SlideShare a Scribd company logo
Groundwater modeling:
flow simulations
A. Dassargues
References: Dassargues A., 2018. Hydrogeology: groundwater science and
engineering, 472p. Taylor & Francis CRC press (chapters 4, 12 & 13)
Dassargues A. 2020. Hydrogéologie appliquée: science et ingénierie
des eaux souterraines, 512p. Dunod (chapitres 4, 2 et 13)
Groundwater modeling: flow simulation
► Groundwater flow equations
 REV concept
 Potentiometric/piezometric head
 Porosities, hydraulic conductivty, Darcy’s law, transmissivity
 Steady state equations
 Transient equations
 Extending to partially saturated flow
► Flow Boundary Conditions
 Dirichlet BC’s
 Neumann BC’s
 Cauchy BC’s
► Introduction to solving methods
 Finite Difference method
 Time integrations schemas
 Finite Difference method (FD): practical recommendations
 Finite Element method: summary
 Finite Volume method: summary
► References
Assumptions and REV concept
REV is the volume of geological medium considered as
representative for quantification of the value of the different
properties (by averaged, equivalent values)
 the REV depends on the kind of problem being
studied and the study objectives
 the REV is used for groundwater flow and solute
transport … but also in all other fields where a
quantification is needed for properties of the
geological medium
 large enough to be relevant with regard to the studied problem
(avoid microscopic scale for a real case study)
 small enough for avoiding too smoothed values that will corrupt
our description of the processes
… this REV concept implicitly implies that the
medium is considered as continuous (and porous)
3
(de Marsily 1986, Dagan 1989, Bear & Verruijt 1987)
Balance models, black-box models, transfer
functions, etc.
Assumptions, REV concept and scale
Fluid dynamic and pore studies
Lab tests (from dm to a few m)
Detailed numerical models – Physically
consistent simulations of the reservoir
Homogenisation
Homogenisation
Homogenisation
Micro
Macro
Mega
Giga
Scale
4
(Dassargues & Monjoie 1993, Dassargues 2018 and 2020, Hoffmann et al. 2021)
parameter values can be quite different in function of the considered scale
Hydrostatic
… the potential energy is expressed usually in ‘water head’
or hydraulic head or piezometric head:
g
p
z
g
h
.





5
Water pressure vs piezometric head
… a direct link between hydraulic/piezometric
head h and water pressure p:
g
z
h
p .
)
( 


t
h
g
t
p





.

for groundwater flow problems, the main variable is the
piezometric head or the water pressure
piezometric heads can be compared only if groundwater has
everywhere the same temperature and the same salt content
if it is not the case, … density will vary … and to a same water
pressure correspond different piezometric heads (of groundwater with
different salt content)
corrections in function of the salinity must be done 6
Rmq: if density effect (salwater) is considered
work with pressure or with ‘equivalent
freshwater piezometric heads’
(Carabin and Dassargues 1999)
Porosity
… two components in the total porosity:
cinematic porosity
retention capacity’ or ‘specific retention’)
c
n
r
S
n
S
n r
c 

t
m
c
V
V
n 
t
im
r
V
V
S 
with
the cinematic porosity is difficult to be measured in practice
(… after which duration ? … at which pressure ? … )
drainage porosity
= effective porosity
corresponding to the drainable water by gravity
(also called mobile water or free water)
…. also called = “specific yield”
c
e n
n 
y
S
7
8
Porosity and granular analysis
Dassargues, 2018
(Eckis 1934, Castany 1963)
… experimental law
quantity of water per time unit through a porous medium:
L
h
A
K
Q

 .
.
K permeability coefficient, hydraulic conductivity,
water permeability (by abuse of language:
permeability) of the porous medium (m/s)
… specific flux or flow rate
(specific discharge):
A
Q
q 
in m3/(m2.s) … in m/s 9
Hydraulic conductivity and Darcy’s law
This specific discharge is often called ‘Darcy’s velocity’ … it is only a
flow rate Q divided by a surface A
… to obtain a mean (averaged/equivalent on the REV)
groundwater velocity :
the actual groundwater flow section is : e
n
A.
L
h
n
K
n
q
v
e
e
e


 . m/s ‘ advection velocity’
(effective velocity)
this surface is not the groundwater flow
section
10
Hydraulic conductivity and Darcy’s law
the ‘mobile water porosity’ to be considered for groundwater flow is
typically higher than the ‘mobile water porosity’ acting in solute
transport processes (Payne et al. 2008, Hadley and Newell, 2014)
useful
porosity for
solute
transport is
‘effective
transport
porosity’
< drainage
porosity
11
…about mobile water porosities
(Dassargues 2018 and 2020)
 fluid properties:
viscosity
density
 porous medium properties:
granular proportions,
grains shapes,
pore distribution and
shapes
intergranular porosity
depends on:
intrinsic permeability or permeability (m2)
K

 g
k
K
.
.

volume mass of the fluid (kg/m3)
gravity acceleration (m/s2)
dynamic viscosity (kg/(m.s), N.s/m2 or Pa.s
12
Hydraulic conductivity and intrinsic permeability
hydraulic conductivity and intrinsic permeability described by
tensors:
and
elevation of the considered point
(with regards to the reference datum)
13
Generalisation of the Darcy’s law in 3D
𝑲 =
𝐾𝑥𝑥 𝐾𝑥𝑦 𝐾𝑥𝑧
𝐾𝑦𝑥 𝐾𝑦𝑦 𝐾𝑦𝑧
𝐾𝑧𝑥 𝐾𝑧𝑦 𝐾𝑧𝑧
𝑲 = 𝒌𝜌𝑔 𝜇
𝒒 = −𝑲 ∙ 𝛻ℎ = −
𝒌𝜌𝑔
𝜇
∙ 𝛻ℎ = −
𝒌
𝜇
∙ 𝛻𝑝 + 𝜌𝑔𝛻𝑧
𝒈𝒓𝒂𝒅 ℎ = 𝛻ℎ =
𝜕ℎ
𝜕𝑥
,
𝜕ℎ
𝜕𝑦
,
𝜕ℎ
𝜕𝑧
Transmissivity
mean value of the hydraulic
conductivity on the vertical of the
concerned point
transmissivity
(m2/s) in a point
thickness of the confined
aquifer at the concerned
point
… for a confined aquifer
14
𝑇 𝑥, 𝑦 =
0
𝑏 𝑥,𝑦
𝐾 𝑥, 𝑦, 𝑧 𝑑𝑧 = 𝐾𝑎𝑣𝑔 𝑥, 𝑦 𝑏 𝑥, 𝑦
(Dassargues, 2018 & 2020)
… for an unconfined aquifer


)
,
(
0
).
,
(
)
,
( dz
y
x
K
y
x
T
the saturated thickness of the unconfined aquifer
at the point (of horizontal coordinates x and y )
depends on the
piezometric head!
15
Transmissivity
(Dassargues, 2018 & 2020)
(Dupuit 1863, Delleur 1999)
16
Groundwater flow equation in steady state
terms are kg/(m3s )
in indicial notation
if density is assumed constant and the principal anisotropy
directions of the K tensor are known and aligned with the
selected coordinate system – terms are in s-1
𝛻 ∙ 𝜌 𝑲 ∙ 𝛻ℎ + 𝜌𝑞′
= 0
𝜕
𝜕𝑥𝑖
𝜌𝐾𝑖𝑗
𝜕ℎ
𝜕𝑥𝑗
+ 𝜌𝑞′𝑖 = 0
𝜕
𝜕𝑥
𝐾𝑥𝑥
𝜕ℎ
𝜕𝑥
+
𝜕
𝜕𝑦
𝐾𝑦𝑦
𝜕ℎ
𝜕𝑦
+
𝜕
𝜕𝑧
𝐾𝑧𝑧
𝜕ℎ
𝜕𝑧
+ 𝑞′ = 0
𝜕
𝜕𝑥
𝐾𝑥𝑥
𝜕ℎ
𝜕𝑥
+
𝜕
𝜕𝑧
𝐾𝑧𝑧
𝜕ℎ
𝜕𝑧
+ 𝑞′
= 0
if 2D vertical flow, terms are in s-1
𝜕
𝜕𝑥
𝑇𝑥𝑥
𝜕ℎ
𝜕𝑥
+
𝜕
𝜕𝑦
𝑇𝑦𝑦
𝜕ℎ
𝜕𝑦
+ 𝑞′′ = 0
if 2D horizontal flow, terms are in m/s
17
Equation in transient conditions
… in transient flow,
storage variation in function of the time:
t
n


 )
(
 
t
h
S
t
h
n
n
g
t
n
s
w
s















 2
)
(
specific storage coefficient (m-1)
Volume (REV)
compressibility
of the porous
medium
(Pa-1)
Solid grain
compressibility (Pa-1)
Water
compressibility
(Pa-1)

 g
Ss 
… often, the influence of the water compressibility and the solid grain
compressibility can be neglected with regards to the volume
compressibility of the porous medium (as a whole)

 g
Ss 
… this link between the volume compressibility and the
specific storage coefficient is showing clearly the direct
coupling between saturated transient groundwater flow
and geomechanical behaviour in compressible porous
media
the volume compressibility is dependent on
effective stress variation
the effective preconsolidation stress of the porous
medium
18
Specific storage coefficient
Rmq: Ss is actually variable as it depends on compressibility that is
dependent on the effective stress state that is dependent on the water
pressure,… (Dassargues et al. 1991 and 1993, Dassargues 1995, 1997, 1998)
19
Storage coefficient = water volume (m3) stored or drained
per aquifer surface unit (m2) for a unit variation of
piezometric head (m)
… vertical integration


)
,
(
0
).
,
(
)
,
(
y
x
e
s dz
y
x
S
y
x
S confined aquifer
e
S
S s.

dz
S
n
S
h
z
s
e .
1


 unconfined aquifer
the most important part of the storage is due to
saturation/drainage of the porous medium
Equation in transient conditions
(Dassargues 1995b, 2018, 2020)
reference datum
= bottom of the
aquifer layer
h
S
n
S s
e .


e
n
S 
20
Storage coefficient
(Dassargues, 2018 & 2020)
21
confined aquifer
(horizontal flow)
2D groundwater flow equations in
transient conditions
𝛻 ∙ 𝑻 ∙ 𝛻ℎ + 𝑞′′ = 𝑆
𝜕ℎ
𝜕𝑡
𝜕
𝜕𝑥𝑖
𝑇𝑖𝑗
𝜕ℎ
𝜕𝑥𝑗
+ 𝑞′′𝑖 = 𝑆
𝜕ℎ
𝜕𝑡
𝜕
𝜕𝑥
𝑇𝑥𝑥
𝜕ℎ
𝜕𝑥
+
𝜕
𝜕𝑦
𝑇𝑦𝑦
𝜕ℎ
𝜕𝑦
+ 𝑞′′ = 𝑆
𝜕ℎ
𝜕𝑡
in indicial notation
unconfined aquifer
principal anisotropy directions aligned
with the selected coordinate system
terms are in m/s
𝛻 ∙ 𝑻(ℎ ∙ 𝛻ℎ + 𝑞′′ = 𝑛𝑒
𝜕ℎ
𝜕𝑡
= 𝑆𝑦
𝜕ℎ
𝜕𝑡
𝜕
𝜕𝑥𝑖
𝑇𝑖𝑗
𝜕ℎ
𝜕𝑥𝑗
+ 𝑞′′𝑖 = 𝑛𝑒
𝜕ℎ
𝜕𝑡
= 𝑆𝑦
𝜕ℎ
𝜕𝑡
𝜕
𝜕𝑥
𝑇𝑥𝑥
𝜕ℎ
𝜕𝑥
+
𝜕
𝜕𝑦
𝑇𝑦𝑦
𝜕ℎ
𝜕𝑦
+ 𝑞′′ = 𝑆
𝜕ℎ
𝜕𝑡
in indicial notation
principal anisotropy directions
aligned with the selected coordinate
system
terms are in m/s
22
vertical integration of the 3D equation on the thickness of
the confined aquifer
L
R
t
h
S
y
h
T
y
x
h
T
x
yy
xx 



























where T : transmissivity [L2 T-1], K  thickness
S : storage coefficient [-], Ss  thickness
R : recharge rate [L3 L-2 T-1] = [L T-1]
L : leakance [L T-1]
Thickness (b) Groundwater flow
Recharge (R)
Particular case: 2D horizontal confined flow
23
Multi-aquifer system
Leakance (vertical flow) through the aquitard
Darcy’s law
'
'
)
(
b
h
h
K
L s
z 


où K'z : vertical hydraulic conductivity of the aquitard
b' : aquitard thickness
hs : surperfical aquifer piezometric head
h : main aquifer piezometric head (main variable)
Aquifer
Aquitard
Aquifer
b', K'z
hs
h
Groundwater flow
Particular case: 2D horizontal confined flow
… leakance calculation for
a quasi 3D approach
24
with water pressure head as main variable
Groundwater flow equations including the
partially saturated zone
𝛻 ∙ 𝜌 𝑲 ℎ𝑝 ∙ 𝛻ℎ𝑝 + 𝑲 ℎ𝑝 ∙ 𝛻𝑧 + 𝜌𝑞′ = 𝜌𝐶 ℎ𝑝
𝜕ℎ𝑝
𝜕𝑡
terms are kg/(m3s )
(Celia et al. 1990,
Dassargues 1997)
𝛻 ∙ 𝜌 𝑲 𝜃 ∙ 𝛻ℎ𝑝 + 𝑲 𝜃 ∙ 𝛻𝑧 + 𝜌𝑞′ = 𝜌
𝜕𝜃
𝜕𝑡
in a mixed way as a function of the water content and the
pressure head
(Richards 1931)
needs relations between
- 𝜃 and hp
- 𝜃 and K
…
… van Genuchten relations and others
𝑝𝑐 𝜌𝑔 = −ℎ𝑝 = −𝑝 𝜌𝑔 = 𝑧 − ℎ
25
Flow Boundary Conditions
 Dirichlet conditions: prescribed piezometric head
 Neumann conditions: prescribed flux
 Cauchy or mixed conditions: flux depending on
piezometric head
Practical examples where groundwater flow BCs are discussed on various
practical cases are available from the experience of the author and researchers
from his team in the following references:
Dassargues et al. 1988, Dassargues 1991, Stefanescu & Dassargues 1996, Dassargues 1997, Carabin & Dassargues 2000, Brouyère et al. 2004,
Peeters et al. 2004, Rojas & Dassargues 2007, Rocha et al. 2007, Rojas et al. 2008, Jusseret et al. 2009, Goderniaux et al. 2009, Brouyère et al.
2009, Rojas et al. 2010, Wildemeersch et al. 2010, Orban et al. 2010, Goderniaux et al. 2011, Wildemeersch et al. 2014, César et al. 2014, Pujades et
al. 2016)
26
Prescribed piezometric head
(Dirichlet condition)
Prescribed piezometric head on the concerned boundary:
'
f can vary in space and time
(one value per node and per time step)
a flux will be computed per concerned node
Flow BC’s
ℎ 𝑥, 𝑦, 𝑧, 𝑡 = 𝑓′(𝑥, 𝑦, 𝑧, 𝑡
27
Prescribed flux (Neumann condition)
The first derivative of the piezometric head is
prescribed on the concerned boundary:
piezometric gradient normal to the concerned boundary,
its value can vary in space and time
(one value per concerned node and per time step)
Applying the Darcy’s law, it is a way of prescribing the water
flux through the boundary:
'
'
f
: precribed flux through the boundary (m/s)
'
'
q
0
'
' 
f
particular case:
Flow BC’s
𝛻ℎ ∙ 𝒏 =
𝜕ℎ
𝜕𝑛
𝑥, 𝑦, 𝑧, 𝑡 = 𝑓′′ 𝑥, 𝑦, 𝑧, 𝑡
𝐾
𝜕ℎ
𝜕𝑛
𝑥, 𝑦, 𝑧, 𝑡 = 𝑞′′(𝑥, 𝑦, 𝑧, 𝑡
28
Prescribed flux (Neumann condition)
Flow BC’s
(Dassargues, 2018)
29
Prescribed flux (Neumann condition)
Flow BC’s
(Dassargues, 2018)
30
A combination (linear relation) of the piezometric head
and its first derivative is prescribed on the boundary:
Flux depending on the piezometric head
(mixed condition or Cauchy condition)
)
,
,
,
(
'
'
'
)
,
,
,
(
.
)
,
,
,
(
. t
z
y
x
f
t
z
y
x
h
b
t
z
y
x
n
h
a 



'
'
'
f can vary in space and in time
(one value per concerned node and per time step)
 interactions between surface water bodies and
groundwater
 interactions between different aquifers
Flow BC’s
31
Flux depending on the piezometric head
(mixed condition or Cauchy condition)
Flow BC’s
𝑞′′
= −𝐾
𝜕ℎ
𝜕𝑛
=
𝐾′
𝑏′
(ℎ𝑟 − ℎ
𝑞′′
= −𝐾
𝜕ℎ
𝜕𝑛
=
𝐾′
𝑏′ (ℎ𝑠 − ℎ
conductance
conductance
32
Flux depending on the piezometric head
(mixed condition or Cauchy condition)
Flow BC’s
𝑞′′ = −𝐾
𝜕ℎ
𝜕𝑛
=
𝐾′
𝑏′
(ℎ𝑏 − ℎ
𝑞′′
= −𝐾
𝜕ℎ
𝜕𝑛
=
𝐾′
𝑑′
(ℎ𝑟 − ℎ
conductance
conductance
prescribing an ‘external head’ (i.e. not on the true boundary but outside the
modelled zone) so that a groundwater flux across the boundary is computed
from the difference between this ‘external head’ and the piezometric head on
the model boundary using a given conductance
33
Flux depending on the piezometric head
(mixed condition or Cauchy condition)
Flow BC’s
conductance
𝑞𝐸𝑣𝑇 =
𝑅𝐸𝑣𝑇
𝑑𝑒𝑥𝑡
(ℎ 𝑥, 𝑦, 𝑧, 𝑡 − ℎ𝑐𝑟𝑖𝑡 𝑥, 𝑦, 𝑧, 𝑡
represent an evapotranspiration flux leaving the model but dependent on the ‘depth
to water’ (i.e. the land surface elevation minus piezometric head). An extinction
depth 𝑑𝑒𝑥𝑡 corresponding to a critical head ℎ𝑐𝑟𝑖𝑡 can be defined so that EvT occurs
only if the water table is higher
(Anderson et al. 2015)
in arid and semi-arid zones
34
Simple case…
 steady state
 no infiltration, no sink/source term
 homogeneity of the medium
 2D problem
0



t
h
0

I 0

q
Cst
T 
0
2
2
2
2






y
h
x
h
GW flow equation
in steady state
Assumptions:
Solving a gw flow problem with a Finite
Difference schema
35
Definition of a partial derivative of a function
of the variable :
)
(x
h
x














 x
x
h
x
x
h
x
h
x
)
(
)
(
lim
0
spatial discretisation with a grid
the nodes are the central points of rectangular cells
(‘Block Centered Finite Difference method’ = BCFD)
the cells are homogeneous ... the continuous variation
of the variable is replaced by a discrete variable defined
at the central points of the cells
the approximation of the differential equation is better as
the cells are small
Simple case…
Solving a gw flow problem with a FD schema
36
the nodes are numbered sequentially,
index and piezometric head values
are attributed
j columns
i lines
j
i, ij
h
Simple case…
Solving a gw flow problem with a FD schema
37
Taylor series for a continuous function )
(x
h
n
n
n
x
x
h
n
x
x
x
h
x
x
x
h
x
x
x
h
x
x
h
x
x
h




















)
(
.
!
)
(
...
)
(
.
!
3
)
(
)
(
.
!
2
)
(
)
(
.
)
(
)
( 3
3
3
2
2
2
2
2
2
1
1
1 .
2
)
(
).
(
x
h
x
x
x
h
x
x
h
h i
i
i
i
ij
j
i








 


2
2
2
1
1
,
1 .
2
)
(
).
(
x
h
x
x
x
h
x
x
h
h i
i
i
i
ij
j
i








 


2
2
1
1
1
2
)
(
)
( x
h
x
x
x
h
x
x
h
h i
i
i
i
ij
j
i








 


2
2
1
1
1
1
1
1
).
(
2
1
)
(
)
(
)
(
)
(
x
h
x
x
x
x
h
h
x
x
h
h
i
i
i
i
ij
j
i
i
i
ij
j
i















… terms of the 3rd
order and more
are neglected
… for hij and the x direction:
2
2
1
1
1
2
)
(
)
( x
h
x
x
x
h
x
x
h
h i
i
i
i
ij
j
i








 


and
… for x > 0
… for x < 0
Simple case…
Solving a gw flow problem with a FD schema
38
if
































 )
(
.
)
(
1
)
(
1
)
(
.
)
(
2
1
1
1
1
1
1
1
1
2
2
i
i
j
i
ij
i
i
i
i
i
i
j
i
i
i x
x
h
h
x
x
x
x
x
x
h
x
x
x
h
)
(
)
( 1
1 i
i
i
i x
x
x
x
x 



 

2
1
1
2
2
)
(
.
2
x
h
h
h
x
h j
i
ij
j
i





 

2
1
1
2
2
)
(
.
2
y
h
h
h
y
h j
i
ij
j
i





 

Cst
m
y
x 





if
  0
4
.
)
(
. 1
1
1
1
2
2
2
2
2























 ij
j
i
j
i
j
i
j
i h
h
h
h
h
m
T
y
h
x
h
T
)
.(
4
1
1
1
1
1 


 


 j
i
j
i
j
i
j
i
ij h
h
h
h
h
Simple case…
Solving a gw flow problem with a FD schema
39
Introduction to solving methods: FD
𝜕ℎ
𝜕𝑥
≈
ℎ 𝑥 + ∆𝑥 − ℎ(𝑥
∆𝑥
𝜕ℎ
𝜕𝑥
≈
ℎ 𝑥 + ∆𝑥 − ℎ(𝑥 − ∆𝑥
2∆𝑥
𝜕2
ℎ
𝜕𝑥2
≈
ℎ𝑖+1𝑗 − 2ℎ𝑖𝑗 + ℎ𝑖−1𝑗
∆𝑥 2
1D spatial approximation of the gradient
by a finite difference:
Forward FD
Central FD
In 2D, with a 2nd order accurate FD:
𝜕2
ℎ
𝜕𝑥2
+
𝜕2
ℎ
𝜕𝑦2
≈
ℎ𝑖+1𝑗 + ℎ𝑖−1𝑗 + ℎ𝑖𝑗+1 + ℎ𝑖𝑗−1 − 4ℎ𝑖𝑗
∆𝑚 2
= 0
40
C
A
A
y
A
B
x
BB
y
AB
x
Q
dx
y
h
T
dy
x
h
T
dx
y
h
T
dy
x
h
T
















'
'
'
'
C
A
A
C
S
C
S
ySC
A
B
C
W
C
W
xWC
B
B
C
N
C
N
yNC
A
B
C
E
C
E
xEC
Q
x
x
y
y
h
h
T
y
y
x
x
h
h
T
x
x
y
y
h
h
T
y
y
x
x
h
h
T
















































)
(
)
(
)
(
)
(
'
'
'
'
b
y
a
x 


 et
A
C
A’
B’ B
E
N
S
W
… if rectangular cells :
C
C
S
ySC
C
W
xWC
C
N
yNC
C
E
xEC Q
h
h
b
a
T
h
h
a
b
T
h
h
b
a
T
h
h
a
b
T 






 )
(
)
(
)
(
)
(
Generalisation
Solving a gw flow problem with a FD schema
and
41
A
C
A’
B’ B
E
N
S
W
C
C
S
ySC
C
W
xWC
C
N
yNC
C
E
xEC Q
h
h
b
a
T
h
h
a
b
T
h
h
b
a
T
h
h
a
b
T 






 )
(
)
(
)
(
)
(
b
a 
… if
C
C
S
ySC
C
W
xWC
C
N
yNC
C
E
xEC Q
h
h
T
h
h
T
h
h
T
h
h
T 






 )
(
)
(
)
(
)
(
a ratio of maximum 1/10 for dimensions of the
rectangular cells (for good computation
conditions)
Generalisation
Solving a gw flow problem with a FD schema
42
‘averaged’ or ‘equivalent’ values between cells
… on the basis of the continuity principle
xC
xE
xC
xE
xEC
T
T
T
T
T


.
.
2
N
W
C E
S
TEC
C
E
C
E
EC
T
T
T
T
T


.
.
2
Equivalent values for parameters
Solving a gw flow problem with a FD schema
43
… for more complex mesh (here nested mesh), the water flux
on the boundary :
I
A
B
J
K
)
.(
)
.
.
.
(
.
.
.
4
).
.
( I
K
I
J
I
K
K
J
J
I
K
J
I
AB
x h
h
h
h
T
T
T
T
T
T
T
T
T
dy
x
h
T 








Equivalent values for parameters
Solving a gw flow problem with a FD schema
44
… for Control Volume
Finite Elements:
same principle
I
A
B
J
M
)
.(
)
.
.
(
.
.
.
.
. I
J
I
J
J
I
AB
y
x h
h
T
MJ
T
IM
T
T
AB
dS
n
y
h
n
x
h
T 
















Equivalent values for parameters
Solving a gw flow problem with a FD schema
45
Introduction to solving methods: BCFD
𝑇𝑒𝑞𝑖+
=
2𝑇𝑖+1𝑗𝑇𝑖𝑗
𝑇𝑖𝑗 + 𝑇𝑖+1𝑗
46
Introduction to solving methods: time
integration scheme
𝜕ℎ
𝜕𝑡
=
ℎ 𝑡 + ∆𝑡 − ℎ(𝑡
∆𝑡
ℎ𝑖𝑗 𝑡 + ∆𝑡 = ℎ𝑖𝑗 𝑡 +
𝑄𝑖𝑗∆𝑡
𝑆
+
𝑇∆𝑡
∆𝑚 2𝑆
ℎ𝑖+1𝑗(𝑡 + ℎ𝑖−1𝑗(𝑡 + ℎ𝑖𝑗+1(𝑡 + ℎ𝑖𝑗−1(𝑡 − 4ℎ𝑖𝑗(𝑡
𝑇
∆𝑚 2
ℎ𝑖+1𝑗 + ℎ𝑖−1𝑗 + ℎ𝑖𝑗+1 + ℎ𝑖𝑗−1 − 4ℎ𝑖𝑗 + 𝑄𝑖𝑗 = 𝑆
ℎ𝑖𝑗 𝑡 + ∆𝑡 − ℎ𝑖𝑗(𝑡
∆𝑡
𝑇
𝜕2
ℎ
𝜕𝑥2
+
𝜕2
ℎ
𝜕𝑦2
≈ 𝑇
ℎ𝑖+1𝑗 + ℎ𝑖−1𝑗 + ℎ𝑖𝑗+1 + ℎ𝑖𝑗−1 − 4ℎ𝑖𝑗
∆𝑚 2
= S
𝜕ℎ
𝜕𝑡
Explicit
at what time do we consider the piezometric head values?
Cst
T 
Cst
m
y
x 





 physically: not so accurate
 numerically: stability problem when the time step becomes larger
 respect a stability criterion
Explicit method
Example:
- squared island
- initial value h = 10 m
- BC’s : h = 10 m
- infiltration: 0.002 m/day
- S = 0.4 ; T = 100 m2/day
- t =10 days m =50m
 
 
)
(
4
)
(
)
(
)
(
)
(
.
.
.
.
)
(
)
( 1
1
1
1
2
t
h
t
h
t
h
t
h
t
h
S
m
t
T
S
t
I
t
h
t
t
h ij
j
i
j
i
j
i
j
i
ij
ij 










 



10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
05
.
0
.


S
t
I
 
25
.
0
.
.
2



S
m
t
T
… computation:
- 1st time step;
- 2nd time step;
- 3rd time step;
- …
10.05 10.05 10.05
10.05 10.05 10.05
10.05 10.05 10.05
10.075 10.09 10.075
10.075 10.09 10.075
10.09 10.10 10.09
10.10 10.12 10.10
10.10 10.12 10.10
10.12 10.14 10.12
… no problem
Explicit method
… now with a t = 40 days
 
 
)
(
4
)
(
)
(
)
(
)
(
.
.
.
.
)
(
)
( 1
1
1
1
2
t
h
t
h
t
h
t
h
t
h
S
m
t
T
S
t
I
t
h
t
t
h ij
j
i
j
i
j
i
j
i
ij
ij 










 



10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
2
.
0
.


S
t
I
 
1
.
.
2



S
m
t
T
… computation:
- 1st time step;
- 2nd time step;
- 3rd time step;
- …
10.2 10.2 10.2
10.2 10.2 10.2
10.2 10.2 10.2
10.0 10.2 10.0
10.0 10.2 10.0
10.2 10.4 10.2
10.6 10.0 10.6
10.6 10.0 10.6
10.0 9.8 10.0
… numerically not stable
time
Explicit method: stability criterion (example)
… worst case
 
 
)
(
4
)
(
)
(
)
(
)
(
.
.
.
.
)
(
)
( 1
1
1
1
2
t
h
t
h
t
h
t
h
t
h
S
m
t
T
S
t
I
t
h
t
t
h ij
j
i
j
i
j
i
j
i
ij
ij 










 



… for obtaining the stability :
10 - 
10 + 
10 + 
10 + 
10 +  )
8
(
0
)
10
(
)
( 

 




 t
t
hij
0
.


S
t
I
 




S
m
t
T
.
.
2
)
10
(
)
( 


t
hij

 )
1
8
(
10
)
( 



 t
t
hij


 
 )
1
8
(
4
/
1


 
4
/
1
.
.
2





S
m
t
T
the stability of the computations depends on the size
of the time step with regards to the size of the grid cells
and of the parameters values
stability criterion :
 physical propagation of rounding errors
 numerical errors
 long CPU time
  4
1
.
.
2



m
S
t
T
2
1
)
(
)
(
. 2
2














y
t
x
t
S
T
y
x 


Additional drawbacks:
Explicit method: stability criterion
51
… at the time t
t 

implicit equation
Time integration scheme
Implicit
ℎ𝑖𝑗 𝑡 + ∆𝑡 1 + 4𝛼 = ℎ𝑖𝑗 𝑡 +
𝑄𝑖𝑗∆𝑡
𝑆
+
𝑇∆𝑡
∆𝑚 2𝑆
ℎ𝑖+1𝑗(𝑡 + ∆𝑡 + ℎ𝑖−1𝑗(𝑡 + ∆𝑡 + ℎ𝑖𝑗+1(𝑡 + ∆𝑡 + ℎ𝑖𝑗−1(𝑡 + ∆𝑡
 physically: not so accurate (error increases with time step)
 numerically: unconditional stability
 mathematically: more complex/heavy
the unknown cannot be deduced from one equation
you need the whole system to be solved
(Bear and Cheng 2010)
Implicit method
 
S
t
I
t
h
t
t
h ij
ij






.
)
(
.
4
1
).
( 
 
)
(
)
(
)
(
)
(
. 1
1
1
1 t
t
h
t
t
h
t
t
h
t
t
h j
i
j
i
j
i
j
i 










 




10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
… even with a t = 40 days
2
.
0
.


S
t
I
 
1
.
.
2



S
m
t
T
… computation:
- 1st time step;
- 2nd time step;
- …
10.125 10.135 10.125
10.125 10.135 10.125
10.135 10.158 10.135
10.2 10.2 10.2
10.2 10.2 10.2
10.2 10.2 10.2
… numerical stability
Implicit method: stability can be proven
 
S
t
I
t
h
t
t
h ij
ij






.
)
(
.
4
1
).
( 
 
)
(
)
(
)
(
)
(
. 1
1
1
1 t
t
h
t
t
h
t
t
h
t
t
h j
i
j
i
j
i
j
i 










 




for obtaining stability :
… the worst case
10 - 
10 + 
10 + 
10 + 
10 + 
)
10
(
4
0
)
10
(
)
4
1
)(
( 


 






 t
t
hij
0
.


S
t
I
 




S
m
t
T
.
.
2
)
10
(
)
( 


t
hij
)
4
1
(
)
10
(
4
)
10
(
)
(










 t
t
hij




 10
)
( t
t
hij











10
)
4
1
(
)
10
(
4
)
10
(





 4
40
10
4
40
10 






…always the case
54
Crank-Nicholson method
 physically: more accurate
 numerically: implicit procedure, unconditional stability
… at the time 2
t
t 

Galerkin method
… at the time 3
2 t
t 

 physically: most accurate
 numerically: implicit procedure, unconditional stability
Time integration scheme
55
Time integration scheme
𝑇
∆𝑚 2 ℎ𝑖+1𝑗 + ℎ𝑖−1𝑗 + ℎ𝑖𝑗+1 + ℎ𝑖𝑗−1 − 4ℎ𝑖𝑗 + 𝑄𝑖𝑗 = 𝑆
ℎ𝑖𝑗 𝑡 + ∆𝑡 − ℎ𝑖𝑗(𝑡
∆𝑡
𝑇
∆𝑚 2
(1 − 𝜃 ℎ𝑖+1𝑗(𝑡 + ℎ𝑖−1𝑗(𝑡 + ℎ𝑖𝑗+1(𝑡 + ℎ𝑖𝑗−1(𝑡 − 4ℎ𝑖𝑗(𝑡
+
𝑇
∆𝑚 2
𝜃 ℎ𝑖+1𝑗(𝑡 + ∆𝑡 + ℎ𝑖−1𝑗(𝑡 + ∆𝑡 + ℎ𝑖𝑗+1(𝑡 + ∆𝑡 + ℎ𝑖𝑗−1(𝑡 + ∆𝑡 − 4ℎ𝑖𝑗(𝑡 + ∆𝑡
0


1


2
/
1


3
/
2


Full explicit time integration
Full implicit time integration
Crank-Nicholson implicit
Galerkin implicit
stability criterion only for explicit schemes 2
/
1


time integration schemas used in all numerical techniques
56
Introduction to solving methods: FD practical
recommendations
 an initial field of values for the main unknown variable (piezometric head)
needed for initiating the iterative solving
 accuracy increases with the number of cells but portability (i.e. computing
efficiency) decreases
 use smaller cells where a steep gradient of the main variable is expected
 spatial discretization: nodes located at pumping wells and observation
piezometers
 avoid distances between nodes greater than 1.5 the previous one
 avoid ratios greater than 1/10 for the cell dimensions (bad numerical
conditions for solving the system of equations)
 boundaries with a prescribed head should correspond to nodes (central
points of the cells, if BCFD)
 boundaries with a prescribed flux should correspond to sides of the cells
(where the flux condition is calculated) if BCFD
 …
57
Introduction to solving methods: Finite Elements
- discrete elements, unstructured
FE mesh
- better for irregular boundaries,
spatial variations, and exact
locations for stress-factors and
observation measurements
- optimized mesh generation to
reduce the needed memory
space
(refs among others: Narasimhan et al. 1978, Huyakorn and Pinder 1983, Bear and
Verruijt 1987, Wang and Anderson 1982, Fitts 2002, Rausch et al. 2005, Bear and
Cheng 2010, Anderson et al. 2015, Diersch 2014, Pinder and Celia 2006, Dassargues
2018 and 2020)
58
Introduction to solving methods: FE
- the continuous field of the variable (i.e.
piezometric head) approximated typically
by interpolation functions (here also
referred to as basis functions)
- piezometric field described in each finite
element by a plane
- the discrete unknowns are the nodal
values
- an integral approach expressing the weak
formulation (i.e. a variational form
integrating the governing partial differential
equation of the process with its BCs and
initial conditions) for obtaining a global
continuum balance statement
- two ways:
(1) minimum of a natural variational
functional (when it exists)
(2) method of weighted residuals
(applicable to all types of partial
differential equations)
59
Introduction to solving methods: FV
- common features with FD and FE
- FD for unstructured grids
- if triangles: similarities with triangle FE
- as for FE, FV approximates the main
variable using basis functions in the
triangular element
- Finite Volume refers to the volume
surrounding each node point in a mesh
with nodal basis function = 1 only at the
considered node and 0 at all others
- conservation law is satisfied locally for a
given control volume with respect to its
neighboring volumes (similar to FD not to
FE)
- balance relies on evaluation of surface
integrals on the boundaries (i.e. the
conservation must be satisfied across the
boundaries of the adjoining control
volumes)
(refs among others: Patankar 1980, Baliga and Patankar 1983, Chung 2002, Diersch
2014, Narasimhan and Witherspoon 1976, Rausch et al. 2005, Fletcher 1988,
Idelsohn and Onate 1994, Forsyth et al. 1995, Therrien and Sudicky 1996, Pinder
and Celia 2006, Therrien et al. 2010)
60
References
- Anderson,M.P., Woessner, W.W. and R.J. Hunt. 2015. Applied groundwater modeling – Simulation of flow and advective transport. Academic Press
Elsevier.
- Baliga, B.R. and S.V. Patankar. 1983. A control volume finite-element method for two-dimensional fluid flow and heat transfer. Numerical Heat Transfer
6(3): 245-261.
- Bear, J. and A. Verruijt. 1987. Modeling groundwater flow and pollution. Dordrecht: Reidel Publishing Company.
- Bear, J. and A.H.D. Cheng. 2010. Modeling groundwater flow and contaminant transport. Springer.
- Brouyère, S., Carabin, G. and Dassargues, A., 2004. Climate change impacts on groundwater reserves: modelled deficits in a chalky aquifer, Geer
basin, Belgium. Hydrogeology Journal 12(2), pp.123-134.
- Brouyère, S., Orban, P., Wildemeersch, S., Couturier, J., Gardin, N. and Dassargues, A., 2009. The Hybrid Finite Element Mixing Cell Method: A New
Flexible Method for Modelling Mine Groundwater Problems. Mine Water & the Environment 28(2): 102-114.
- Carabin, G. and A. Dassargues. 1999. Modeling groundwater with ocean and river interaction. Water Resources Research 35(8): 2347-2358.
- Carabin G. and Dassargues A., 2000. Coupling of parallel river and groundwater models to simulate dynamic groundwater boundary conditions (Proc.
of Computational Methods in Water Resources 2000), Bentley L.R., Sykes J.F., Brebbia C.A., Gray W.G. & Pinder G.F., vol.2,1107-1113, Balkema.
- Castany, G. 1963. Traité pratique des eaux souterraines (in French). Paris, Bruxelles, Montréal : Dunod.
- César E, Wildemeersch S., Orban P., Carrière S., Brouyère S. and Dassargues A., 2014. Simulation of spatial and temporal trends in nitrate
concentrations at the regional scale in the Upper Dyle basin, Belgium. Hydrogeology Journal 22: 1087 – 1100.
- Chung, T. 2002. Computational fluid dynamics. Cambridge University Press.
- de Marsily, G. 1986. Quantitative hydrogeology : groundwater hydrology for engineers. Academic Press.
- Dagan, G. 1989. Flow and transport in porous formations, New York: Springer.
- Dassargues A., Radu J.P., Charlier R., 1988. Finite elements modelling of a large water table aquifer in transient conditions. Advances in Water
Resources, Volume 11(2): 58-66.
- Dassargues A., 1991. Water table aquifers and finite element method: analysis and presentation of a case study, in Computational Modelling of Free
and Moving Boundary Problems, Vol. 1, Fluid Flow, Computational Mechanics Publications, Southampton, 63-72.
- Dassargues, A. 1995. Modélisation en hydrogéologie, Programme Tempus JEP 3801 Sciences de l’Eau et Environnement, Ed. Didac. et Pédag. RA,
Bucarest, Romania.
- Dassargues, A. 1995. On the necessity to consider varying parameters in land subsidence computations, in Proc. of the 5th Int. Symp. on Land
Subsidence, ed. Barends, B.J., Brouwer F.J.J. and F.H. Schröder, IAHS 234: 259-268.
- Dassargues, A. 1997. Vers une meilleure fiabilité dans le calcul des tassements dus aux pompages d'eau souterraine, A) Première partie: prise en
compte de la variation au cours du temps des paramètres hydrogéologiques et géotechniques (in French), Annales de la Société Géologique de
Belgique, 118 (1995)(2) : 95-115.
- Dassargues A., 1997. Théorie de l'approche hydrogéologique des écoulements et transports en zone partiellement saturée, Annales de la Société
Géologique de Belgique, T. 119(1) 1996, pp. 71-89.
- Dassargues, A., 1997. Modeling baseflow from an alluvial aquifer using hydraulic-conductivity data obtained from a derived relation with apparent
electrical resistivity. Hydrogeology Journal 5(3): 97-108.
- Dassargues, A. 1998. Prise en compte des variations de la perméabilité et du coefficient d’emmagasinement spécifique dans les simulations
hydrogéologiques en milieux argileux saturés (in French), Bull. Soc. Géol. France, 169(5) : 665-673.
61
References (2)
- Dassargues A., 2018. Hydrogeology: groundwater science and engineering, 472p. Taylor & Francis CRC press, Boca Raton.
- Dassargues A. 2020. Hydrogéologie appliquée : science et ingénierie des eaux souterraines, 512p. Dunod. Paris.
- Dassargues, A., Biver, P. and A. Monjoie. 1991. Geotechnical properties of the Quaternary sediments in Shanghai. Engineering Geology 31(1): 71-90.
- Dassargues, A., Schroeder Ch. and X.L. Li. 1993. Applying the Lagamine model to compute land subsidence in Shanghai, Bulletin of Engineering
Geology (IAEG) 47: 13-26.
- Dassargues, A. and A. Monjoie. 1993. Chalk as an aquifer in Belgium. In Hydrogeology of the Chalk of North-West Europe, ed. R.A. Downing, M. Price
and G.P. Jones, 153-169. Oxford University Press.
- Delleur, J.W. 1999. The handbook of groundwater engineering. Boca Raton: CRC Press.
- Diersch, H-J.G. 2014. Feflow – Finite element modeling of flow, mass and heat transport in porous and fractured media. Springer.
- Dupuit, J. 1863. Estudes théoriques et pratiques sur le mouvement des eaux dans les canaux découverts et à travers les terrains perméables (in
French) (2nd Ed.). Paris Dunod.
- Eckis, R. 1934. Geology and ground-water storage capacity of valley fill, South Coastal Basin Investigation: California Dept. Public Works, Div. Water
Resources Bull. 45, 273 p.
- Fitts, Ch. R. 2002. Groundwater science. Academic Press.
- Forsyth, P.A., Wu, Y.S. and K. Pruess. 1995. Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous
media, Advances in Water Resources 18(1) : 25-38.
- Fletcher, C. 1988. Computational techniques for fluid dynamics. Vol.1 and Vol.2, New York: Springer.
- Goderniaux, P., Brouyère, S., Fowler, H.J., Blenkinsop, S., Therrien, R. Orban, Ph. and Dassargues, A., 2009. Large scale surface – subsurface
hydrological model to assess climate change impacts on groundwater reserves. Journal of Hydrology 373: 122-138.
- Goderniaux, P., Brouyère, S., Blenkinsop, S., Burton, A., Fowler, H.J., Orban, P. and Dassargues, A., 2011. Modelling climate change impacts on
groundwater resources using transient stochastic climatic scenarios. Water Resources Research 47(12): W12516
- Hadley, P.W. and Ch. Newell. 2014. The new potential for understanding groundwater contaminant transport. Groundwater 52(2): 174-186.
- Hoffmann R., Goderniaux P., Jamin P., Orban Ph., Brouyère S. and A. Dassargues. 2021. Differentiated influence of the double porosity of the chalk
on solute and heat transport. In The Chalk Aquifers of Northern Europe. Farrell, R. P., Massei, N., Foley, A. E., Howlett, P. R. and West, L. J. (eds),
Geological Society, London, Special Publications, 517, https://doi.org/10.1144/SP517-2020-170
- Huyakorn, P.S. and G.F. Pinder. 1983. Computational methods in subsurface flow. Academic Press.
- Idelsohn, S. and E. Onate. 1994. Finite volumes and finite elements: two ‘good friends’. International Journal for Numerical Methods in Engineering
37(19) : 3323-3341.
- Jusseret, S., Vu Thanh, T. and Dassargues, A., 2009. Groundwater flow modelling in the central zone of Hanoi, Vietnam, Hydrogeology Journal 17(4):
915-934.
- Narasimhan, T.N. and P.A. Witherspoon. 1976. An integrated finite difference method for analyzing fluid flow in porous media, Water Resources
Research 12(1): 57-64.
- Narasimhan, T.N., Neuman, S.P. and P.A. Witherspoon. 1978. Finite element method for subsurface hydrology using a mixed explicit‐implicit scheme,
Water Resources Research 14(5) : 863-877.
- Orban, P., Brouyère,S., Batlle-Aguilar, J., Couturier, J., Goderniaux, P., Leroy, M., Malozewski, P. and Dassargues, A., 2010. Regional transport
modelling for nitrate trend assessment and forecasting in a chalk aquifer. Journal of Contaminant Hydrology 118: 79-93.
- Patankar, S. 1980. Numerical heat transfer and fluid flow. CRC Press.
62
References (3)
- Payne, F.C., Quinnan, A. and S.T. Potter. 2008. Remediation hydraulics. Boca Raton: CRC Press/ Taylor & Francis.
- Peeters, L., Haerens, B., Van Der Sluys, J. and Dassargues, A., 2004. Modelling seasonal variations in nitrate and sulphate concentrations in a
threatened alluvial aquifer, Environmental Geology 46(6-7): 951-961.
- Pinder, G.F. and M.A. Celia. 2006. Subsurface hydrology. Hoboken, New Jersey: Wiley & Sons.
- Pujades E., Jurado A., Carrera J. Vázque-Sunè E. and Dassargues A., 2016. Hydrogeological assessment of non-linear underground enclosures.
Engineering Geology 207: 91-102.
- Rausch, R., Schäfer, W., Therrien, R. and Chr. Wagner. 2005. Solute transport modelling – An introduction to models and solution strategies. Berlin-
Stuttgart: Gebr.Borntraeger Verlagsbuchhandlung Science Publishers.
- Rocha, D., Feyen, J. and Dassargues, A. 2007. Comparative analysis between analytical approximations and numerical solutions describing recession
flow in unconfined hillslope aquifers. Hydrogeology Journal 15: 1077-1091.
- Rojas, R. & Dassargues, A., 2007. Groundwater flow modelling of the regional aquifer of the Pampa del Tamarugal, northern Chile, Hydrogeology
Journal 15: 537-551.
- Rojas, R., Feyen, L. and Dassargues, A., 2008. Conceptual model uncertainty in groundwater modeling: Combining generalized likelihood uncertainty
estimation and Bayesian model averaging, Water Resources Research 44: W12418
- Rojas, R., Batelaan, O., Feyen, L., and Dassargues, A., 2010. Assessment of conceptual model uncertainty for the regional aquifer Pampa del
Tamarugal – North Chile. Hydrol. Earth Syst. Sci. 14: 171-192.
- Stefanescu Ch. and Dassargues A., 1996. Simulation of pumping and artificial recharge in the phreatic aquifer near Bucarest (Romania). Hydrogeology
Journal 4(3): 72-83.
- Terzaghi, K. 1943. Theoretical soil mechanics, London: Chapman and Hall.
- Therrien, R. and E.A. Sudicky. 1996. Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous media,
Journal of Contaminant Hydrology 23(1-2) : 1-44.
- Therrien, R., McLaren, R.G., Sudicky, E.A. and S.M. Panday. 2010. HydroGeoSphere: A three-dimensional numerical model describing fully-integrated
subsurface and surface flow and solute transport. User manual. Université Laval & University of Waterloo.
- Wang, H.F. and M.P. Anderson. 1982. Introduction to groundwater modelling: finite difference and finite element methods, San Diego (CA): Academic
Press.
- Wildemeersch, S., Brouyère, S., Orban, P., Couturier, J., Dingelstadt, C., Veschkens, M. and Dassargues, A., 2010. Application of the Hybrid Finite
Element Mixing Cell method to an abandoned coalfield in Belgium. Journal of Hydrology 392 (3-4): 188-200.
- Wildemeersch S., Goderniaux P., Orban P., Brouyère S. and Dassargues A., 2014. Assessing the effects of spatial discretization on large-scale flow
model performance and prediction uncertainty. Journal of Hydrology 510: 10-25.

More Related Content

PPTX
Permeability
PDF
The Effect of Geometry Parameters and Flow Characteristics on Erosion and Sed...
DOC
Groundwater movement
DOC
Measuring Hydrualic Conductivity Using Petro Physical Measurements 2013 compa...
PPTX
Fundamentals of fluid flow, Darcy's law, Unsaturated Condition, Reynolds Num...
PDF
Reservoirs & Graphs
PPTX
hydrology and hydraulics of ground waterGWHCH3P2.pptx
PDF
MATHEMATICAL MODEL FOR HYDROTHERMAL CONVECTION AROUND A RADIOACTIVE WASTE DEP...
Permeability
The Effect of Geometry Parameters and Flow Characteristics on Erosion and Sed...
Groundwater movement
Measuring Hydrualic Conductivity Using Petro Physical Measurements 2013 compa...
Fundamentals of fluid flow, Darcy's law, Unsaturated Condition, Reynolds Num...
Reservoirs & Graphs
hydrology and hydraulics of ground waterGWHCH3P2.pptx
MATHEMATICAL MODEL FOR HYDROTHERMAL CONVECTION AROUND A RADIOACTIVE WASTE DEP...

Similar to Groundwater modeling and flow simulations (20)

PDF
9 17 fujisawa et al -seags e journal 2013-06
PDF
6 reservoirs&Graphs
PDF
Q913 re1 w2 lec 6
PDF
Topography and the Spatial Distribution of Groundwater Recharge and Evapotran...
PDF
Modelling of Seawater Intrusion
PDF
Jwrhe10065 20150204-144509-1366-46826
PPT
PDF
2011 liongson-modeling studies flood control dams-professorial chair lecture
PDF
An algorithm for simulation of achemical transport equation in an aquifer fin...
PPT
Darcy´s law
PPT
Darcy´s law
PPT
Majid Gw Final Ppt
PPT
RTe-bookCh5Hydraulics.ppt
PPTX
Principles of groundwater flow
PDF
Q921 re1 lec5 v1
PDF
Numerical study on free-surface flow
PDF
1.Fluid properties 1of3.pdf mechanical eng
DOC
sheet of pipe flow
PDF
Egu2017 pico
PDF
PDEs Coursework
9 17 fujisawa et al -seags e journal 2013-06
6 reservoirs&Graphs
Q913 re1 w2 lec 6
Topography and the Spatial Distribution of Groundwater Recharge and Evapotran...
Modelling of Seawater Intrusion
Jwrhe10065 20150204-144509-1366-46826
2011 liongson-modeling studies flood control dams-professorial chair lecture
An algorithm for simulation of achemical transport equation in an aquifer fin...
Darcy´s law
Darcy´s law
Majid Gw Final Ppt
RTe-bookCh5Hydraulics.ppt
Principles of groundwater flow
Q921 re1 lec5 v1
Numerical study on free-surface flow
1.Fluid properties 1of3.pdf mechanical eng
sheet of pipe flow
Egu2017 pico
PDEs Coursework
Ad

Recently uploaded (20)

PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPTX
bas. eng. economics group 4 presentation 1.pptx
DOCX
573137875-Attendance-Management-System-original
PPTX
Internet of Things (IOT) - A guide to understanding
PDF
Digital Logic Computer Design lecture notes
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
Safety Seminar civil to be ensured for safe working.
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPTX
Construction Project Organization Group 2.pptx
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
UNIT 4 Total Quality Management .pptx
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
Geodesy 1.pptx...............................................
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
bas. eng. economics group 4 presentation 1.pptx
573137875-Attendance-Management-System-original
Internet of Things (IOT) - A guide to understanding
Digital Logic Computer Design lecture notes
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
CH1 Production IntroductoryConcepts.pptx
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
Safety Seminar civil to be ensured for safe working.
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Construction Project Organization Group 2.pptx
Embodied AI: Ushering in the Next Era of Intelligent Systems
UNIT 4 Total Quality Management .pptx
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Geodesy 1.pptx...............................................
Model Code of Practice - Construction Work - 21102022 .pdf
Ad

Groundwater modeling and flow simulations

  • 1. Groundwater modeling: flow simulations A. Dassargues References: Dassargues A., 2018. Hydrogeology: groundwater science and engineering, 472p. Taylor & Francis CRC press (chapters 4, 12 & 13) Dassargues A. 2020. Hydrogéologie appliquée: science et ingénierie des eaux souterraines, 512p. Dunod (chapitres 4, 2 et 13)
  • 2. Groundwater modeling: flow simulation ► Groundwater flow equations  REV concept  Potentiometric/piezometric head  Porosities, hydraulic conductivty, Darcy’s law, transmissivity  Steady state equations  Transient equations  Extending to partially saturated flow ► Flow Boundary Conditions  Dirichlet BC’s  Neumann BC’s  Cauchy BC’s ► Introduction to solving methods  Finite Difference method  Time integrations schemas  Finite Difference method (FD): practical recommendations  Finite Element method: summary  Finite Volume method: summary ► References
  • 3. Assumptions and REV concept REV is the volume of geological medium considered as representative for quantification of the value of the different properties (by averaged, equivalent values)  the REV depends on the kind of problem being studied and the study objectives  the REV is used for groundwater flow and solute transport … but also in all other fields where a quantification is needed for properties of the geological medium  large enough to be relevant with regard to the studied problem (avoid microscopic scale for a real case study)  small enough for avoiding too smoothed values that will corrupt our description of the processes … this REV concept implicitly implies that the medium is considered as continuous (and porous) 3 (de Marsily 1986, Dagan 1989, Bear & Verruijt 1987)
  • 4. Balance models, black-box models, transfer functions, etc. Assumptions, REV concept and scale Fluid dynamic and pore studies Lab tests (from dm to a few m) Detailed numerical models – Physically consistent simulations of the reservoir Homogenisation Homogenisation Homogenisation Micro Macro Mega Giga Scale 4 (Dassargues & Monjoie 1993, Dassargues 2018 and 2020, Hoffmann et al. 2021) parameter values can be quite different in function of the considered scale
  • 5. Hydrostatic … the potential energy is expressed usually in ‘water head’ or hydraulic head or piezometric head: g p z g h .      5
  • 6. Water pressure vs piezometric head … a direct link between hydraulic/piezometric head h and water pressure p: g z h p . ) (    t h g t p      .  for groundwater flow problems, the main variable is the piezometric head or the water pressure piezometric heads can be compared only if groundwater has everywhere the same temperature and the same salt content if it is not the case, … density will vary … and to a same water pressure correspond different piezometric heads (of groundwater with different salt content) corrections in function of the salinity must be done 6 Rmq: if density effect (salwater) is considered work with pressure or with ‘equivalent freshwater piezometric heads’ (Carabin and Dassargues 1999)
  • 7. Porosity … two components in the total porosity: cinematic porosity retention capacity’ or ‘specific retention’) c n r S n S n r c   t m c V V n  t im r V V S  with the cinematic porosity is difficult to be measured in practice (… after which duration ? … at which pressure ? … ) drainage porosity = effective porosity corresponding to the drainable water by gravity (also called mobile water or free water) …. also called = “specific yield” c e n n  y S 7
  • 8. 8 Porosity and granular analysis Dassargues, 2018 (Eckis 1934, Castany 1963)
  • 9. … experimental law quantity of water per time unit through a porous medium: L h A K Q   . . K permeability coefficient, hydraulic conductivity, water permeability (by abuse of language: permeability) of the porous medium (m/s) … specific flux or flow rate (specific discharge): A Q q  in m3/(m2.s) … in m/s 9 Hydraulic conductivity and Darcy’s law
  • 10. This specific discharge is often called ‘Darcy’s velocity’ … it is only a flow rate Q divided by a surface A … to obtain a mean (averaged/equivalent on the REV) groundwater velocity : the actual groundwater flow section is : e n A. L h n K n q v e e e    . m/s ‘ advection velocity’ (effective velocity) this surface is not the groundwater flow section 10 Hydraulic conductivity and Darcy’s law
  • 11. the ‘mobile water porosity’ to be considered for groundwater flow is typically higher than the ‘mobile water porosity’ acting in solute transport processes (Payne et al. 2008, Hadley and Newell, 2014) useful porosity for solute transport is ‘effective transport porosity’ < drainage porosity 11 …about mobile water porosities (Dassargues 2018 and 2020)
  • 12.  fluid properties: viscosity density  porous medium properties: granular proportions, grains shapes, pore distribution and shapes intergranular porosity depends on: intrinsic permeability or permeability (m2) K   g k K . .  volume mass of the fluid (kg/m3) gravity acceleration (m/s2) dynamic viscosity (kg/(m.s), N.s/m2 or Pa.s 12 Hydraulic conductivity and intrinsic permeability
  • 13. hydraulic conductivity and intrinsic permeability described by tensors: and elevation of the considered point (with regards to the reference datum) 13 Generalisation of the Darcy’s law in 3D 𝑲 = 𝐾𝑥𝑥 𝐾𝑥𝑦 𝐾𝑥𝑧 𝐾𝑦𝑥 𝐾𝑦𝑦 𝐾𝑦𝑧 𝐾𝑧𝑥 𝐾𝑧𝑦 𝐾𝑧𝑧 𝑲 = 𝒌𝜌𝑔 𝜇 𝒒 = −𝑲 ∙ 𝛻ℎ = − 𝒌𝜌𝑔 𝜇 ∙ 𝛻ℎ = − 𝒌 𝜇 ∙ 𝛻𝑝 + 𝜌𝑔𝛻𝑧 𝒈𝒓𝒂𝒅 ℎ = 𝛻ℎ = 𝜕ℎ 𝜕𝑥 , 𝜕ℎ 𝜕𝑦 , 𝜕ℎ 𝜕𝑧
  • 14. Transmissivity mean value of the hydraulic conductivity on the vertical of the concerned point transmissivity (m2/s) in a point thickness of the confined aquifer at the concerned point … for a confined aquifer 14 𝑇 𝑥, 𝑦 = 0 𝑏 𝑥,𝑦 𝐾 𝑥, 𝑦, 𝑧 𝑑𝑧 = 𝐾𝑎𝑣𝑔 𝑥, 𝑦 𝑏 𝑥, 𝑦 (Dassargues, 2018 & 2020)
  • 15. … for an unconfined aquifer   ) , ( 0 ). , ( ) , ( dz y x K y x T the saturated thickness of the unconfined aquifer at the point (of horizontal coordinates x and y ) depends on the piezometric head! 15 Transmissivity (Dassargues, 2018 & 2020) (Dupuit 1863, Delleur 1999)
  • 16. 16 Groundwater flow equation in steady state terms are kg/(m3s ) in indicial notation if density is assumed constant and the principal anisotropy directions of the K tensor are known and aligned with the selected coordinate system – terms are in s-1 𝛻 ∙ 𝜌 𝑲 ∙ 𝛻ℎ + 𝜌𝑞′ = 0 𝜕 𝜕𝑥𝑖 𝜌𝐾𝑖𝑗 𝜕ℎ 𝜕𝑥𝑗 + 𝜌𝑞′𝑖 = 0 𝜕 𝜕𝑥 𝐾𝑥𝑥 𝜕ℎ 𝜕𝑥 + 𝜕 𝜕𝑦 𝐾𝑦𝑦 𝜕ℎ 𝜕𝑦 + 𝜕 𝜕𝑧 𝐾𝑧𝑧 𝜕ℎ 𝜕𝑧 + 𝑞′ = 0 𝜕 𝜕𝑥 𝐾𝑥𝑥 𝜕ℎ 𝜕𝑥 + 𝜕 𝜕𝑧 𝐾𝑧𝑧 𝜕ℎ 𝜕𝑧 + 𝑞′ = 0 if 2D vertical flow, terms are in s-1 𝜕 𝜕𝑥 𝑇𝑥𝑥 𝜕ℎ 𝜕𝑥 + 𝜕 𝜕𝑦 𝑇𝑦𝑦 𝜕ℎ 𝜕𝑦 + 𝑞′′ = 0 if 2D horizontal flow, terms are in m/s
  • 17. 17 Equation in transient conditions … in transient flow, storage variation in function of the time: t n    ) (   t h S t h n n g t n s w s                 2 ) ( specific storage coefficient (m-1) Volume (REV) compressibility of the porous medium (Pa-1) Solid grain compressibility (Pa-1) Water compressibility (Pa-1)   g Ss 
  • 18. … often, the influence of the water compressibility and the solid grain compressibility can be neglected with regards to the volume compressibility of the porous medium (as a whole)   g Ss  … this link between the volume compressibility and the specific storage coefficient is showing clearly the direct coupling between saturated transient groundwater flow and geomechanical behaviour in compressible porous media the volume compressibility is dependent on effective stress variation the effective preconsolidation stress of the porous medium 18 Specific storage coefficient Rmq: Ss is actually variable as it depends on compressibility that is dependent on the effective stress state that is dependent on the water pressure,… (Dassargues et al. 1991 and 1993, Dassargues 1995, 1997, 1998)
  • 19. 19 Storage coefficient = water volume (m3) stored or drained per aquifer surface unit (m2) for a unit variation of piezometric head (m) … vertical integration   ) , ( 0 ). , ( ) , ( y x e s dz y x S y x S confined aquifer e S S s.  dz S n S h z s e . 1    unconfined aquifer the most important part of the storage is due to saturation/drainage of the porous medium Equation in transient conditions (Dassargues 1995b, 2018, 2020)
  • 20. reference datum = bottom of the aquifer layer h S n S s e .   e n S  20 Storage coefficient (Dassargues, 2018 & 2020)
  • 21. 21 confined aquifer (horizontal flow) 2D groundwater flow equations in transient conditions 𝛻 ∙ 𝑻 ∙ 𝛻ℎ + 𝑞′′ = 𝑆 𝜕ℎ 𝜕𝑡 𝜕 𝜕𝑥𝑖 𝑇𝑖𝑗 𝜕ℎ 𝜕𝑥𝑗 + 𝑞′′𝑖 = 𝑆 𝜕ℎ 𝜕𝑡 𝜕 𝜕𝑥 𝑇𝑥𝑥 𝜕ℎ 𝜕𝑥 + 𝜕 𝜕𝑦 𝑇𝑦𝑦 𝜕ℎ 𝜕𝑦 + 𝑞′′ = 𝑆 𝜕ℎ 𝜕𝑡 in indicial notation unconfined aquifer principal anisotropy directions aligned with the selected coordinate system terms are in m/s 𝛻 ∙ 𝑻(ℎ ∙ 𝛻ℎ + 𝑞′′ = 𝑛𝑒 𝜕ℎ 𝜕𝑡 = 𝑆𝑦 𝜕ℎ 𝜕𝑡 𝜕 𝜕𝑥𝑖 𝑇𝑖𝑗 𝜕ℎ 𝜕𝑥𝑗 + 𝑞′′𝑖 = 𝑛𝑒 𝜕ℎ 𝜕𝑡 = 𝑆𝑦 𝜕ℎ 𝜕𝑡 𝜕 𝜕𝑥 𝑇𝑥𝑥 𝜕ℎ 𝜕𝑥 + 𝜕 𝜕𝑦 𝑇𝑦𝑦 𝜕ℎ 𝜕𝑦 + 𝑞′′ = 𝑆 𝜕ℎ 𝜕𝑡 in indicial notation principal anisotropy directions aligned with the selected coordinate system terms are in m/s
  • 22. 22 vertical integration of the 3D equation on the thickness of the confined aquifer L R t h S y h T y x h T x yy xx                             where T : transmissivity [L2 T-1], K  thickness S : storage coefficient [-], Ss  thickness R : recharge rate [L3 L-2 T-1] = [L T-1] L : leakance [L T-1] Thickness (b) Groundwater flow Recharge (R) Particular case: 2D horizontal confined flow
  • 23. 23 Multi-aquifer system Leakance (vertical flow) through the aquitard Darcy’s law ' ' ) ( b h h K L s z    où K'z : vertical hydraulic conductivity of the aquitard b' : aquitard thickness hs : surperfical aquifer piezometric head h : main aquifer piezometric head (main variable) Aquifer Aquitard Aquifer b', K'z hs h Groundwater flow Particular case: 2D horizontal confined flow … leakance calculation for a quasi 3D approach
  • 24. 24 with water pressure head as main variable Groundwater flow equations including the partially saturated zone 𝛻 ∙ 𝜌 𝑲 ℎ𝑝 ∙ 𝛻ℎ𝑝 + 𝑲 ℎ𝑝 ∙ 𝛻𝑧 + 𝜌𝑞′ = 𝜌𝐶 ℎ𝑝 𝜕ℎ𝑝 𝜕𝑡 terms are kg/(m3s ) (Celia et al. 1990, Dassargues 1997) 𝛻 ∙ 𝜌 𝑲 𝜃 ∙ 𝛻ℎ𝑝 + 𝑲 𝜃 ∙ 𝛻𝑧 + 𝜌𝑞′ = 𝜌 𝜕𝜃 𝜕𝑡 in a mixed way as a function of the water content and the pressure head (Richards 1931) needs relations between - 𝜃 and hp - 𝜃 and K … … van Genuchten relations and others 𝑝𝑐 𝜌𝑔 = −ℎ𝑝 = −𝑝 𝜌𝑔 = 𝑧 − ℎ
  • 25. 25 Flow Boundary Conditions  Dirichlet conditions: prescribed piezometric head  Neumann conditions: prescribed flux  Cauchy or mixed conditions: flux depending on piezometric head Practical examples where groundwater flow BCs are discussed on various practical cases are available from the experience of the author and researchers from his team in the following references: Dassargues et al. 1988, Dassargues 1991, Stefanescu & Dassargues 1996, Dassargues 1997, Carabin & Dassargues 2000, Brouyère et al. 2004, Peeters et al. 2004, Rojas & Dassargues 2007, Rocha et al. 2007, Rojas et al. 2008, Jusseret et al. 2009, Goderniaux et al. 2009, Brouyère et al. 2009, Rojas et al. 2010, Wildemeersch et al. 2010, Orban et al. 2010, Goderniaux et al. 2011, Wildemeersch et al. 2014, César et al. 2014, Pujades et al. 2016)
  • 26. 26 Prescribed piezometric head (Dirichlet condition) Prescribed piezometric head on the concerned boundary: ' f can vary in space and time (one value per node and per time step) a flux will be computed per concerned node Flow BC’s ℎ 𝑥, 𝑦, 𝑧, 𝑡 = 𝑓′(𝑥, 𝑦, 𝑧, 𝑡
  • 27. 27 Prescribed flux (Neumann condition) The first derivative of the piezometric head is prescribed on the concerned boundary: piezometric gradient normal to the concerned boundary, its value can vary in space and time (one value per concerned node and per time step) Applying the Darcy’s law, it is a way of prescribing the water flux through the boundary: ' ' f : precribed flux through the boundary (m/s) ' ' q 0 ' '  f particular case: Flow BC’s 𝛻ℎ ∙ 𝒏 = 𝜕ℎ 𝜕𝑛 𝑥, 𝑦, 𝑧, 𝑡 = 𝑓′′ 𝑥, 𝑦, 𝑧, 𝑡 𝐾 𝜕ℎ 𝜕𝑛 𝑥, 𝑦, 𝑧, 𝑡 = 𝑞′′(𝑥, 𝑦, 𝑧, 𝑡
  • 28. 28 Prescribed flux (Neumann condition) Flow BC’s (Dassargues, 2018)
  • 29. 29 Prescribed flux (Neumann condition) Flow BC’s (Dassargues, 2018)
  • 30. 30 A combination (linear relation) of the piezometric head and its first derivative is prescribed on the boundary: Flux depending on the piezometric head (mixed condition or Cauchy condition) ) , , , ( ' ' ' ) , , , ( . ) , , , ( . t z y x f t z y x h b t z y x n h a     ' ' ' f can vary in space and in time (one value per concerned node and per time step)  interactions between surface water bodies and groundwater  interactions between different aquifers Flow BC’s
  • 31. 31 Flux depending on the piezometric head (mixed condition or Cauchy condition) Flow BC’s 𝑞′′ = −𝐾 𝜕ℎ 𝜕𝑛 = 𝐾′ 𝑏′ (ℎ𝑟 − ℎ 𝑞′′ = −𝐾 𝜕ℎ 𝜕𝑛 = 𝐾′ 𝑏′ (ℎ𝑠 − ℎ conductance conductance
  • 32. 32 Flux depending on the piezometric head (mixed condition or Cauchy condition) Flow BC’s 𝑞′′ = −𝐾 𝜕ℎ 𝜕𝑛 = 𝐾′ 𝑏′ (ℎ𝑏 − ℎ 𝑞′′ = −𝐾 𝜕ℎ 𝜕𝑛 = 𝐾′ 𝑑′ (ℎ𝑟 − ℎ conductance conductance prescribing an ‘external head’ (i.e. not on the true boundary but outside the modelled zone) so that a groundwater flux across the boundary is computed from the difference between this ‘external head’ and the piezometric head on the model boundary using a given conductance
  • 33. 33 Flux depending on the piezometric head (mixed condition or Cauchy condition) Flow BC’s conductance 𝑞𝐸𝑣𝑇 = 𝑅𝐸𝑣𝑇 𝑑𝑒𝑥𝑡 (ℎ 𝑥, 𝑦, 𝑧, 𝑡 − ℎ𝑐𝑟𝑖𝑡 𝑥, 𝑦, 𝑧, 𝑡 represent an evapotranspiration flux leaving the model but dependent on the ‘depth to water’ (i.e. the land surface elevation minus piezometric head). An extinction depth 𝑑𝑒𝑥𝑡 corresponding to a critical head ℎ𝑐𝑟𝑖𝑡 can be defined so that EvT occurs only if the water table is higher (Anderson et al. 2015) in arid and semi-arid zones
  • 34. 34 Simple case…  steady state  no infiltration, no sink/source term  homogeneity of the medium  2D problem 0    t h 0  I 0  q Cst T  0 2 2 2 2       y h x h GW flow equation in steady state Assumptions: Solving a gw flow problem with a Finite Difference schema
  • 35. 35 Definition of a partial derivative of a function of the variable : ) (x h x                x x h x x h x h x ) ( ) ( lim 0 spatial discretisation with a grid the nodes are the central points of rectangular cells (‘Block Centered Finite Difference method’ = BCFD) the cells are homogeneous ... the continuous variation of the variable is replaced by a discrete variable defined at the central points of the cells the approximation of the differential equation is better as the cells are small Simple case… Solving a gw flow problem with a FD schema
  • 36. 36 the nodes are numbered sequentially, index and piezometric head values are attributed j columns i lines j i, ij h Simple case… Solving a gw flow problem with a FD schema
  • 37. 37 Taylor series for a continuous function ) (x h n n n x x h n x x x h x x x h x x x h x x h x x h                     ) ( . ! ) ( ... ) ( . ! 3 ) ( ) ( . ! 2 ) ( ) ( . ) ( ) ( 3 3 3 2 2 2 2 2 2 1 1 1 . 2 ) ( ). ( x h x x x h x x h h i i i i ij j i             2 2 2 1 1 , 1 . 2 ) ( ). ( x h x x x h x x h h i i i i ij j i             2 2 1 1 1 2 ) ( ) ( x h x x x h x x h h i i i i ij j i             2 2 1 1 1 1 1 1 ). ( 2 1 ) ( ) ( ) ( ) ( x h x x x x h h x x h h i i i i ij j i i i ij j i                … terms of the 3rd order and more are neglected … for hij and the x direction: 2 2 1 1 1 2 ) ( ) ( x h x x x h x x h h i i i i ij j i             and … for x > 0 … for x < 0 Simple case… Solving a gw flow problem with a FD schema
  • 38. 38 if                                  ) ( . ) ( 1 ) ( 1 ) ( . ) ( 2 1 1 1 1 1 1 1 1 2 2 i i j i ij i i i i i i j i i i x x h h x x x x x x h x x x h ) ( ) ( 1 1 i i i i x x x x x        2 1 1 2 2 ) ( . 2 x h h h x h j i ij j i         2 1 1 2 2 ) ( . 2 y h h h y h j i ij j i         Cst m y x       if   0 4 . ) ( . 1 1 1 1 2 2 2 2 2                         ij j i j i j i j i h h h h h m T y h x h T ) .( 4 1 1 1 1 1         j i j i j i j i ij h h h h h Simple case… Solving a gw flow problem with a FD schema
  • 39. 39 Introduction to solving methods: FD 𝜕ℎ 𝜕𝑥 ≈ ℎ 𝑥 + ∆𝑥 − ℎ(𝑥 ∆𝑥 𝜕ℎ 𝜕𝑥 ≈ ℎ 𝑥 + ∆𝑥 − ℎ(𝑥 − ∆𝑥 2∆𝑥 𝜕2 ℎ 𝜕𝑥2 ≈ ℎ𝑖+1𝑗 − 2ℎ𝑖𝑗 + ℎ𝑖−1𝑗 ∆𝑥 2 1D spatial approximation of the gradient by a finite difference: Forward FD Central FD In 2D, with a 2nd order accurate FD: 𝜕2 ℎ 𝜕𝑥2 + 𝜕2 ℎ 𝜕𝑦2 ≈ ℎ𝑖+1𝑗 + ℎ𝑖−1𝑗 + ℎ𝑖𝑗+1 + ℎ𝑖𝑗−1 − 4ℎ𝑖𝑗 ∆𝑚 2 = 0
  • 41. 41 A C A’ B’ B E N S W C C S ySC C W xWC C N yNC C E xEC Q h h b a T h h a b T h h b a T h h a b T         ) ( ) ( ) ( ) ( b a  … if C C S ySC C W xWC C N yNC C E xEC Q h h T h h T h h T h h T         ) ( ) ( ) ( ) ( a ratio of maximum 1/10 for dimensions of the rectangular cells (for good computation conditions) Generalisation Solving a gw flow problem with a FD schema
  • 42. 42 ‘averaged’ or ‘equivalent’ values between cells … on the basis of the continuity principle xC xE xC xE xEC T T T T T   . . 2 N W C E S TEC C E C E EC T T T T T   . . 2 Equivalent values for parameters Solving a gw flow problem with a FD schema
  • 43. 43 … for more complex mesh (here nested mesh), the water flux on the boundary : I A B J K ) .( ) . . . ( . . . 4 ). . ( I K I J I K K J J I K J I AB x h h h h T T T T T T T T T dy x h T          Equivalent values for parameters Solving a gw flow problem with a FD schema
  • 44. 44 … for Control Volume Finite Elements: same principle I A B J M ) .( ) . . ( . . . . . I J I J J I AB y x h h T MJ T IM T T AB dS n y h n x h T                  Equivalent values for parameters Solving a gw flow problem with a FD schema
  • 45. 45 Introduction to solving methods: BCFD 𝑇𝑒𝑞𝑖+ = 2𝑇𝑖+1𝑗𝑇𝑖𝑗 𝑇𝑖𝑗 + 𝑇𝑖+1𝑗
  • 46. 46 Introduction to solving methods: time integration scheme 𝜕ℎ 𝜕𝑡 = ℎ 𝑡 + ∆𝑡 − ℎ(𝑡 ∆𝑡 ℎ𝑖𝑗 𝑡 + ∆𝑡 = ℎ𝑖𝑗 𝑡 + 𝑄𝑖𝑗∆𝑡 𝑆 + 𝑇∆𝑡 ∆𝑚 2𝑆 ℎ𝑖+1𝑗(𝑡 + ℎ𝑖−1𝑗(𝑡 + ℎ𝑖𝑗+1(𝑡 + ℎ𝑖𝑗−1(𝑡 − 4ℎ𝑖𝑗(𝑡 𝑇 ∆𝑚 2 ℎ𝑖+1𝑗 + ℎ𝑖−1𝑗 + ℎ𝑖𝑗+1 + ℎ𝑖𝑗−1 − 4ℎ𝑖𝑗 + 𝑄𝑖𝑗 = 𝑆 ℎ𝑖𝑗 𝑡 + ∆𝑡 − ℎ𝑖𝑗(𝑡 ∆𝑡 𝑇 𝜕2 ℎ 𝜕𝑥2 + 𝜕2 ℎ 𝜕𝑦2 ≈ 𝑇 ℎ𝑖+1𝑗 + ℎ𝑖−1𝑗 + ℎ𝑖𝑗+1 + ℎ𝑖𝑗−1 − 4ℎ𝑖𝑗 ∆𝑚 2 = S 𝜕ℎ 𝜕𝑡 Explicit at what time do we consider the piezometric head values? Cst T  Cst m y x        physically: not so accurate  numerically: stability problem when the time step becomes larger  respect a stability criterion
  • 47. Explicit method Example: - squared island - initial value h = 10 m - BC’s : h = 10 m - infiltration: 0.002 m/day - S = 0.4 ; T = 100 m2/day - t =10 days m =50m     ) ( 4 ) ( ) ( ) ( ) ( . . . . ) ( ) ( 1 1 1 1 2 t h t h t h t h t h S m t T S t I t h t t h ij j i j i j i j i ij ij                 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 05 . 0 .   S t I   25 . 0 . . 2    S m t T … computation: - 1st time step; - 2nd time step; - 3rd time step; - … 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.075 10.09 10.075 10.075 10.09 10.075 10.09 10.10 10.09 10.10 10.12 10.10 10.10 10.12 10.10 10.12 10.14 10.12 … no problem
  • 48. Explicit method … now with a t = 40 days     ) ( 4 ) ( ) ( ) ( ) ( . . . . ) ( ) ( 1 1 1 1 2 t h t h t h t h t h S m t T S t I t h t t h ij j i j i j i j i ij ij                 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 2 . 0 .   S t I   1 . . 2    S m t T … computation: - 1st time step; - 2nd time step; - 3rd time step; - … 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.0 10.2 10.0 10.0 10.2 10.0 10.2 10.4 10.2 10.6 10.0 10.6 10.6 10.0 10.6 10.0 9.8 10.0 … numerically not stable time
  • 49. Explicit method: stability criterion (example) … worst case     ) ( 4 ) ( ) ( ) ( ) ( . . . . ) ( ) ( 1 1 1 1 2 t h t h t h t h t h S m t T S t I t h t t h ij j i j i j i j i ij ij                 … for obtaining the stability : 10 -  10 +  10 +  10 +  10 +  ) 8 ( 0 ) 10 ( ) (          t t hij 0 .   S t I       S m t T . . 2 ) 10 ( ) (    t hij   ) 1 8 ( 10 ) (      t t hij      ) 1 8 ( 4 / 1     4 / 1 . . 2      S m t T
  • 50. the stability of the computations depends on the size of the time step with regards to the size of the grid cells and of the parameters values stability criterion :  physical propagation of rounding errors  numerical errors  long CPU time   4 1 . . 2    m S t T 2 1 ) ( ) ( . 2 2               y t x t S T y x    Additional drawbacks: Explicit method: stability criterion
  • 51. 51 … at the time t t   implicit equation Time integration scheme Implicit ℎ𝑖𝑗 𝑡 + ∆𝑡 1 + 4𝛼 = ℎ𝑖𝑗 𝑡 + 𝑄𝑖𝑗∆𝑡 𝑆 + 𝑇∆𝑡 ∆𝑚 2𝑆 ℎ𝑖+1𝑗(𝑡 + ∆𝑡 + ℎ𝑖−1𝑗(𝑡 + ∆𝑡 + ℎ𝑖𝑗+1(𝑡 + ∆𝑡 + ℎ𝑖𝑗−1(𝑡 + ∆𝑡  physically: not so accurate (error increases with time step)  numerically: unconditional stability  mathematically: more complex/heavy the unknown cannot be deduced from one equation you need the whole system to be solved (Bear and Cheng 2010)
  • 52. Implicit method   S t I t h t t h ij ij       . ) ( . 4 1 ). (    ) ( ) ( ) ( ) ( . 1 1 1 1 t t h t t h t t h t t h j i j i j i j i                  10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 … even with a t = 40 days 2 . 0 .   S t I   1 . . 2    S m t T … computation: - 1st time step; - 2nd time step; - … 10.125 10.135 10.125 10.125 10.135 10.125 10.135 10.158 10.135 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 … numerical stability
  • 53. Implicit method: stability can be proven   S t I t h t t h ij ij       . ) ( . 4 1 ). (    ) ( ) ( ) ( ) ( . 1 1 1 1 t t h t t h t t h t t h j i j i j i j i                  for obtaining stability : … the worst case 10 -  10 +  10 +  10 +  10 +  ) 10 ( 4 0 ) 10 ( ) 4 1 )( (             t t hij 0 .   S t I       S m t T . . 2 ) 10 ( ) (    t hij ) 4 1 ( ) 10 ( 4 ) 10 ( ) (            t t hij      10 ) ( t t hij            10 ) 4 1 ( ) 10 ( 4 ) 10 (       4 40 10 4 40 10        …always the case
  • 54. 54 Crank-Nicholson method  physically: more accurate  numerically: implicit procedure, unconditional stability … at the time 2 t t   Galerkin method … at the time 3 2 t t    physically: most accurate  numerically: implicit procedure, unconditional stability Time integration scheme
  • 55. 55 Time integration scheme 𝑇 ∆𝑚 2 ℎ𝑖+1𝑗 + ℎ𝑖−1𝑗 + ℎ𝑖𝑗+1 + ℎ𝑖𝑗−1 − 4ℎ𝑖𝑗 + 𝑄𝑖𝑗 = 𝑆 ℎ𝑖𝑗 𝑡 + ∆𝑡 − ℎ𝑖𝑗(𝑡 ∆𝑡 𝑇 ∆𝑚 2 (1 − 𝜃 ℎ𝑖+1𝑗(𝑡 + ℎ𝑖−1𝑗(𝑡 + ℎ𝑖𝑗+1(𝑡 + ℎ𝑖𝑗−1(𝑡 − 4ℎ𝑖𝑗(𝑡 + 𝑇 ∆𝑚 2 𝜃 ℎ𝑖+1𝑗(𝑡 + ∆𝑡 + ℎ𝑖−1𝑗(𝑡 + ∆𝑡 + ℎ𝑖𝑗+1(𝑡 + ∆𝑡 + ℎ𝑖𝑗−1(𝑡 + ∆𝑡 − 4ℎ𝑖𝑗(𝑡 + ∆𝑡 0   1   2 / 1   3 / 2   Full explicit time integration Full implicit time integration Crank-Nicholson implicit Galerkin implicit stability criterion only for explicit schemes 2 / 1   time integration schemas used in all numerical techniques
  • 56. 56 Introduction to solving methods: FD practical recommendations  an initial field of values for the main unknown variable (piezometric head) needed for initiating the iterative solving  accuracy increases with the number of cells but portability (i.e. computing efficiency) decreases  use smaller cells where a steep gradient of the main variable is expected  spatial discretization: nodes located at pumping wells and observation piezometers  avoid distances between nodes greater than 1.5 the previous one  avoid ratios greater than 1/10 for the cell dimensions (bad numerical conditions for solving the system of equations)  boundaries with a prescribed head should correspond to nodes (central points of the cells, if BCFD)  boundaries with a prescribed flux should correspond to sides of the cells (where the flux condition is calculated) if BCFD  …
  • 57. 57 Introduction to solving methods: Finite Elements - discrete elements, unstructured FE mesh - better for irregular boundaries, spatial variations, and exact locations for stress-factors and observation measurements - optimized mesh generation to reduce the needed memory space (refs among others: Narasimhan et al. 1978, Huyakorn and Pinder 1983, Bear and Verruijt 1987, Wang and Anderson 1982, Fitts 2002, Rausch et al. 2005, Bear and Cheng 2010, Anderson et al. 2015, Diersch 2014, Pinder and Celia 2006, Dassargues 2018 and 2020)
  • 58. 58 Introduction to solving methods: FE - the continuous field of the variable (i.e. piezometric head) approximated typically by interpolation functions (here also referred to as basis functions) - piezometric field described in each finite element by a plane - the discrete unknowns are the nodal values - an integral approach expressing the weak formulation (i.e. a variational form integrating the governing partial differential equation of the process with its BCs and initial conditions) for obtaining a global continuum balance statement - two ways: (1) minimum of a natural variational functional (when it exists) (2) method of weighted residuals (applicable to all types of partial differential equations)
  • 59. 59 Introduction to solving methods: FV - common features with FD and FE - FD for unstructured grids - if triangles: similarities with triangle FE - as for FE, FV approximates the main variable using basis functions in the triangular element - Finite Volume refers to the volume surrounding each node point in a mesh with nodal basis function = 1 only at the considered node and 0 at all others - conservation law is satisfied locally for a given control volume with respect to its neighboring volumes (similar to FD not to FE) - balance relies on evaluation of surface integrals on the boundaries (i.e. the conservation must be satisfied across the boundaries of the adjoining control volumes) (refs among others: Patankar 1980, Baliga and Patankar 1983, Chung 2002, Diersch 2014, Narasimhan and Witherspoon 1976, Rausch et al. 2005, Fletcher 1988, Idelsohn and Onate 1994, Forsyth et al. 1995, Therrien and Sudicky 1996, Pinder and Celia 2006, Therrien et al. 2010)
  • 60. 60 References - Anderson,M.P., Woessner, W.W. and R.J. Hunt. 2015. Applied groundwater modeling – Simulation of flow and advective transport. Academic Press Elsevier. - Baliga, B.R. and S.V. Patankar. 1983. A control volume finite-element method for two-dimensional fluid flow and heat transfer. Numerical Heat Transfer 6(3): 245-261. - Bear, J. and A. Verruijt. 1987. Modeling groundwater flow and pollution. Dordrecht: Reidel Publishing Company. - Bear, J. and A.H.D. Cheng. 2010. Modeling groundwater flow and contaminant transport. Springer. - Brouyère, S., Carabin, G. and Dassargues, A., 2004. Climate change impacts on groundwater reserves: modelled deficits in a chalky aquifer, Geer basin, Belgium. Hydrogeology Journal 12(2), pp.123-134. - Brouyère, S., Orban, P., Wildemeersch, S., Couturier, J., Gardin, N. and Dassargues, A., 2009. The Hybrid Finite Element Mixing Cell Method: A New Flexible Method for Modelling Mine Groundwater Problems. Mine Water & the Environment 28(2): 102-114. - Carabin, G. and A. Dassargues. 1999. Modeling groundwater with ocean and river interaction. Water Resources Research 35(8): 2347-2358. - Carabin G. and Dassargues A., 2000. Coupling of parallel river and groundwater models to simulate dynamic groundwater boundary conditions (Proc. of Computational Methods in Water Resources 2000), Bentley L.R., Sykes J.F., Brebbia C.A., Gray W.G. & Pinder G.F., vol.2,1107-1113, Balkema. - Castany, G. 1963. Traité pratique des eaux souterraines (in French). Paris, Bruxelles, Montréal : Dunod. - César E, Wildemeersch S., Orban P., Carrière S., Brouyère S. and Dassargues A., 2014. Simulation of spatial and temporal trends in nitrate concentrations at the regional scale in the Upper Dyle basin, Belgium. Hydrogeology Journal 22: 1087 – 1100. - Chung, T. 2002. Computational fluid dynamics. Cambridge University Press. - de Marsily, G. 1986. Quantitative hydrogeology : groundwater hydrology for engineers. Academic Press. - Dagan, G. 1989. Flow and transport in porous formations, New York: Springer. - Dassargues A., Radu J.P., Charlier R., 1988. Finite elements modelling of a large water table aquifer in transient conditions. Advances in Water Resources, Volume 11(2): 58-66. - Dassargues A., 1991. Water table aquifers and finite element method: analysis and presentation of a case study, in Computational Modelling of Free and Moving Boundary Problems, Vol. 1, Fluid Flow, Computational Mechanics Publications, Southampton, 63-72. - Dassargues, A. 1995. Modélisation en hydrogéologie, Programme Tempus JEP 3801 Sciences de l’Eau et Environnement, Ed. Didac. et Pédag. RA, Bucarest, Romania. - Dassargues, A. 1995. On the necessity to consider varying parameters in land subsidence computations, in Proc. of the 5th Int. Symp. on Land Subsidence, ed. Barends, B.J., Brouwer F.J.J. and F.H. Schröder, IAHS 234: 259-268. - Dassargues, A. 1997. Vers une meilleure fiabilité dans le calcul des tassements dus aux pompages d'eau souterraine, A) Première partie: prise en compte de la variation au cours du temps des paramètres hydrogéologiques et géotechniques (in French), Annales de la Société Géologique de Belgique, 118 (1995)(2) : 95-115. - Dassargues A., 1997. Théorie de l'approche hydrogéologique des écoulements et transports en zone partiellement saturée, Annales de la Société Géologique de Belgique, T. 119(1) 1996, pp. 71-89. - Dassargues, A., 1997. Modeling baseflow from an alluvial aquifer using hydraulic-conductivity data obtained from a derived relation with apparent electrical resistivity. Hydrogeology Journal 5(3): 97-108. - Dassargues, A. 1998. Prise en compte des variations de la perméabilité et du coefficient d’emmagasinement spécifique dans les simulations hydrogéologiques en milieux argileux saturés (in French), Bull. Soc. Géol. France, 169(5) : 665-673.
  • 61. 61 References (2) - Dassargues A., 2018. Hydrogeology: groundwater science and engineering, 472p. Taylor & Francis CRC press, Boca Raton. - Dassargues A. 2020. Hydrogéologie appliquée : science et ingénierie des eaux souterraines, 512p. Dunod. Paris. - Dassargues, A., Biver, P. and A. Monjoie. 1991. Geotechnical properties of the Quaternary sediments in Shanghai. Engineering Geology 31(1): 71-90. - Dassargues, A., Schroeder Ch. and X.L. Li. 1993. Applying the Lagamine model to compute land subsidence in Shanghai, Bulletin of Engineering Geology (IAEG) 47: 13-26. - Dassargues, A. and A. Monjoie. 1993. Chalk as an aquifer in Belgium. In Hydrogeology of the Chalk of North-West Europe, ed. R.A. Downing, M. Price and G.P. Jones, 153-169. Oxford University Press. - Delleur, J.W. 1999. The handbook of groundwater engineering. Boca Raton: CRC Press. - Diersch, H-J.G. 2014. Feflow – Finite element modeling of flow, mass and heat transport in porous and fractured media. Springer. - Dupuit, J. 1863. Estudes théoriques et pratiques sur le mouvement des eaux dans les canaux découverts et à travers les terrains perméables (in French) (2nd Ed.). Paris Dunod. - Eckis, R. 1934. Geology and ground-water storage capacity of valley fill, South Coastal Basin Investigation: California Dept. Public Works, Div. Water Resources Bull. 45, 273 p. - Fitts, Ch. R. 2002. Groundwater science. Academic Press. - Forsyth, P.A., Wu, Y.S. and K. Pruess. 1995. Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media, Advances in Water Resources 18(1) : 25-38. - Fletcher, C. 1988. Computational techniques for fluid dynamics. Vol.1 and Vol.2, New York: Springer. - Goderniaux, P., Brouyère, S., Fowler, H.J., Blenkinsop, S., Therrien, R. Orban, Ph. and Dassargues, A., 2009. Large scale surface – subsurface hydrological model to assess climate change impacts on groundwater reserves. Journal of Hydrology 373: 122-138. - Goderniaux, P., Brouyère, S., Blenkinsop, S., Burton, A., Fowler, H.J., Orban, P. and Dassargues, A., 2011. Modelling climate change impacts on groundwater resources using transient stochastic climatic scenarios. Water Resources Research 47(12): W12516 - Hadley, P.W. and Ch. Newell. 2014. The new potential for understanding groundwater contaminant transport. Groundwater 52(2): 174-186. - Hoffmann R., Goderniaux P., Jamin P., Orban Ph., Brouyère S. and A. Dassargues. 2021. Differentiated influence of the double porosity of the chalk on solute and heat transport. In The Chalk Aquifers of Northern Europe. Farrell, R. P., Massei, N., Foley, A. E., Howlett, P. R. and West, L. J. (eds), Geological Society, London, Special Publications, 517, https://doi.org/10.1144/SP517-2020-170 - Huyakorn, P.S. and G.F. Pinder. 1983. Computational methods in subsurface flow. Academic Press. - Idelsohn, S. and E. Onate. 1994. Finite volumes and finite elements: two ‘good friends’. International Journal for Numerical Methods in Engineering 37(19) : 3323-3341. - Jusseret, S., Vu Thanh, T. and Dassargues, A., 2009. Groundwater flow modelling in the central zone of Hanoi, Vietnam, Hydrogeology Journal 17(4): 915-934. - Narasimhan, T.N. and P.A. Witherspoon. 1976. An integrated finite difference method for analyzing fluid flow in porous media, Water Resources Research 12(1): 57-64. - Narasimhan, T.N., Neuman, S.P. and P.A. Witherspoon. 1978. Finite element method for subsurface hydrology using a mixed explicit‐implicit scheme, Water Resources Research 14(5) : 863-877. - Orban, P., Brouyère,S., Batlle-Aguilar, J., Couturier, J., Goderniaux, P., Leroy, M., Malozewski, P. and Dassargues, A., 2010. Regional transport modelling for nitrate trend assessment and forecasting in a chalk aquifer. Journal of Contaminant Hydrology 118: 79-93. - Patankar, S. 1980. Numerical heat transfer and fluid flow. CRC Press.
  • 62. 62 References (3) - Payne, F.C., Quinnan, A. and S.T. Potter. 2008. Remediation hydraulics. Boca Raton: CRC Press/ Taylor & Francis. - Peeters, L., Haerens, B., Van Der Sluys, J. and Dassargues, A., 2004. Modelling seasonal variations in nitrate and sulphate concentrations in a threatened alluvial aquifer, Environmental Geology 46(6-7): 951-961. - Pinder, G.F. and M.A. Celia. 2006. Subsurface hydrology. Hoboken, New Jersey: Wiley & Sons. - Pujades E., Jurado A., Carrera J. Vázque-Sunè E. and Dassargues A., 2016. Hydrogeological assessment of non-linear underground enclosures. Engineering Geology 207: 91-102. - Rausch, R., Schäfer, W., Therrien, R. and Chr. Wagner. 2005. Solute transport modelling – An introduction to models and solution strategies. Berlin- Stuttgart: Gebr.Borntraeger Verlagsbuchhandlung Science Publishers. - Rocha, D., Feyen, J. and Dassargues, A. 2007. Comparative analysis between analytical approximations and numerical solutions describing recession flow in unconfined hillslope aquifers. Hydrogeology Journal 15: 1077-1091. - Rojas, R. & Dassargues, A., 2007. Groundwater flow modelling of the regional aquifer of the Pampa del Tamarugal, northern Chile, Hydrogeology Journal 15: 537-551. - Rojas, R., Feyen, L. and Dassargues, A., 2008. Conceptual model uncertainty in groundwater modeling: Combining generalized likelihood uncertainty estimation and Bayesian model averaging, Water Resources Research 44: W12418 - Rojas, R., Batelaan, O., Feyen, L., and Dassargues, A., 2010. Assessment of conceptual model uncertainty for the regional aquifer Pampa del Tamarugal – North Chile. Hydrol. Earth Syst. Sci. 14: 171-192. - Stefanescu Ch. and Dassargues A., 1996. Simulation of pumping and artificial recharge in the phreatic aquifer near Bucarest (Romania). Hydrogeology Journal 4(3): 72-83. - Terzaghi, K. 1943. Theoretical soil mechanics, London: Chapman and Hall. - Therrien, R. and E.A. Sudicky. 1996. Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous media, Journal of Contaminant Hydrology 23(1-2) : 1-44. - Therrien, R., McLaren, R.G., Sudicky, E.A. and S.M. Panday. 2010. HydroGeoSphere: A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. User manual. Université Laval & University of Waterloo. - Wang, H.F. and M.P. Anderson. 1982. Introduction to groundwater modelling: finite difference and finite element methods, San Diego (CA): Academic Press. - Wildemeersch, S., Brouyère, S., Orban, P., Couturier, J., Dingelstadt, C., Veschkens, M. and Dassargues, A., 2010. Application of the Hybrid Finite Element Mixing Cell method to an abandoned coalfield in Belgium. Journal of Hydrology 392 (3-4): 188-200. - Wildemeersch S., Goderniaux P., Orban P., Brouyère S. and Dassargues A., 2014. Assessing the effects of spatial discretization on large-scale flow model performance and prediction uncertainty. Journal of Hydrology 510: 10-25.