SlideShare a Scribd company logo
F U N C T I O N P R O P E R T I E S
10.4.1.3 - BE ABLE TO DETERMINE THE PROPERTIES OF A FUNCTION;
10.4.1.4 - BE ABLE TO DESCRIBE, ACCORDING TO A GIVEN GRAPH, THE FUNCTIONS OF ITS
PROPERTIES:
1) DOMAIN OF THE FUNCTION;
2) THE RANGE OF VALUES OF THE FUNCTION;
3) ZEROS OF THE FUNCTION;
4) THE FREQUENCY OF THE FUNCTION;
5) INTERVALS OF MONOTONICITY OF THE FUNCTION;
6) INTERVALS OF CONSTANT FUNCTION;
7) THE MAXIMUM AND MINIMUM VALUES OF THE FUNCTION;
8) EVEN, ODD FUNCTION;
9) LIMITED FUNCTION;
10) CONTINUITY OF FUNCTION;
11) EXTREMA OF THE FUNCTION;
T O D A Y Y O U W I L L B E A B L E T O :
1 ) D O M A I N O F T H E F U N C T I O N ;
2 ) T H E R A N G E O F V A L U E S O F T H E F U N C T I O N ;
3 ) Z E R O S O F T H E F U N C T I O N ;
4 ) T H E F R E Q U E N C Y O F T H E F U N C T I O N ;
5 ) I N T E R V A L S O F M O N O T O N I C I T Y O F T H E
F U N C T I O N ;
6 ) I N T E R V A L S O F C O N S T A N T F U N C T I O N ;
7 ) T H E M A X I M U M A N D M I N I M U M V A L U E S O F T H E
F U N C T I O N ;
8 ) E V E N , O D D F U N C T I O N ;
9 ) L I M I T E D F U N C T I O N ;
1 0 ) C O N T I N U I T Y O F F U N C T I O N ;
1 1 ) E X T R E M A O F T H E F U N C T I O N ; .
• Variables
These are the quantities in a function that
can change
• Dependent Variables
Depends on another quantity (y-values)
• Independent Variables
These quantities tend to have an affect on
the dependent variable. (x-values)
E X A M P L E
• Variables
Time and temperature
• Dependent Variables
Temperature (depends on the time of day)
• Independent Variables
Time (is unaffected by the temperature)
• Relating Variables
Often written as a ordered pair with the independent
variable first(time, temperature)
N O TAT I O N O F A F U N C T I O N
• In general we use x to represent the
independent variable and y to represent
the dependent variable.
• We write…
y = f(x) meaning y is a function of x
T = f(t) meaning Temperature is a function
of time
A F U N C T I O N B O X
• We put in an input (independent variable) apply a function and receive an
output (dependent variable).
S
D O M A I N A N D R A N G E
• The domain of a function is the set of all
possible inputs for the function. For example,
the domain of f(x)=x² is all real numbers, and
the domain of g(x)=1/x is all real numbers
except for x=0
• The range of a function refers to all the
possible values y could be.
Function properties and theirs grahps....
Function properties and theirs grahps....
Function properties and theirs grahps....
F I N D I N G D O M A I N A N D R A N G E F R O M
G R A P H S
Function properties and theirs grahps....
Function properties and theirs grahps....
W H A T A R E Z E R O S
O F A F U N C T I O N ?
The zeros of a function f(x) are
values of the variable x such
that the values satisfy the
equation f(x) = 0. The zeros of
a function are also called the
roots of a function. We can
find these zeros graphically as
well by determining the x-
intercepts of the graph.
I N T E R V A L S O F
M O N O T O N I C I T Y
O F T H E
F U N C T I O N , T H E
M A X I M U M A N D
M I N I M U M V A L U E S
O F T H E
F U N C T I O N ;
Function properties and theirs grahps....
Function properties and theirs grahps....
F R E Q U E N C Y A N D P E R I O D
• Frequency refers to the number of
times an event occurs in a given
period of time. In the context of
functions, it refers to the number of
times the graph of a function repeats
itself in a given amount of time
• The figure shows 4 periods of the
sine function in the interval [0, 2π].
Beginning at 0, the graph of sin(4x)
repeats every ….
D E T E R M I N I N G E V E N A N D O D D
F U N C T I O N S
• Some functions exhibit symmetry so that reflections result in the original graph. For
example, horizontally reflecting the toolkit functions f(x) = x 2
will result in the original
graph. We say that these types of graphs are symmetric about the y-axis. Functions
whose graphs are symmetric about the y-axis are called even functions.
Function properties and theirs grahps....
Function properties and theirs grahps....
C O N T I N U I T Y O F F U N C T I O N

More Related Content

PDF
Functions of Several Variables (From Introduction upto Chain Rule)
PPTX
power point presentation on genmath_lesson1_2_.pptx
PDF
Principle of Function Analysis - by Arun Umrao
PDF
Function Analysis v.1
PPTX
Algebra 2 with Trig Unit 1 Introduction to ALgebra
PPT
DOCX
FUNCTION AND RELATION
Functions of Several Variables (From Introduction upto Chain Rule)
power point presentation on genmath_lesson1_2_.pptx
Principle of Function Analysis - by Arun Umrao
Function Analysis v.1
Algebra 2 with Trig Unit 1 Introduction to ALgebra
FUNCTION AND RELATION

Similar to Function properties and theirs grahps.... (20)

PDF
Maths 12
PPS
Functions and graphs
PPT
TYPES OF FUNCTION FOR JEE PREPARATION WITH EXAMPLES
PDF
2nd-year-Math-full-Book-PB.pdf
PDF
2018-G12-Math-E.pdf
PPTX
Lesson 1
PDF
Calculus 1 Lecture Notes (Functions and Their Graphs)
PPTX
Lesson 1
PPTX
Edsc 304 lesson 1
PDF
3.1 Functions and Function Notation
PDF
Manyformulas
DOCX
Function
PPTX
function
PPTX
function on mathematics
PPT
Chapter on Functions and Graphs.ppt
PDF
Lecture 1
PPT
StewartCalc7e_01_01.ppt
PPTX
Advanced functions part i
PPTX
Advanced functions ppt (Chapter 1) part i
PPT
Functions for Grade 10
Maths 12
Functions and graphs
TYPES OF FUNCTION FOR JEE PREPARATION WITH EXAMPLES
2nd-year-Math-full-Book-PB.pdf
2018-G12-Math-E.pdf
Lesson 1
Calculus 1 Lecture Notes (Functions and Their Graphs)
Lesson 1
Edsc 304 lesson 1
3.1 Functions and Function Notation
Manyformulas
Function
function
function on mathematics
Chapter on Functions and Graphs.ppt
Lecture 1
StewartCalc7e_01_01.ppt
Advanced functions part i
Advanced functions ppt (Chapter 1) part i
Functions for Grade 10
Ad

More from ayaulymsun (20)

PPT
derivatives. maximum and minimum value..
PPT
derivatives. maximum and minimum value..
PPT
derivatives. maximum and minimum value..
PPT
derivative of triginomtric functions....
PPT
inverse trigonometric functions. inverse trigonometric functions
PPT
deriv.pptderiv.pptderiv.pptderiv.pptderiv.ppt
PPTX
Үшбұрыштың ұқс, теңд. Фалес теор (2).pptx
PPTX
Precalculus 05 Analytic Trigonometry (1).pptx
PPT
Precalculus 05 Analytic Trigonometry (1).pptx
PPT
limits of function. limits of function./
PPT
limits definition.limits definitionlimits definitionlimits definition
PPT
Sine, cosine, tangent and cotangent of an angle and their measure.ppt
PPT
Section 4.3 MA.pptSection 4.3 MA.pptSection 4.3 MA.ppt
PPTX
Математика_9класс_Условие коллинеарности векторов_презентация.pptx
PPTX
Виды треугольников. Неравенство треугольника. рус.pptx
PPTX
преобразование выражений со знаком модуля.pptx
PPTX
неравенства линенйные, метод интервалов.pptx
PPT
Прямоугольная система координат и векторы в пространстве.ppt
PPTX
Вогнутость и выпуклость функции.pptx вторая производная
PPTX
IGCSE Ordering. The four operations.pptx
derivatives. maximum and minimum value..
derivatives. maximum and minimum value..
derivatives. maximum and minimum value..
derivative of triginomtric functions....
inverse trigonometric functions. inverse trigonometric functions
deriv.pptderiv.pptderiv.pptderiv.pptderiv.ppt
Үшбұрыштың ұқс, теңд. Фалес теор (2).pptx
Precalculus 05 Analytic Trigonometry (1).pptx
Precalculus 05 Analytic Trigonometry (1).pptx
limits of function. limits of function./
limits definition.limits definitionlimits definitionlimits definition
Sine, cosine, tangent and cotangent of an angle and their measure.ppt
Section 4.3 MA.pptSection 4.3 MA.pptSection 4.3 MA.ppt
Математика_9класс_Условие коллинеарности векторов_презентация.pptx
Виды треугольников. Неравенство треугольника. рус.pptx
преобразование выражений со знаком модуля.pptx
неравенства линенйные, метод интервалов.pptx
Прямоугольная система координат и векторы в пространстве.ppt
Вогнутость и выпуклость функции.pptx вторая производная
IGCSE Ordering. The four operations.pptx
Ad

Recently uploaded (20)

PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PDF
AlphaEarth Foundations and the Satellite Embedding dataset
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
PPT
protein biochemistry.ppt for university classes
PPTX
BIOMOLECULES PPT........................
PPT
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PDF
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
PPTX
2. Earth - The Living Planet earth and life
PPTX
Introduction to Fisheries Biotechnology_Lesson 1.pptx
PPTX
Derivatives of integument scales, beaks, horns,.pptx
PDF
lecture 2026 of Sjogren's syndrome l .pdf
PDF
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
PPTX
Introduction to Cardiovascular system_structure and functions-1
PDF
The scientific heritage No 166 (166) (2025)
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
AlphaEarth Foundations and the Satellite Embedding dataset
Taita Taveta Laboratory Technician Workshop Presentation.pptx
Phytochemical Investigation of Miliusa longipes.pdf
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
POSITIONING IN OPERATION THEATRE ROOM.ppt
protein biochemistry.ppt for university classes
BIOMOLECULES PPT........................
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
2. Earth - The Living Planet earth and life
Introduction to Fisheries Biotechnology_Lesson 1.pptx
Derivatives of integument scales, beaks, horns,.pptx
lecture 2026 of Sjogren's syndrome l .pdf
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
Introduction to Cardiovascular system_structure and functions-1
The scientific heritage No 166 (166) (2025)

Function properties and theirs grahps....

  • 1. F U N C T I O N P R O P E R T I E S 10.4.1.3 - BE ABLE TO DETERMINE THE PROPERTIES OF A FUNCTION; 10.4.1.4 - BE ABLE TO DESCRIBE, ACCORDING TO A GIVEN GRAPH, THE FUNCTIONS OF ITS PROPERTIES: 1) DOMAIN OF THE FUNCTION; 2) THE RANGE OF VALUES OF THE FUNCTION; 3) ZEROS OF THE FUNCTION; 4) THE FREQUENCY OF THE FUNCTION; 5) INTERVALS OF MONOTONICITY OF THE FUNCTION; 6) INTERVALS OF CONSTANT FUNCTION; 7) THE MAXIMUM AND MINIMUM VALUES OF THE FUNCTION; 8) EVEN, ODD FUNCTION; 9) LIMITED FUNCTION; 10) CONTINUITY OF FUNCTION; 11) EXTREMA OF THE FUNCTION;
  • 2. T O D A Y Y O U W I L L B E A B L E T O : 1 ) D O M A I N O F T H E F U N C T I O N ; 2 ) T H E R A N G E O F V A L U E S O F T H E F U N C T I O N ; 3 ) Z E R O S O F T H E F U N C T I O N ; 4 ) T H E F R E Q U E N C Y O F T H E F U N C T I O N ; 5 ) I N T E R V A L S O F M O N O T O N I C I T Y O F T H E F U N C T I O N ; 6 ) I N T E R V A L S O F C O N S T A N T F U N C T I O N ; 7 ) T H E M A X I M U M A N D M I N I M U M V A L U E S O F T H E F U N C T I O N ; 8 ) E V E N , O D D F U N C T I O N ; 9 ) L I M I T E D F U N C T I O N ; 1 0 ) C O N T I N U I T Y O F F U N C T I O N ; 1 1 ) E X T R E M A O F T H E F U N C T I O N ; .
  • 3. • Variables These are the quantities in a function that can change • Dependent Variables Depends on another quantity (y-values) • Independent Variables These quantities tend to have an affect on the dependent variable. (x-values)
  • 4. E X A M P L E • Variables Time and temperature • Dependent Variables Temperature (depends on the time of day) • Independent Variables Time (is unaffected by the temperature) • Relating Variables Often written as a ordered pair with the independent variable first(time, temperature)
  • 5. N O TAT I O N O F A F U N C T I O N • In general we use x to represent the independent variable and y to represent the dependent variable. • We write… y = f(x) meaning y is a function of x T = f(t) meaning Temperature is a function of time
  • 6. A F U N C T I O N B O X • We put in an input (independent variable) apply a function and receive an output (dependent variable).
  • 7. S
  • 8. D O M A I N A N D R A N G E • The domain of a function is the set of all possible inputs for the function. For example, the domain of f(x)=x² is all real numbers, and the domain of g(x)=1/x is all real numbers except for x=0 • The range of a function refers to all the possible values y could be.
  • 12. F I N D I N G D O M A I N A N D R A N G E F R O M G R A P H S
  • 15. W H A T A R E Z E R O S O F A F U N C T I O N ? The zeros of a function f(x) are values of the variable x such that the values satisfy the equation f(x) = 0. The zeros of a function are also called the roots of a function. We can find these zeros graphically as well by determining the x- intercepts of the graph.
  • 16. I N T E R V A L S O F M O N O T O N I C I T Y O F T H E F U N C T I O N , T H E M A X I M U M A N D M I N I M U M V A L U E S O F T H E F U N C T I O N ;
  • 19. F R E Q U E N C Y A N D P E R I O D • Frequency refers to the number of times an event occurs in a given period of time. In the context of functions, it refers to the number of times the graph of a function repeats itself in a given amount of time • The figure shows 4 periods of the sine function in the interval [0, 2π]. Beginning at 0, the graph of sin(4x) repeats every ….
  • 20. D E T E R M I N I N G E V E N A N D O D D F U N C T I O N S • Some functions exhibit symmetry so that reflections result in the original graph. For example, horizontally reflecting the toolkit functions f(x) = x 2 will result in the original graph. We say that these types of graphs are symmetric about the y-axis. Functions whose graphs are symmetric about the y-axis are called even functions.
  • 23. C O N T I N U I T Y O F F U N C T I O N