2
    –
                        ∑
                        n
                                         1
        dk (x, y) = (         |xi − yi | )
                                       k k

                        i=1
    –
    –



                                                    29
30
•
    –   — Black, Blonde, Brown, Red, ...
    –   — Safe, Normal, Danger

•

•




                                           31
decision tree


         — decision tree

•

•

•

    Height Color Eatable
    small colorful can’t
    middle colorful can’t


                                      32
decision tree




•

•

•           ?

•   —

•       ? — NP




                           33
decision tree




•




•   ?
                  34
decision tree




•   ( )

•

•         ?

•             ?

•




                            35
frequent pattern




•

•                —A   B

•   (1/0 —   /    )




                                       36
frequent pattern




•

•   =1/       =0

          ,        A B C D E F
                   1 1 0 1 0 1
                   1 0 1 1 1 1
                   0 0 1 0 0 1
                   1 0 1 0 1 1
                   0 1 0 1 0 1


                                              37
frequent pattern




•
    –         (           )

•
    – A           C
    – A,C,D

• Algorithm
    – Apriori
    – FP-growth, ZDD-growth

                                           38
frequent pattern




•                      I = {i1, i2, · · · , in}
    – I = {A, B, C , D, E , F }

•                  X ∈ 2I

•                  σ

•             supp(X )
    – supp(X)                 X
    – supp(X)≥ σ

                                                               39
frequent pattern




•                  A → α, Aispattern, X ∈ I
    – A, B → C
    – A B                     C          (

•                            conf
                        supp(A∪{α})
• conf(A           )≡      supp(A)


•           conf               θ
    – 100                          10

                                                           40
frequent pattern




•
    – Apriori
    – FP tree and FP-growth
    – ZBDD and ZBDD-growth

•
    –




                                           41
add-up




•

•

•
    –                         etc.

•
    –         — Data Mining
    –   (?)

                                     42
add-up




•
    –
    –
    –

•            (?)
    –              (   )
    –   NN
    –


                           43
44
COLT




•      —

•      —

•




• DM       ?


                 45
COLT




•

•
    –
    –
    –
    –            (   )

•
    – keyword,

                           46
COLT




•
    –
    –

•

•       (   )

•



                  47
automaton and language




• automaton

• grammer

•

• automaton     grammer
    – 0         TM(                )
    – 2     (             ) PDA(                               )
    – 3     (         )    FA(         )

                                                              48
learning in the limit




•

•                   A = {(aa)n |n ≥ 0} = { , aa, aaaa, · · ·}
    – A   Σ = {a}

•           M(
    –         (
    –
    – M

                                                                                  49
learning in the limit




•                    (DFA) D = (Q, Σ, δ, s0, F )

•                             γ

• γ                                            L(γ)

•     (             ) A = {(aa)n |n ≥ 0} = { , aa, aaaa, · · ·}

•     A       E (w , l), w ∈ Σ∗, l ∈ {1, 0}

• E=(w , l)     w         A                    l = 1(     )

                                                                                50
learning in the limit




•        A                  (        ) σ
    – σ = (w 1, l1) (w 2, l2) (w 3, l3) (w 4, l4) · · ·
    – ∀i, wi ∈ Σ∗
    – if wi ∈ A then li = 1

•
    – A = {(aa)n |n ≥ 0} = { , aa, aaaa, · · ·}
    – σ = ( , 1) (a01) (aa, 1) (aaa, 0) (aaaa, 1) · · ·



                                                                            51
learning in the limit




•                     (       )L ∈ C, C       (Σ       )

•                                 R, R                                γ

•                             M    R               L
    M       L                      σ                                 g1, g2, · · ·
                (gi       γ               )                {gi }   L(g ) = L
        g



                                                                                                   52
learning in the limit




•
    –

•
    –   σ
    –
    –       (class P? NP complete? NP hard?)

•
    –

                                                             53
Probably Approximately Correct Learning


    PAC          — probably approximately correct

•                                             δ

•

•           f      g          d(f , g )

•          PAC
    ∀ ,δ         Pr (d(f , g ) ≤ ) ≥ 1 − δ                              g
    f                            PAC


                                                                                 54
appendix




•           (?)
    –
    –
    –
    –
    –
    –
    – etc


                       55
Weak Probably Approximately Correct Learning


               PAC          — Weak PAC learning

• ∀ ,δ

•          PAC
               0 , δ0        Pr (d(f , g ) ≤    ≥ 1 − δ0
                                               0)
           g   f                               PAC

•
    –                   ?
    – ,δ

                                                                                         56
boosting

                  Boosting

•

•                       M0

• M0                          Mw

• Mw

•      (   PAC)       (PAC)


                                        57
boosting




•
    – Boosting
    –
    –

•                ?

• Boosting           AdaBoost   (?)




                                           58

More Related Content

PDF
Towards typesafe deep learning in scala
PPTX
Paris data-geeks-2013-03-28
PDF
Reading Seminar (140515) Spectral Learning of L-PCFGs
PPTX
PPT
PPT
Genre in Canterbury Tales
PPT
Argegna
PPT
Towards typesafe deep learning in scala
Paris data-geeks-2013-03-28
Reading Seminar (140515) Spectral Learning of L-PCFGs
Genre in Canterbury Tales
Argegna

Viewers also liked (18)

PDF
pp.4-6 interview on government relations and regulatory trends
PDF
Grayling perception research_on_wto_accession_consequences
PDF
Think piece pharma 2020 june 2010
PPTX
õPpeinfosüSteemi üHildamine E õPpe Keskkondadega üHe üLikooli õI Si NäItel
PPT
Opportunity
PPT
Estate 2009 Lucky Star
PPT
Meraviglioso
ODP
How Encryption for Strong Security Works
PDF
Liberating A Cash Based Society
PDF
Grayling foreign-investment-think-piece june-2011
PPT
The Son's Strategy
PDF
Sebastiana
PDF
Perkembangan asuransi syariah di indonesia 2012
PDF
Presentation
PDF
Исследование Grayling восприятия последствий вступления в ВТО бизнесом и эксп...
PPT
Sosiaalinen Media
PPT
Natalia Zubarevich - Russian regions - September 2014
PPTX
pp.4-6 interview on government relations and regulatory trends
Grayling perception research_on_wto_accession_consequences
Think piece pharma 2020 june 2010
õPpeinfosüSteemi üHildamine E õPpe Keskkondadega üHe üLikooli õI Si NäItel
Opportunity
Estate 2009 Lucky Star
Meraviglioso
How Encryption for Strong Security Works
Liberating A Cash Based Society
Grayling foreign-investment-think-piece june-2011
The Son's Strategy
Sebastiana
Perkembangan asuransi syariah di indonesia 2012
Presentation
Исследование Grayling восприятия последствий вступления в ВТО бизнесом и эксп...
Sosiaalinen Media
Natalia Zubarevich - Russian regions - September 2014
Ad

Similar to Foilsを使ってみた。 (20)

PDF
関数プログラマから見たPythonと機械学習
PDF
Multiple Kernel Learning based Approach to Representation and Feature Selecti...
PPTX
Yin Yangs of Software Development
PPTX
MATLAB & Image Processing
PDF
09_Practical Multicore programming
PDF
[Harvard CS264] 09 - Machine Learning on Big Data: Lessons Learned from Googl...
PDF
PPTX
SQL Explore 2012 - Aviad Deri: Spatial
PPT
Least Square Optimization and Sparse-Linear Solver
PDF
Mit6 094 iap10_lec03
PDF
Optimization for Neural Network Training - Veronica Vilaplana - UPC Barcelona...
PDF
PPT
Convex Optimization Modelling with CVXOPT
PDF
Hadoop Overview kdd2011
PDF
Metaprogramming
PDF
Large-Scale Machine Learning with Apache Spark
PPTX
super vector machines algorithms using deep
PPTX
Oxford 05-oct-2012
PPT
introduction to computer in arabic class 1
PPT
Intro matlab and convolution islam
関数プログラマから見たPythonと機械学習
Multiple Kernel Learning based Approach to Representation and Feature Selecti...
Yin Yangs of Software Development
MATLAB & Image Processing
09_Practical Multicore programming
[Harvard CS264] 09 - Machine Learning on Big Data: Lessons Learned from Googl...
SQL Explore 2012 - Aviad Deri: Spatial
Least Square Optimization and Sparse-Linear Solver
Mit6 094 iap10_lec03
Optimization for Neural Network Training - Veronica Vilaplana - UPC Barcelona...
Convex Optimization Modelling with CVXOPT
Hadoop Overview kdd2011
Metaprogramming
Large-Scale Machine Learning with Apache Spark
super vector machines algorithms using deep
Oxford 05-oct-2012
introduction to computer in arabic class 1
Intro matlab and convolution islam
Ad

More from Keisuke OTAKI (15)

PDF
KDD読み会(図なし版)
PDF
一階述語論理のメモ
PDF
Grammatical inference メモ 1
PDF
ベイジアンネットワーク入門
PDF
Tensor Decomposition and its Applications
PDF
Ada boost
PDF
PRML§12-連続潜在変数
PDF
Prml sec6
PDF
ウェーブレット勉強会
PDF
Prml sec3
PDF
Sec16 greedy algorithm no2
PDF
Sec16 greedy algorithm no1
PDF
Sec15 dynamic programming
PPTX
Hash Table
KDD読み会(図なし版)
一階述語論理のメモ
Grammatical inference メモ 1
ベイジアンネットワーク入門
Tensor Decomposition and its Applications
Ada boost
PRML§12-連続潜在変数
Prml sec6
ウェーブレット勉強会
Prml sec3
Sec16 greedy algorithm no2
Sec16 greedy algorithm no1
Sec15 dynamic programming
Hash Table

Recently uploaded (20)

PPTX
Chapter 5: Probability Theory and Statistics
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
PPT
Module 1.ppt Iot fundamentals and Architecture
PDF
Developing a website for English-speaking practice to English as a foreign la...
PPTX
Web Crawler for Trend Tracking Gen Z Insights.pptx
PDF
Getting started with AI Agents and Multi-Agent Systems
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
PDF
STKI Israel Market Study 2025 version august
PPTX
Benefits of Physical activity for teenagers.pptx
PDF
NewMind AI Weekly Chronicles – August ’25 Week III
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PDF
1 - Historical Antecedents, Social Consideration.pdf
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PDF
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PDF
DP Operators-handbook-extract for the Mautical Institute
PDF
Hindi spoken digit analysis for native and non-native speakers
PDF
Five Habits of High-Impact Board Members
Chapter 5: Probability Theory and Statistics
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
A contest of sentiment analysis: k-nearest neighbor versus neural network
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
Module 1.ppt Iot fundamentals and Architecture
Developing a website for English-speaking practice to English as a foreign la...
Web Crawler for Trend Tracking Gen Z Insights.pptx
Getting started with AI Agents and Multi-Agent Systems
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
STKI Israel Market Study 2025 version august
Benefits of Physical activity for teenagers.pptx
NewMind AI Weekly Chronicles – August ’25 Week III
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
1 - Historical Antecedents, Social Consideration.pdf
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
DP Operators-handbook-extract for the Mautical Institute
Hindi spoken digit analysis for native and non-native speakers
Five Habits of High-Impact Board Members

Foilsを使ってみた。

  • 1. Recently Keyword Keyword • (Artificial Intelligence) • (Pattern Recognition) • (Machine Learning) • (Mathematics) • (Ocaml, Haskell, ...) • etc. 1
  • 2. 2
  • 3. Haskell • OCaml 1 • • 3
  • 4. • • Haskell 1.0 Haskell 98 Haskell 2010 • qsort [] = [] qsort (p:xs) = qsort lt ++ [p] ++ qsort gteq where lt = [x | x <- xs, x < p] gteq = [x | x <- xs, x >= p] 4
  • 5. quicksort 4 • 2 qs [] = [] qs (p:xs) = qs [x|x<-xs,x<p]++[p]++qs[x|x<-xs,x>=p] www 5
  • 6. • • Haskell ( ) Haskell 6
  • 7. OCaml • Haskell • Haskell Haskell • for while Haskell for while Microsoft F# 7
  • 8. let rec qsort= function | [] -> [] | pivot :: rest -> let il x = x < pivot in let left, right = List.partition il rest in qsort left @ [pivot] @ qsort right ( 8
  • 10. 10
  • 11. 11
  • 12. Introduction to Machine Learning • ML=Machine Learning • • • wikipedia 12
  • 13. Introduction to Machine Learning • • 2 – — Supervised learning – — Unsupervised Learning 13
  • 14. Introduction to Machine Learning — Supervised learning • ( • – SVM — Support Vector Machine – — Regression – — Back Propagation – — Decision tree 14
  • 15. Introduction to Machine Learning — Unsupervised learning • ( • – — Clustering – — Frequent Pattern Analysis 15
  • 16. Introduction to Machine Learning • — statistical machine learning – – • — computational learning – – 16
  • 17. Introduction to Machine Learning • – – – & • – – (?) 17
  • 18. Introduction to Machine Learning (1) • – • – = • – / 18
  • 19. Introduction to Machine Learning (2) • – – – • – ? – 19
  • 20. Introduction to Machine Learning (3) • – ? — – — – – • 20
  • 21. Introduction to Machine Learning • – symbol • (?) – – 21
  • 22. Introduction to Machine Learning PRML 22
  • 23. @ 23
  • 24. SVM SVM — Support Vector Machine • 2 (+1, -1) • ( ) 24
  • 25. SVM • • yk (w · x − θ) ≥ 1 • Maximize Margin ≡ Minimize |w|2 • Lagurange αk L ∑ ∑∑ xk · xl L= αk − αk αl yk yl 2 k k l 25
  • 26. SVM • L minimize • • ? – x x → ψ(x) – 26
  • 27. clustering — Clustering • & • ( 27
  • 28. clustering • = • ( ) 28
  • 29. clustering • = – ||x − y||2 – ∑ n 1 dk (x, y) = ( |xi − yi | ) k k i=1 – – 29
  • 30. 30
  • 31. – — Black, Blonde, Brown, Red, ... – — Safe, Normal, Danger • • 31
  • 32. decision tree — decision tree • • • Height Color Eatable small colorful can’t middle colorful can’t 32
  • 33. decision tree • • • ? • — • ? — NP 33
  • 35. decision tree • ( ) • • ? • ? • 35
  • 36. frequent pattern • • —A B • (1/0 — / ) 36
  • 37. frequent pattern • • =1/ =0 , A B C D E F 1 1 0 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 1 37
  • 38. frequent pattern • – ( ) • – A C – A,C,D • Algorithm – Apriori – FP-growth, ZDD-growth 38
  • 39. frequent pattern • I = {i1, i2, · · · , in} – I = {A, B, C , D, E , F } • X ∈ 2I • σ • supp(X ) – supp(X) X – supp(X)≥ σ 39
  • 40. frequent pattern • A → α, Aispattern, X ∈ I – A, B → C – A B C ( • conf supp(A∪{α}) • conf(A )≡ supp(A) • conf θ – 100 10 40
  • 41. frequent pattern • – Apriori – FP tree and FP-growth – ZBDD and ZBDD-growth • – 41
  • 42. add-up • • • – etc. • – — Data Mining – (?) 42
  • 43. add-up • – – – • (?) – ( ) – NN – 43
  • 44. 44
  • 45. COLT • — • — • • DM ? 45
  • 46. COLT • • – – – – ( ) • – keyword, 46
  • 47. COLT • – – • • ( ) • 47
  • 48. automaton and language • automaton • grammer • • automaton grammer – 0 TM( ) – 2 ( ) PDA( ) – 3 ( ) FA( ) 48
  • 49. learning in the limit • • A = {(aa)n |n ≥ 0} = { , aa, aaaa, · · ·} – A Σ = {a} • M( – ( – – M 49
  • 50. learning in the limit • (DFA) D = (Q, Σ, δ, s0, F ) • γ • γ L(γ) • ( ) A = {(aa)n |n ≥ 0} = { , aa, aaaa, · · ·} • A E (w , l), w ∈ Σ∗, l ∈ {1, 0} • E=(w , l) w A l = 1( ) 50
  • 51. learning in the limit • A ( ) σ – σ = (w 1, l1) (w 2, l2) (w 3, l3) (w 4, l4) · · · – ∀i, wi ∈ Σ∗ – if wi ∈ A then li = 1 • – A = {(aa)n |n ≥ 0} = { , aa, aaaa, · · ·} – σ = ( , 1) (a01) (aa, 1) (aaa, 0) (aaaa, 1) · · · 51
  • 52. learning in the limit • ( )L ∈ C, C (Σ ) • R, R γ • M R L M L σ g1, g2, · · · (gi γ ) {gi } L(g ) = L g 52
  • 53. learning in the limit • – • – σ – – (class P? NP complete? NP hard?) • – 53
  • 54. Probably Approximately Correct Learning PAC — probably approximately correct • δ • • f g d(f , g ) • PAC ∀ ,δ Pr (d(f , g ) ≤ ) ≥ 1 − δ g f PAC 54
  • 55. appendix • (?) – – – – – – – etc 55
  • 56. Weak Probably Approximately Correct Learning PAC — Weak PAC learning • ∀ ,δ • PAC 0 , δ0 Pr (d(f , g ) ≤ ≥ 1 − δ0 0) g f PAC • – ? – ,δ 56
  • 57. boosting Boosting • • M0 • M0 Mw • Mw • ( PAC) (PAC) 57
  • 58. boosting • – Boosting – – • ? • Boosting AdaBoost (?) 58