SlideShare a Scribd company logo
Marius Hartmann
Fraud Detection with Graphs
24. september 2019
Main task of The Danish Business Authority
2Danish Business Authority
Business service and registration of companies
Business development and digital growth
Business regulation and supervision planning
and rural business
EU and international affairs
Virk: The joint public one-stop shop to the
Danish business world
3Danish Business Authority
27.000.000
visits at Virk on an
annual basis
96%
of companies in
Denmark know
Virk
4.000.000
filings on Virk
annually
92%
Instant case
handling
ML Lab
 9 person strong
 Physics, astro-physics, economics, computer science, fine art, social
science, 7 Phd’s (+1 on the way)
 2/7 gender balance, kids and no-kids
Erhvervsstyrelsen 4
What can we do with ML and Graph?
 Help and guide users to make fewer mistakes
 Improve and scale our control and supervision
 Provide recommendations and personalize our solutions
 Improve our policy development with
ML created insight
5Danish Business Authority
Management
Owner
?
Example of control:
Strengthened company control regarding VAT
6
Owner
Management
Revision
Adverse Opinion
Not complying to bookkeeping act
VAT not filed on time
Adverse Opinion
Not complying to bookkeeping act
VAT not filed on time
Salery tax not paid
Adverse Opinion
Holding company
OwnerOwner
Real owner
Danish Business Authority
Et nyt dataparadigme
Erhvervsstyrelsen 7
(Legal) network of a lawyer
with roles in relation to 12.400 companies
Transformation
8Danish Business Authority
What’s the deal with Graph and ML?
 ML is based on data properties, but isn’t suited to handle
relations between objects in data
 Graph provides context to ML and even supports algorithms
based on data structure
9Danish Business Authority
Currently 126 mio. nodes
160 mio. relations
ML insights persisted to graph
10Danish Business Authority
Blue: Company
Yellow: Person
Purple: Annual report
Red: ML insights
Machine learning
controls all identity
papers for foreign
business actors
ML controls that
fictional assets are
not inserted
‘Weaponize’
unstructured data
concerning
negligence
Control new
businesses for
concerns of fraud
Identity
Assets
Audits
1.st line
Handling complexity
- 4 intelligent controls in 2019
Erhvervsstyrelsen 11
Connected
data from data
Erhvervsstyrelsen 12
Erhvervsstyrelsen 13
Registry data
Business registry
VAT
Annual reports
data
Erhvervsstyrelsen 14
Registry data
Network
data
Erhvervsstyrelsen 15
Registry data + metadata
Data from data
Delta values
Discrepancies
Client profile, IP, timestamp
data
metadata
Erhvervsstyrelsen 16
Registry data + metadata
Enriched network
data
metadata
Erhvervsstyrelsen 17
Registry data + metadata + observations
Shares client
Group
Fictionous
Anormalities
data
metadata
Machine learning
Erhvervsstyrelsen 18
Registry data + metadata + observations
Shares client
Group
Fictionous
Anormalities
data
metadata
Machine learning
Erhvervsstyrelsen 19
data
metadata
Machine learning
Registry data + metadata + observations
Erhvervsstyrelsen 20
Automatic control of new data
Exploits what we already know
Uses machine insights
Machine learning
Registry data + metadata + observations
Erhvervsstyrelsen 21
Data from data growth
Data Metadata ML Automate
01 02 03 04
Information about
persons,
companies, annual
reports, VAT etc.
Data from data. Observations,
machine driven
insights.
Data driven
business.
Registries Metadata ML Business
Intelligent control
Erhvervsstyrelsen 22
ERST ML data platform
Erhvervsstyrelsen 23
Machine learning models
use and enrich our
Knowledge graph
triggered by events in near
real time
Knowledge graph maintains
360° network analysis of
customers and business life
cycles
ML data platform
Cloud infrastructure
Event driven architecture
ML data governance
Data event store
Automated intelligent controls applied to
business systems in support of decision making.
What is complicated?
 ML data governance
 Machine learning in production
 Reacting in near real-time
 Business transformation
 Explainability
 Automation
24Danish Business Authority
Transparency and fairness in AI
 Data ethics
Erhvervsstyrelsen 25
Traceability in data
26
Business
Who did what?
Technology
Data lineage, metadata management
Evaluation
Can we do better?
Danish Business Authority
The knowledge graph and semantic AI
Erhvervsstyrelsen 27
Graph as a knowledge catalyst
28Danish Business Authority
Data sources
Meta model
Agent
ML enrichment
Knowledge graph
Automation
Semantic AI
EVENT DATA
The semantic journey
29Danish Business Authority
Data sources
Meta model
Agent
ML enrichment
Knowledge graph
Automation
Semantic AI
Knowledge AI
30Danish Business Authority
AI abstraction
Semantic layer
The principles
 Graph adoption to contextualize business lifecycles
 Meta data strategy to produce data from data
 ML enriched automation so we may adopt machine generated insight
 Monitor and trace usage so we can explain
 Evaluate and improve continuously
Erhvervsstyrelsen 31
Questions?
32Danish Business Authority
Marius Hartmann
marhar@erst.dk
+45 35 29 19 46

More Related Content

PPTX
Smarter Fraud Detection With Graph Data Science
PDF
Workshop - Build a Graph Solution
PPTX
EY + Neo4j: Why graph technology makes sense for fraud detection and customer...
PPTX
Neo4j GraphSummit London March 2023 Emil Eifrem Keynote.pptx
PDF
Supply Chain and Logistics Management with Graph & AI
PDF
Fraud Detection with Graphs at the Danish Business Authority
PPTX
Banking Circle: Money Laundering Beware: A Modern Approach to AML with Machin...
PDF
Supply Chain Twin Demo - Companion Deck
Smarter Fraud Detection With Graph Data Science
Workshop - Build a Graph Solution
EY + Neo4j: Why graph technology makes sense for fraud detection and customer...
Neo4j GraphSummit London March 2023 Emil Eifrem Keynote.pptx
Supply Chain and Logistics Management with Graph & AI
Fraud Detection with Graphs at the Danish Business Authority
Banking Circle: Money Laundering Beware: A Modern Approach to AML with Machin...
Supply Chain Twin Demo - Companion Deck

What's hot (20)

PDF
Neo4j y GenAI
PDF
Optimizing the Supply Chain with Knowledge Graphs, IoT and Digital Twins_Moor...
PDF
Workshop - Neo4j Graph Data Science
PPTX
Graphs in Automotive and Manufacturing - Unlock New Value from Your Data
PDF
Amsterdam - The Neo4j Graph Data Platform Today & Tomorrow
PDF
Data Science At Zillow
PDF
The Data Platform for Today’s Intelligent Applications
PPTX
Easily Identify Sources of Supply Chain Gridlock
PPTX
EY: Why graph technology makes sense for fraud detection and customer 360 pro...
PDF
AI-Powered Streaming Analytics for Real-Time Customer Experience
PDF
Graph database Use Cases
PPTX
GraphAware: Insights Discovery with KGs: Bringing Archives to Life (GraphSumm...
PDF
ESWC 2017 Tutorial Knowledge Graphs
PPTX
Neo4j GraphSummit London - The Path To Success With Graph Database and Data S...
PDF
Knowledge Graphs & Graph Data Science, More Context, Better Predictions - Neo...
PPTX
Finding business value in Big Data
PDF
Data Modeling Fundamentals
PDF
CDP - 101 Everything you need to know about Customer Data Platforms
PPTX
Transforming BT’s Infrastructure Management with Graph Technology
PDF
Webinar Data Mesh - Part 3
Neo4j y GenAI
Optimizing the Supply Chain with Knowledge Graphs, IoT and Digital Twins_Moor...
Workshop - Neo4j Graph Data Science
Graphs in Automotive and Manufacturing - Unlock New Value from Your Data
Amsterdam - The Neo4j Graph Data Platform Today & Tomorrow
Data Science At Zillow
The Data Platform for Today’s Intelligent Applications
Easily Identify Sources of Supply Chain Gridlock
EY: Why graph technology makes sense for fraud detection and customer 360 pro...
AI-Powered Streaming Analytics for Real-Time Customer Experience
Graph database Use Cases
GraphAware: Insights Discovery with KGs: Bringing Archives to Life (GraphSumm...
ESWC 2017 Tutorial Knowledge Graphs
Neo4j GraphSummit London - The Path To Success With Graph Database and Data S...
Knowledge Graphs & Graph Data Science, More Context, Better Predictions - Neo...
Finding business value in Big Data
Data Modeling Fundamentals
CDP - 101 Everything you need to know about Customer Data Platforms
Transforming BT’s Infrastructure Management with Graph Technology
Webinar Data Mesh - Part 3
Ad

Similar to GraphTalk Copenhagen - Fraud Detection with Graphs (20)

PDF
GraphTour 2020 - Danish Business Authority: First line of Defence
PDF
Danish Business Authority: Explainability and causality in relation to ML Ops
PPTX
Hedging Your Bets: Why Top FI’s are Investing in Machine Learning
PDF
Re-orienting your business around data
PDF
The 10 most trusted fraud detection solution providers 2019
PDF
5_Data Analytics, Data Science and Machine Learning
PDF
Data Resource Management: Good Practices to Make the Most out of a Hidden Tre...
PPTX
AI-Driven Fraud Detection
PDF
Gabor Koncz – AI in email marketing: email conversion optimization in eCommerce
PDF
Novel analytics for gas stations
PDF
AI in the Enterprise: Past, Present & Future - StampedeCon AI Summit 2017
PPTX
DataStax | Adversarial Modeling: Graph, ML, and Analytics for Identity Fraud ...
PPTX
Data Science Innovation Summit Philadelphia 2019 - pariveda
PDF
User behavior analyses JavaZone 2020
PDF
Digital Transformation Summit 2024 - Edinburgh
PDF
PPTX
Data Strategy - Executive MBA Class, IE Business School
PPTX
ITExpertUS Corporate (AI) 2023.pptx
PDF
The 10 best performing big data and business analytics companies 2020
PPTX
Fraud Detection in Insurance with Machine Learning for WARTA - Artur Suchwalko
GraphTour 2020 - Danish Business Authority: First line of Defence
Danish Business Authority: Explainability and causality in relation to ML Ops
Hedging Your Bets: Why Top FI’s are Investing in Machine Learning
Re-orienting your business around data
The 10 most trusted fraud detection solution providers 2019
5_Data Analytics, Data Science and Machine Learning
Data Resource Management: Good Practices to Make the Most out of a Hidden Tre...
AI-Driven Fraud Detection
Gabor Koncz – AI in email marketing: email conversion optimization in eCommerce
Novel analytics for gas stations
AI in the Enterprise: Past, Present & Future - StampedeCon AI Summit 2017
DataStax | Adversarial Modeling: Graph, ML, and Analytics for Identity Fraud ...
Data Science Innovation Summit Philadelphia 2019 - pariveda
User behavior analyses JavaZone 2020
Digital Transformation Summit 2024 - Edinburgh
Data Strategy - Executive MBA Class, IE Business School
ITExpertUS Corporate (AI) 2023.pptx
The 10 best performing big data and business analytics companies 2020
Fraud Detection in Insurance with Machine Learning for WARTA - Artur Suchwalko
Ad

More from Neo4j (20)

PDF
MASTERDECK GRAPHSUMMIT SYDNEY (Public).pdf
PDF
Jin Foo - Prospa GraphSummit Sydney Presentation.pdf
PDF
GraphSummit Singapore Master Deck - May 20, 2025
PPTX
Graphs & GraphRAG - Essential Ingredients for GenAI
PPTX
Neo4j Knowledge for Customer Experience.pptx
PPTX
GraphTalk New Zealand - The Art of The Possible.pptx
PDF
Neo4j: The Art of the Possible with Graph
PDF
Smarter Knowledge Graphs For Public Sector
PDF
GraphRAG and Knowledge Graphs Exploring AI's Future
PDF
Matinée GenAI & GraphRAG Paris - Décembre 24
PDF
ANZ Presentation: GraphSummit Melbourne 2024
PDF
Google Cloud Presentation GraphSummit Melbourne 2024: Building Generative AI ...
PDF
Telstra Presentation GraphSummit Melbourne: Optimising Business Outcomes with...
PDF
Hands-On GraphRAG Workshop: GraphSummit Melbourne 2024
PDF
Démonstration Digital Twin Building Wire Management
PDF
Swiss Life - Les graphes au service de la détection de fraude dans le domaine...
PDF
Démonstration Supply Chain - GraphTalk Paris
PDF
The Art of Possible - GraphTalk Paris Opening Session
PPTX
How Siemens bolstered supply chain resilience with graph-powered AI insights ...
PDF
Knowledge Graphs for AI-Ready Data and Enterprise Deployment - Gartner IT Sym...
MASTERDECK GRAPHSUMMIT SYDNEY (Public).pdf
Jin Foo - Prospa GraphSummit Sydney Presentation.pdf
GraphSummit Singapore Master Deck - May 20, 2025
Graphs & GraphRAG - Essential Ingredients for GenAI
Neo4j Knowledge for Customer Experience.pptx
GraphTalk New Zealand - The Art of The Possible.pptx
Neo4j: The Art of the Possible with Graph
Smarter Knowledge Graphs For Public Sector
GraphRAG and Knowledge Graphs Exploring AI's Future
Matinée GenAI & GraphRAG Paris - Décembre 24
ANZ Presentation: GraphSummit Melbourne 2024
Google Cloud Presentation GraphSummit Melbourne 2024: Building Generative AI ...
Telstra Presentation GraphSummit Melbourne: Optimising Business Outcomes with...
Hands-On GraphRAG Workshop: GraphSummit Melbourne 2024
Démonstration Digital Twin Building Wire Management
Swiss Life - Les graphes au service de la détection de fraude dans le domaine...
Démonstration Supply Chain - GraphTalk Paris
The Art of Possible - GraphTalk Paris Opening Session
How Siemens bolstered supply chain resilience with graph-powered AI insights ...
Knowledge Graphs for AI-Ready Data and Enterprise Deployment - Gartner IT Sym...

Recently uploaded (20)

PDF
Understanding Forklifts - TECH EHS Solution
PDF
Claude Code: Everyone is a 10x Developer - A Comprehensive AI-Powered CLI Tool
PPTX
Reimagine Home Health with the Power of Agentic AI​
PDF
Internet Downloader Manager (IDM) Crack 6.42 Build 42 Updates Latest 2025
PPTX
Oracle E-Business Suite: A Comprehensive Guide for Modern Enterprises
PDF
Adobe Illustrator 28.6 Crack My Vision of Vector Design
PPTX
Agentic AI Use Case- Contract Lifecycle Management (CLM).pptx
PDF
Addressing The Cult of Project Management Tools-Why Disconnected Work is Hold...
PDF
How to Migrate SBCGlobal Email to Yahoo Easily
PDF
Why TechBuilder is the Future of Pickup and Delivery App Development (1).pdf
PDF
SAP S4 Hana Brochure 3 (PTS SYSTEMS AND SOLUTIONS)
PPTX
assetexplorer- product-overview - presentation
PDF
Design an Analysis of Algorithms I-SECS-1021-03
PDF
Digital Systems & Binary Numbers (comprehensive )
PDF
How to Choose the Right IT Partner for Your Business in Malaysia
PDF
Design an Analysis of Algorithms II-SECS-1021-03
PDF
Softaken Excel to vCard Converter Software.pdf
PDF
Navsoft: AI-Powered Business Solutions & Custom Software Development
PDF
PTS Company Brochure 2025 (1).pdf.......
PPTX
Embracing Complexity in Serverless! GOTO Serverless Bengaluru
Understanding Forklifts - TECH EHS Solution
Claude Code: Everyone is a 10x Developer - A Comprehensive AI-Powered CLI Tool
Reimagine Home Health with the Power of Agentic AI​
Internet Downloader Manager (IDM) Crack 6.42 Build 42 Updates Latest 2025
Oracle E-Business Suite: A Comprehensive Guide for Modern Enterprises
Adobe Illustrator 28.6 Crack My Vision of Vector Design
Agentic AI Use Case- Contract Lifecycle Management (CLM).pptx
Addressing The Cult of Project Management Tools-Why Disconnected Work is Hold...
How to Migrate SBCGlobal Email to Yahoo Easily
Why TechBuilder is the Future of Pickup and Delivery App Development (1).pdf
SAP S4 Hana Brochure 3 (PTS SYSTEMS AND SOLUTIONS)
assetexplorer- product-overview - presentation
Design an Analysis of Algorithms I-SECS-1021-03
Digital Systems & Binary Numbers (comprehensive )
How to Choose the Right IT Partner for Your Business in Malaysia
Design an Analysis of Algorithms II-SECS-1021-03
Softaken Excel to vCard Converter Software.pdf
Navsoft: AI-Powered Business Solutions & Custom Software Development
PTS Company Brochure 2025 (1).pdf.......
Embracing Complexity in Serverless! GOTO Serverless Bengaluru

GraphTalk Copenhagen - Fraud Detection with Graphs

  • 1. Marius Hartmann Fraud Detection with Graphs 24. september 2019
  • 2. Main task of The Danish Business Authority 2Danish Business Authority Business service and registration of companies Business development and digital growth Business regulation and supervision planning and rural business EU and international affairs
  • 3. Virk: The joint public one-stop shop to the Danish business world 3Danish Business Authority 27.000.000 visits at Virk on an annual basis 96% of companies in Denmark know Virk 4.000.000 filings on Virk annually 92% Instant case handling
  • 4. ML Lab  9 person strong  Physics, astro-physics, economics, computer science, fine art, social science, 7 Phd’s (+1 on the way)  2/7 gender balance, kids and no-kids Erhvervsstyrelsen 4
  • 5. What can we do with ML and Graph?  Help and guide users to make fewer mistakes  Improve and scale our control and supervision  Provide recommendations and personalize our solutions  Improve our policy development with ML created insight 5Danish Business Authority
  • 6. Management Owner ? Example of control: Strengthened company control regarding VAT 6 Owner Management Revision Adverse Opinion Not complying to bookkeeping act VAT not filed on time Adverse Opinion Not complying to bookkeeping act VAT not filed on time Salery tax not paid Adverse Opinion Holding company OwnerOwner Real owner Danish Business Authority
  • 7. Et nyt dataparadigme Erhvervsstyrelsen 7 (Legal) network of a lawyer with roles in relation to 12.400 companies
  • 9. What’s the deal with Graph and ML?  ML is based on data properties, but isn’t suited to handle relations between objects in data  Graph provides context to ML and even supports algorithms based on data structure 9Danish Business Authority Currently 126 mio. nodes 160 mio. relations
  • 10. ML insights persisted to graph 10Danish Business Authority Blue: Company Yellow: Person Purple: Annual report Red: ML insights
  • 11. Machine learning controls all identity papers for foreign business actors ML controls that fictional assets are not inserted ‘Weaponize’ unstructured data concerning negligence Control new businesses for concerns of fraud Identity Assets Audits 1.st line Handling complexity - 4 intelligent controls in 2019 Erhvervsstyrelsen 11
  • 13. Erhvervsstyrelsen 13 Registry data Business registry VAT Annual reports data
  • 15. Erhvervsstyrelsen 15 Registry data + metadata Data from data Delta values Discrepancies Client profile, IP, timestamp data metadata
  • 16. Erhvervsstyrelsen 16 Registry data + metadata Enriched network data metadata
  • 17. Erhvervsstyrelsen 17 Registry data + metadata + observations Shares client Group Fictionous Anormalities data metadata Machine learning
  • 18. Erhvervsstyrelsen 18 Registry data + metadata + observations Shares client Group Fictionous Anormalities data metadata Machine learning
  • 20. Erhvervsstyrelsen 20 Automatic control of new data Exploits what we already know Uses machine insights Machine learning Registry data + metadata + observations
  • 22. Data Metadata ML Automate 01 02 03 04 Information about persons, companies, annual reports, VAT etc. Data from data. Observations, machine driven insights. Data driven business. Registries Metadata ML Business Intelligent control Erhvervsstyrelsen 22
  • 23. ERST ML data platform Erhvervsstyrelsen 23 Machine learning models use and enrich our Knowledge graph triggered by events in near real time Knowledge graph maintains 360° network analysis of customers and business life cycles ML data platform Cloud infrastructure Event driven architecture ML data governance Data event store Automated intelligent controls applied to business systems in support of decision making.
  • 24. What is complicated?  ML data governance  Machine learning in production  Reacting in near real-time  Business transformation  Explainability  Automation 24Danish Business Authority
  • 25. Transparency and fairness in AI  Data ethics Erhvervsstyrelsen 25
  • 26. Traceability in data 26 Business Who did what? Technology Data lineage, metadata management Evaluation Can we do better? Danish Business Authority
  • 27. The knowledge graph and semantic AI Erhvervsstyrelsen 27
  • 28. Graph as a knowledge catalyst 28Danish Business Authority Data sources Meta model Agent ML enrichment Knowledge graph Automation Semantic AI EVENT DATA
  • 29. The semantic journey 29Danish Business Authority Data sources Meta model Agent ML enrichment Knowledge graph Automation Semantic AI
  • 30. Knowledge AI 30Danish Business Authority AI abstraction Semantic layer
  • 31. The principles  Graph adoption to contextualize business lifecycles  Meta data strategy to produce data from data  ML enriched automation so we may adopt machine generated insight  Monitor and trace usage so we can explain  Evaluate and improve continuously Erhvervsstyrelsen 31

Editor's Notes

  • #3: he main tasks of The Danish Business Autority: Registration og Compagnies Business regulation and supervision Planning and rural businesse Business development and digital growth EU and international affairs We have a variety of different stakeholders; from small businesses to the large international companies. Different professional actors, the municipalities and the political system
  • #4: ’m very proud of these four figures. They show that Virk have truly become the public one-stop shop for businesses in Denmark. The companies know and visit Virk, and they file in their information on Virk. 92 % of cases are resolved instantly without manual processing needed.
  • #6: Hjælpe og vejlede: Maskinen kan f.eks. i årsrapporter læse anvendt regnskabspraksis, som er fritekst, og give brugeren en ”advis” hvis der ikke er overensstemmelse mellem på den ene side tallene i regnskabet (de mangler eller er forkerte) og på den anden side, den selvanførte regnskabspraksis. Forbedre og skalere kontrol og tilsyn: Vi vil kunne reagere allerede når en brugere forsøger at indsende noget forkert (reaktion i realtid). Vi kan udbrede vores kontrol fra ”få i en stikprøve” til ”mange/alle”. Vi kan basere vores kontrol på store datamængder som et menneske ikke ville have kunne overskuet Give anbefalinger: Vi vil kunne hjælpe brugerne på f.eks. Virk.dk med hvilke løsninger de burde være opmærksom på. Brugeroplevelsen vil også kunne gøres mere målrettet og afhængig af om du f.eks. er en lille virksomhed, eller om du er økonomimedarbejder i et stort selskab. Maskinen finder mønstre og hjælpe dig hurtigere frem til relevante indberetningsløsninger på virk eller hjælp på ”startvækst”. Vi vil (hvis man måtte ønske det) også kunne give anbefalinger til virksomhederne af typen: ”Her er de ti brancher hvor man tjente flest penge pr. medarbejder eller pr kapitalandel sidste år” ”Her er det sted i landet hvor bilforhandlere/cafeer/farvehandlere etc. tjente flest penge sidste år. Forbedring af vores policy udvikling med ML-skabt indsigt: Machine learning hjælper med at skabe nye data på ryggen af gamle data. Det kan ske i store mængder. Maskinen kan f.eks. give struktureret viden om den økonomiske situation i en given region ved at se på alle årsrapporter. Maskinen kan også udlede viden af store tekstmængder, så vi ved hvor mange virksomheder der bliver berørt af en ændring krav til opgørelsen af kapitalandele i datterselskaber. Tidligere krævede række sådanne aktiviteter ofte langsommelige og dyre konsulentrapporter. Hvis vi gennemfører AER og kombinerer det med ML vil vi endvidere kunne få tal for den økonomiske udvikling i noget nær realtid
  • #7: Det vi spørger maskinen om er: Hvad kan vi antage om en virksomhed eller personkredses intentioner, baseret på hvordan de hidtil har opført sig? Eller sagt med andre ord: hvilke spor i eksisterede data om en eller flere personer, giver den stærkest indikation på, at de vil begå moms eller afgiftssvindel i fremtiden. Her ses en typisk virksomhedskontruktion. En personkreds ejer og leder et holdingselskab og en eller flere virksomheder. Ved hjælp af ML kan vi opnå viden om virksomheden og personkredsens tidligere adfærd. Her kan vi f.eks. ”læse” ud af regnskabet v.hj.a. ML, at revisor udtaler at virksomhederne overtræder Moms-, bogføring- og Skattelovgivningen. Vi vil også kunne se om personer f.eks. er tidligere har overtrådt reglerne Det store spørgsmål er nu: Hvad kan vi forvente når de overtager en anden virksomhed? Opgaven for ERST bliver at træne maskinen til a se denne slags situationer og ved hjælp af mønstre at kunne se om der er behov for at sætte virksomheden på ventehylde og aflægge dem et besøg eller kræve yderligere dokumentation inden registreringen kan godkendes, eller om Skat skal underrettes om at denne nye virksomhed er genstand for undring.
  • #10: Hjælpe og vejlede: Maskinen kan f.eks. i årsrapporter læse anvendt regnskabspraksis, som er fritekst, og give brugeren en ”advis” hvis der ikke er overensstemmelse mellem på den ene side tallene i regnskabet (de mangler eller er forkerte) og på den anden side, den selvanførte regnskabspraksis. Forbedre og skalere kontrol og tilsyn: Vi vil kunne reagere allerede når en brugere forsøger at indsende noget forkert (reaktion i realtid). Vi kan udbrede vores kontrol fra ”få i en stikprøve” til ”mange/alle”. Vi kan basere vores kontrol på store datamængder som et menneske ikke ville have kunne overskuet Give anbefalinger: Vi vil kunne hjælpe brugerne på f.eks. Virk.dk med hvilke løsninger de burde være opmærksom på. Brugeroplevelsen vil også kunne gøres mere målrettet og afhængig af om du f.eks. er en lille virksomhed, eller om du er økonomimedarbejder i et stort selskab. Maskinen finder mønstre og hjælpe dig hurtigere frem til relevante indberetningsløsninger på virk eller hjælp på ”startvækst”. Vi vil (hvis man måtte ønske det) også kunne give anbefalinger til virksomhederne af typen: ”Her er de ti brancher hvor man tjente flest penge pr. medarbejder eller pr kapitalandel sidste år” ”Her er det sted i landet hvor bilforhandlere/cafeer/farvehandlere etc. tjente flest penge sidste år. Forbedring af vores policy udvikling med ML-skabt indsigt: Machine learning hjælper med at skabe nye data på ryggen af gamle data. Det kan ske i store mængder. Maskinen kan f.eks. give struktureret viden om den økonomiske situation i en given region ved at se på alle årsrapporter. Maskinen kan også udlede viden af store tekstmængder, så vi ved hvor mange virksomheder der bliver berørt af en ændring krav til opgørelsen af kapitalandele i datterselskaber. Tidligere krævede række sådanne aktiviteter ofte langsommelige og dyre konsulentrapporter. Hvis vi gennemfører AER og kombinerer det med ML vil vi endvidere kunne få tal for den økonomiske udvikling i noget nær realtid
  • #12: Identitet At informationen fra identitetspapiret stemmer overens med de indtastede oplysninger om personen på registreringen (MRZ(Machine-Readable-Code)) At identitetspapiret er gyldigt på registreringstidspunktet Spin-off I: identitetspapirer bidrager med præcis metadata om kønsfordelingen i ledelser og bestyrelser Spin-off II: vi kan fremfinde personer registreret med flere enhedsnumre Aktiver, kontrol af vurderingsberetninger I 2018 blev der indberettet 3.554 vurderingsberetninger for selskaber. En tidligere gennemgang af PwC har vist, at 63,5 % af alle vurderingsberetninger indberettet i 2017 er fejlbehæftet. Modellen vil være med til at sikre, at de værdier, som indskydes i selskaber, er reelle. Da modellen vil slå ned i meget specifikke dele af en vurderingsberetning, vil det gøre sagsbehandlingen kortere og nemmere. Årsrapport, revisorerne hjælper Årsrapporter indeholder revisors kommentarer om overtrædelser af love og regler A-lån, Bogføringsloven, Moms og afgifter, Aktivitet ved kapitaltab mangler, A-skat/AM-bidrag 1.st line Kontrol af virksomhedsregistrering på basis af analyse af aktørnetværk, tidligere virksomheders livsforløb, SKAT data. Model i beta, ej produktion 2019.
  • #24: Erhvervsstyrelsens it-arkitektur er bygget op omkring genbrug af services og fælleskomponenter. Styrelsens hjemmel(§L149) til at anvende andre myndigheders data til kontrol af virksomheder stiller særlige krav til forståelse af data, da der arbejdes med begreber udenfor eget ressort. ERST ML dataplatform er bygget op omkring sporbarhed, forklarlighed og i respekt for det data etiske ansvar som styrelsen har. Fordi en høj etisk standard dikterer sporbarhed, giver dette en positiv sideeffekt ift. evaluering af modellernes præcision og måling af forretningsværdi. Styrelsen arbejder med ud fra et 360 graders forståelse af danske virksomheder som kombinerer den specialiserede indsigt fra maskinlæring, med et kontekstforståelse fra grafteknologi for hvilke mønstre som er udslagsgivende for virksomheders livsforløb. Teknologisk har dette betydet udvidelse af styrelsens infrastruktur med cloud-løsning, containerteknologi til indkapsling af specialiseret teknologi, grafteknologi datastruktur, hændelsesdrevet arkitektur så vi kan reagere i nær-realtid, samt udvidet data governance for sporbarhed og forklarbarhed.
  • #25: Streaming af data og GDPR Vi ved ikke hvem der stifter selskab før de logger på. Omvendt ønsker vi heller ikke score alle danskere. Derfor er centralt at vi kan samle alle data og anvende dem i det øjeblik som borgeren henvender sig. Vi skal med andre ord ”streame” meget store datamængder på kort tid, da vi kun ønsker at se på de personer og virksomheder der ønsker at oprette og ændre virksomheder uden at vi ”gemmer” dem vi mistænker for at være svindlere i et register. Derved kommer vi uden om en masse GDPR problemstillinger. Machine learning som disciplin Det er en svær ML øvelse, som kræver specialister og grundig forberedelse. Fx er det særlig svært at holde revisionssporet mellem beslutninger taget af maskinen og datagrundlaget. Fordi det skal kunne forklares hvordan vi er kommet fra datakilden til at maskinen er nået frem til dens anbefaling. At reagere i real-time Teknisk er det en svær øvelse at kunne reagere i real time. Dette kræver ny teknologi og vi har måtte flytte dele af vores infrastruktur i skyen for at kunne scalere. Forretninganvendelse af mønstergenkendelse Det stiller store krav til forretningshåndtering, og vi skal have fuldstændig styr på at modeller ikke ”stikker” af fra os. Forretningen skal derfor løbende holde øje med modellerne. Størrelsen af ”netmaskerne” Endeligt er det centralt at huske at ML anvender statistik til at underbygge forretningen. Ved at skrue på modellernes ”confidence” kan vi så at sige ændre netstørrelserne, så vi fx primært går efter de store fisk, og der hvor modellerne er mest sikre.
  • #27: Data og datas livsforløb: Det er vigtigt, at de beslutninger som Machine learning tager kan genskabes og forklares, samt at beslutningerne er ensartede. Vi vil gradvist få flere og flere data som skabes af machine learning modeller og som indgår i andre modeller som input. Når mange faktorer påvirker data bliver det meget vigtigt og megasvært at forstå og forklare modellernes beslutninger. Med andre ord vi skal udøve god forvaltningsskik, så vi kan forklare ”hvorfor blev virksomhed X” udtaget til nærmere kontrol.