Genome editing uses engineered nucleases to insert, replace or remove DNA from the genome. These nucleases create targeted double-strand breaks which are repaired through natural DNA repair processes, allowing for changes to the genome sequence. Three main engineered nuclease systems for genome editing are ZFNs, TALENs, and CRISPR-Cas9. CRISPR uses a guide RNA and Cas9 nuclease to make precise cuts at targeted DNA sequences for editing. It has advantages over ZFNs and TALENs in being cheaper, easier to design, and more efficient. Genome editing holds promise for applications in crops, medicine, and research.