Mshqvirscort{o's Rqlefor the Surfqce.
  Area of q Sphericol Segment:

                  ,4 new fnterpretqtion



                                           Radha Charan Guoto


                                                                 of Technolqg'
                                                  Blrln Instltwte
                                                         l["uro' Itowhi'
 l. Introduction :                     singa good amountof the eleme-
                      (
     MahAviracarya c. 850 A.           ntary mathematics the time
                                                              of
D. ), a Jainawriter, wasattached       and thus forms a rich source of
to the court of Amoghavarpa        I   information the knowledgeof
                                                     for
who ruledl at Mdnyakbeta     (Sou-     ancient Indian mathematics,
th India)from A. D. 815to 877.         Accordingto B. B. Bagis,tbe
He is the author of the following      work was usedas a text.bookfor
threeworks.2                           centuries lhe whole of South
                                                  in
      (i) Ganita-siira-sa4graha (-     India.
GSS)devoted arithmetic,
               to             geo-          The GSSwasfirst editedand
metry and mensurations    etc.;        translatedinto English by M.
     (ii) J1,oti3-patala devotedto     Rangacharya(      and has beenrece-
astronomy;                             ntly re-edited  with Hindi transla-
     (iii) Sattrinrsfkiidevoted to     tion by Prof. L. C. Jain.o The
algebra.                               purpose tbe present
                                                 of              paper is to
    The GSSis historically  impor-     suggest new interpretation(
                                                a                      diff-
tant because, the title indica-
              as                       erent fiom that givenby the above
tes.it is a "Collection" summari-      two scholars)of the GSS-rule

                 r,q 2 (      )
c q q fc n T - 2 (1 1 f >     /                                       63
which concernsihe curved surface                         where p is the circumference
-area of a segment of a sphere.                          of the pl ane ci rcul ar base, or
We first present and examinetheir                         P :Tf c
v iew.                                                   (2t and d i s the.di ameter thereof
 2. Rongachoryo's                  I nterpre-
                                                         l l tat i s d:c   ... . (3)
                                                                 This interpretation of the
      totion      :
                                                         rule assumestliat the GSS treated
      Le t h b e th c h e i g h t o f th e
                                                         the spheri cal segment si mpl y
s egm en t o f th e s p h e re w h o s e
                                                         equal to the pl ane ci rcul ar base
radius is R and C be the diameter
                                                         for w hi ch the formul a (l ) hol ds
of t he p l a n e c i rc u l a r b a s e o f th e
                                                         good.
segment lf thc bulging portion                                   P rof. L. C . Jai n, w ho has sta-
of thc segment is downwards, we                          ted (p. xv) to have fol l ow ed R an-
have a nimnavrtta (concavecircu-                         gacharya,has ul so gi ven the same
lar s ur f a c e ) w h i c h re s e mb l e sth e         i nterpretati on   (p I 86) of the rul e.
catvcrla  (sacrificialfire-pit); and if
                                                                 N ow the mathemati cal l y   true
t he bulg i n g p o rti o n i s u p w a rd s .           surface-areais known to be given
we have the unnato-vrlta (convex
                                                         by
c ir c ulnr s u rfa c e ) re s e m b l i n g th e          s = . 2 7 Rh                  (4 )
kurma(-prastha) (the back of a                              : 2 7 f R' (l-c o s
                                                                                -). . . (5 )
t or t ois e ).                                              w here 2 66 i s the angl e subt-
        T he o ri g i n a l S a n s k ri t te x t o f    ended by the di ameter c of the
the GSS, VII (ksetra-ga4ita-v)a-                         basr'of lhe se-cment the centre
                                                                                 at
v ohf r r a ), 2 5 (fi rs t h a l i ), w h i c h         of the spl rere. C onsi deri ng thi s
gives the rule for the area ol' the                      angl e to be smal l . w e have
s pber ic a ls e g n re n t n e i th e r o f th e
                             i                           S :?I     R .z (o.2-qal l 2)      nearty
at r ov et w o c a s e s ,i s                                                                (6)
                       s
cfl+sq sgq?'i fssmrlTgq: ftfa                                   R angacharya' si nterP retati on
ufurontq r                                                 ( 1) gi ve
Paridheica catur - bhdgo vi3ka-                         )      Sr :   tr c214              (7)
m bha- g u n a h s a v i d d h i g a n i ta p h -         -2zrR h-zrh                      (8)

alam                                                     by usi ng a w el l ' know n el ententarY
       P r o f. R a n g a c h a ry a (P . 1 9 0 )        resul t. C ompari ng w i th (4), w e
lr as t r an s l a te dth i s a s l b l l o w s :        fi nd that S t i s al w ays l ess than
                                                         the true val ue, the error bei n-s
      ' Un d e rs ta n d th a t o n e fo u rth
of t he c i rc u n rfe re n c e mu l ti P l i e d                    Er -   7f h' r
by t he d i a m e te r g i v e s ri s e to th e               : r,    x a ll    n e lrlv       (9 )
                                                                   ft
c alc ulate d (re s u l ti n g )a re a .,                    The tw o extmpl es gi ven i n
      T ha t i s , a s e x p l a i n e db y h i m        the GS S i tsel f. i mmedi atel y after
in the accornpanyingfoot-note,                           tbe above rul e, has thc fol l ow i ng
     S urfa c ea re a :(p /4 ). d ......( t)             nurneri caldata


64                                                                                    Eqfl cflr-2
( i ) exampie on carvAld:,                       th i s sense several
                                                                   at       other pl aces.6
              d: 2 1 ,   p :5 6                        Of course, in the case of a circle
                                                       ( or sphere) these w ords w i l l
      (ii) example on kfrrma :
                                                       obviously denote its diameter
           d: 1 5 , p :3 6
                                                       r vhi ch does representi ts breadth.
      O ur m a i n o b j e c ti o n to R a n g -           Following this general and
ac har y a' s a b o v e i n te rp re ta ti o n i s     basic meaning, we suggest that
thaf if the GSS text paridhi (circ-                    the word viskanrbhq the above
                                                                             in
umference, p) and viskambha (tak-                      quoted Sanskrit rule for the area
en by him a s d i a n re te r, d ) b o th              of a spherical segment denotes
r ef er t o t he c i rc u l a r b a s e ,w e m u s t
                                                       the curvi l i near breadth say, s ).
have the relation
                                                       Thus our transl ati onof GS S ,V l l l ,
              p: r.d ...(1 0 )                         2.5w i l l be.
for atleast some rough value of                              'Know that one fourth of
pi s uc h as 3 o r ro o t l 0 (b o th u s e d
                                                       th e ci rcumference mul ti pl i ed by
in t he G S S )..Bu t th e a b o v e e x a m -         th e ( curvi l i near ) bre:rdth ( of
ples s how t h a t th i s w a s N OT th e
                                                       the concave or convex circular
c as e. I n f a c t th e v a l u e o f th e            area ) i s the ( approxi matesur-
r at io p/ d is q u i te d i v e rg e n t i n th e     face ) areaof the concave or con-
abov e num e ri c a l c a s e s (i n s te a do f       vex ci rcul ar surfacesresembl i ng
being c ons ta n t). M o re o v e r, h a d
                                                       the sacrificialfire-pit or the ( back
( 10) been t h e c a s e , th e re rv a s n o
                                                       o f a) tortoi se.'That i s,
need of giving both p and d (given
one of t he m , tb e o th e r c a n b e                    52 --(pl 4).       s ... (l l )
f ound out ). So w e s u g g e s t th e                On si mpl rfi cati on, s gi ves
                                                                            thi
f ollowing n e w i n te rp re ta ti o n w h i -             S , Jc        sl 4          (12)
c h is bet t e r a n d q u i te fe a s i b l e .
                                                              .:7R          ccsi no6...(13)
 3. A New Interpretation:                               :7Rz(66      2-   oca f6l nearly( 14 )
       O ur ne w tra n s l a ti o ni s b a s e d            These resul tsshoul d be com-
 on a dif f e re n t i n te rPre ta ti o n o f          pared w i th (l ), (7), (5) and (6)
 the Sanskrit word viskamhha used                       respecti vel y.The error i n S2 i s
 in t he t ex t o f th e ru l e a n d fo r              E e :7R z     r.a l 12 nearl y ...(15)
 which a synonymous word Y.Yd.ra                        whi ch i s l essthan (9). H ence our
  is us ed, in o n e o f th e a c c o m Pa '            interpretation ma), be regarded
  ny ing ex a m p l e s ' T h e b a s i c a n d         better than that of R angacharY a
 generafmeaning of viskambha (or                        ( and Jai n ).
 y/asd) is breadth (as oPPosedto
 d),antaor length) of a figure. The                          A s far as the rati onal e of the
 G S S it s elf u s e s th e s e w o rd s i n           rui e (l l ) i s concerned, i t seems


  gqft    c$Tr-2                                                                             65
to be an empiricalgeneralization   is absentand the curvilinear
                                                              bre-
of the corresponding for the
                    rule           adth, s, becomes  equals to the
planecircularareain which case     diameter of the plane circular
tbe concavity convexity
            or           nature    area.




 References and Notes

I J. P. Jain, The Jaina Sources of the History of AncientIndia ( IOO
  B. C. to A. D.900), p.207. Motilal Banarsidass,  Delhi, 1964.
2 R. C. Gupta,'Mahdvtr6c6rya the Perimeter
                             on             and Area of an Ell-
  ipse' (Glimpses Ancientlndian Mathematics 9), The mathe-
                of                          No.
  matics Education.                        Sec.8., p. 17.
                 Vol.8, No. | (March, 1974),
3 SeeBagi's'lntroductorl',p. X, attached Jain'seditionof the GSS
                                       to
  (seeref. 5 below).
4 Government
           OrientalManuscripts
                             Library,Madras,1912.
5 Jivaraja Jaina Granthmala
                          No. 12. Jaina SanskritiSamrakshaka
  Sangha, Sholapur,t963.
6 SeeGSS, VIl, 18, 2l for viskamhha; and VII, 7, 14, etc.for vy1sa.
  Also seeGupta,op. cit., pp. 17-19.

                                                            l-l !




66                                                     govl rnr-2

More Related Content

PDF
Gupta1973d
PDF
Gupta1974j
PPTX
Participatory Learning and You! (PLAY!)
PDF
Gupta1974g
PDF
Gupta1972f
PDF
Gupta1974h
PDF
Gupta1975e
PDF
Gupta1973f
Gupta1973d
Gupta1974j
Participatory Learning and You! (PLAY!)
Gupta1974g
Gupta1972f
Gupta1974h
Gupta1975e
Gupta1973f

Similar to Gupta1975j (20)

PDF
Gupta1975f
PDF
Gupta1974i
PDF
Gupta1973e
PDF
Gupta1972b
PDF
Gupta1972h
PDF
Gupta1973c
PDF
Gupta1971
PDF
Gupta1972e
PDF
Gupta1975d
PDF
Gupta1974e
PDF
Gupta1967
PDF
4th Semester (December; January-2014 and 2015) Electronics and Communication ...
PDF
Stephen Hawking - Properties of expanding universes
PDF
Claws Hoofs
PDF
1994 nucleation and growth of c parallel grains in co-evaporated sm ba2cu3oy ...
PDF
Wavelet estimation for a multidimensional acoustic or elastic earth
PDF
Wavelet estimation for a multidimensional acoustic or elastic earth- Arthur W...
PDF
6th Semester Electronic and Communication Engineering (2011-July) Question Pa...
PDF
Automatic Paraphrasing In Essay Format
PDF
7th Semester (December; January-2014 and 2015) Electronics and Communication ...
Gupta1975f
Gupta1974i
Gupta1973e
Gupta1972b
Gupta1972h
Gupta1973c
Gupta1971
Gupta1972e
Gupta1975d
Gupta1974e
Gupta1967
4th Semester (December; January-2014 and 2015) Electronics and Communication ...
Stephen Hawking - Properties of expanding universes
Claws Hoofs
1994 nucleation and growth of c parallel grains in co-evaporated sm ba2cu3oy ...
Wavelet estimation for a multidimensional acoustic or elastic earth
Wavelet estimation for a multidimensional acoustic or elastic earth- Arthur W...
6th Semester Electronic and Communication Engineering (2011-July) Question Pa...
Automatic Paraphrasing In Essay Format
7th Semester (December; January-2014 and 2015) Electronics and Communication ...
Ad

More from Sohil Gupta (12)

PDF
Report of ramjas seminar
PDF
Gupta1987j
PDF
Gupta1979o
PDF
Gupta1978b
PDF
Gupta1977f
PDF
Gupta1976d
PDF
Gupta1975i
PDF
Gupta1974k
PDF
Gupta1974f
PDF
Gupta1974d
PDF
Gupta1973h
PDF
Gupta1972d
Report of ramjas seminar
Gupta1987j
Gupta1979o
Gupta1978b
Gupta1977f
Gupta1976d
Gupta1975i
Gupta1974k
Gupta1974f
Gupta1974d
Gupta1973h
Gupta1972d
Ad

Recently uploaded (20)

DOCX
search engine optimization ppt fir known well about this
PPTX
The various Industrial Revolutions .pptx
PPTX
Custom Battery Pack Design Considerations for Performance and Safety
PDF
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
PDF
sustainability-14-14877-v2.pddhzftheheeeee
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
PDF
The influence of sentiment analysis in enhancing early warning system model f...
PDF
Convolutional neural network based encoder-decoder for efficient real-time ob...
PDF
Developing a website for English-speaking practice to English as a foreign la...
PPTX
Microsoft Excel 365/2024 Beginner's training
PDF
STKI Israel Market Study 2025 version august
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PDF
OpenACC and Open Hackathons Monthly Highlights July 2025
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
PPT
Module 1.ppt Iot fundamentals and Architecture
PPT
Geologic Time for studying geology for geologist
PDF
CloudStack 4.21: First Look Webinar slides
PDF
Produktkatalog für HOBO Datenlogger, Wetterstationen, Sensoren, Software und ...
PDF
sbt 2.0: go big (Scala Days 2025 edition)
PPTX
GROUP4NURSINGINFORMATICSREPORT-2 PRESENTATION
search engine optimization ppt fir known well about this
The various Industrial Revolutions .pptx
Custom Battery Pack Design Considerations for Performance and Safety
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
sustainability-14-14877-v2.pddhzftheheeeee
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
The influence of sentiment analysis in enhancing early warning system model f...
Convolutional neural network based encoder-decoder for efficient real-time ob...
Developing a website for English-speaking practice to English as a foreign la...
Microsoft Excel 365/2024 Beginner's training
STKI Israel Market Study 2025 version august
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
OpenACC and Open Hackathons Monthly Highlights July 2025
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
Module 1.ppt Iot fundamentals and Architecture
Geologic Time for studying geology for geologist
CloudStack 4.21: First Look Webinar slides
Produktkatalog für HOBO Datenlogger, Wetterstationen, Sensoren, Software und ...
sbt 2.0: go big (Scala Days 2025 edition)
GROUP4NURSINGINFORMATICSREPORT-2 PRESENTATION

Gupta1975j

  • 1. Mshqvirscort{o's Rqlefor the Surfqce. Area of q Sphericol Segment: ,4 new fnterpretqtion Radha Charan Guoto of Technolqg' Blrln Instltwte l["uro' Itowhi' l. Introduction : singa good amountof the eleme- ( MahAviracarya c. 850 A. ntary mathematics the time of D. ), a Jainawriter, wasattached and thus forms a rich source of to the court of Amoghavarpa I information the knowledgeof for who ruledl at Mdnyakbeta (Sou- ancient Indian mathematics, th India)from A. D. 815to 877. Accordingto B. B. Bagis,tbe He is the author of the following work was usedas a text.bookfor threeworks.2 centuries lhe whole of South in (i) Ganita-siira-sa4graha (- India. GSS)devoted arithmetic, to geo- The GSSwasfirst editedand metry and mensurations etc.; translatedinto English by M. (ii) J1,oti3-patala devotedto Rangacharya( and has beenrece- astronomy; ntly re-edited with Hindi transla- (iii) Sattrinrsfkiidevoted to tion by Prof. L. C. Jain.o The algebra. purpose tbe present of paper is to The GSSis historically impor- suggest new interpretation( a diff- tant because, the title indica- as erent fiom that givenby the above tes.it is a "Collection" summari- two scholars)of the GSS-rule r,q 2 ( ) c q q fc n T - 2 (1 1 f > / 63
  • 2. which concernsihe curved surface where p is the circumference -area of a segment of a sphere. of the pl ane ci rcul ar base, or We first present and examinetheir P :Tf c v iew. (2t and d i s the.di ameter thereof 2. Rongachoryo's I nterpre- l l tat i s d:c ... . (3) This interpretation of the totion : rule assumestliat the GSS treated Le t h b e th c h e i g h t o f th e the spheri cal segment si mpl y s egm en t o f th e s p h e re w h o s e equal to the pl ane ci rcul ar base radius is R and C be the diameter for w hi ch the formul a (l ) hol ds of t he p l a n e c i rc u l a r b a s e o f th e good. segment lf thc bulging portion P rof. L. C . Jai n, w ho has sta- of thc segment is downwards, we ted (p. xv) to have fol l ow ed R an- have a nimnavrtta (concavecircu- gacharya,has ul so gi ven the same lar s ur f a c e ) w h i c h re s e mb l e sth e i nterpretati on (p I 86) of the rul e. catvcrla (sacrificialfire-pit); and if N ow the mathemati cal l y true t he bulg i n g p o rti o n i s u p w a rd s . surface-areais known to be given we have the unnato-vrlta (convex by c ir c ulnr s u rfa c e ) re s e m b l i n g th e s = . 2 7 Rh (4 ) kurma(-prastha) (the back of a : 2 7 f R' (l-c o s -). . . (5 ) t or t ois e ). w here 2 66 i s the angl e subt- T he o ri g i n a l S a n s k ri t te x t o f ended by the di ameter c of the the GSS, VII (ksetra-ga4ita-v)a- basr'of lhe se-cment the centre at v ohf r r a ), 2 5 (fi rs t h a l i ), w h i c h of the spl rere. C onsi deri ng thi s gives the rule for the area ol' the angl e to be smal l . w e have s pber ic a ls e g n re n t n e i th e r o f th e i S :?I R .z (o.2-qal l 2) nearty at r ov et w o c a s e s ,i s (6) s cfl+sq sgq?'i fssmrlTgq: ftfa R angacharya' si nterP retati on ufurontq r ( 1) gi ve Paridheica catur - bhdgo vi3ka- ) Sr : tr c214 (7) m bha- g u n a h s a v i d d h i g a n i ta p h - -2zrR h-zrh (8) alam by usi ng a w el l ' know n el ententarY P r o f. R a n g a c h a ry a (P . 1 9 0 ) resul t. C ompari ng w i th (4), w e lr as t r an s l a te dth i s a s l b l l o w s : fi nd that S t i s al w ays l ess than the true val ue, the error bei n-s ' Un d e rs ta n d th a t o n e fo u rth of t he c i rc u n rfe re n c e mu l ti P l i e d Er - 7f h' r by t he d i a m e te r g i v e s ri s e to th e : r, x a ll n e lrlv (9 ) ft c alc ulate d (re s u l ti n g )a re a ., The tw o extmpl es gi ven i n T ha t i s , a s e x p l a i n e db y h i m the GS S i tsel f. i mmedi atel y after in the accornpanyingfoot-note, tbe above rul e, has thc fol l ow i ng S urfa c ea re a :(p /4 ). d ......( t) nurneri caldata 64 Eqfl cflr-2
  • 3. ( i ) exampie on carvAld:, th i s sense several at other pl aces.6 d: 2 1 , p :5 6 Of course, in the case of a circle ( or sphere) these w ords w i l l (ii) example on kfrrma : obviously denote its diameter d: 1 5 , p :3 6 r vhi ch does representi ts breadth. O ur m a i n o b j e c ti o n to R a n g - Following this general and ac har y a' s a b o v e i n te rp re ta ti o n i s basic meaning, we suggest that thaf if the GSS text paridhi (circ- the word viskanrbhq the above in umference, p) and viskambha (tak- quoted Sanskrit rule for the area en by him a s d i a n re te r, d ) b o th of a spherical segment denotes r ef er t o t he c i rc u l a r b a s e ,w e m u s t the curvi l i near breadth say, s ). have the relation Thus our transl ati onof GS S ,V l l l , p: r.d ...(1 0 ) 2.5w i l l be. for atleast some rough value of 'Know that one fourth of pi s uc h as 3 o r ro o t l 0 (b o th u s e d th e ci rcumference mul ti pl i ed by in t he G S S )..Bu t th e a b o v e e x a m - th e ( curvi l i near ) bre:rdth ( of ples s how t h a t th i s w a s N OT th e the concave or convex circular c as e. I n f a c t th e v a l u e o f th e area ) i s the ( approxi matesur- r at io p/ d is q u i te d i v e rg e n t i n th e face ) areaof the concave or con- abov e num e ri c a l c a s e s (i n s te a do f vex ci rcul ar surfacesresembl i ng being c ons ta n t). M o re o v e r, h a d the sacrificialfire-pit or the ( back ( 10) been t h e c a s e , th e re rv a s n o o f a) tortoi se.'That i s, need of giving both p and d (given one of t he m , tb e o th e r c a n b e 52 --(pl 4). s ... (l l ) f ound out ). So w e s u g g e s t th e On si mpl rfi cati on, s gi ves thi f ollowing n e w i n te rp re ta ti o n w h i - S , Jc sl 4 (12) c h is bet t e r a n d q u i te fe a s i b l e . .:7R ccsi no6...(13) 3. A New Interpretation: :7Rz(66 2- oca f6l nearly( 14 ) O ur ne w tra n s l a ti o ni s b a s e d These resul tsshoul d be com- on a dif f e re n t i n te rPre ta ti o n o f pared w i th (l ), (7), (5) and (6) the Sanskrit word viskamhha used respecti vel y.The error i n S2 i s in t he t ex t o f th e ru l e a n d fo r E e :7R z r.a l 12 nearl y ...(15) which a synonymous word Y.Yd.ra whi ch i s l essthan (9). H ence our is us ed, in o n e o f th e a c c o m Pa ' interpretation ma), be regarded ny ing ex a m p l e s ' T h e b a s i c a n d better than that of R angacharY a generafmeaning of viskambha (or ( and Jai n ). y/asd) is breadth (as oPPosedto d),antaor length) of a figure. The A s far as the rati onal e of the G S S it s elf u s e s th e s e w o rd s i n rui e (l l ) i s concerned, i t seems gqft c$Tr-2 65
  • 4. to be an empiricalgeneralization is absentand the curvilinear bre- of the corresponding for the rule adth, s, becomes equals to the planecircularareain which case diameter of the plane circular tbe concavity convexity or nature area. References and Notes I J. P. Jain, The Jaina Sources of the History of AncientIndia ( IOO B. C. to A. D.900), p.207. Motilal Banarsidass, Delhi, 1964. 2 R. C. Gupta,'Mahdvtr6c6rya the Perimeter on and Area of an Ell- ipse' (Glimpses Ancientlndian Mathematics 9), The mathe- of No. matics Education. Sec.8., p. 17. Vol.8, No. | (March, 1974), 3 SeeBagi's'lntroductorl',p. X, attached Jain'seditionof the GSS to (seeref. 5 below). 4 Government OrientalManuscripts Library,Madras,1912. 5 Jivaraja Jaina Granthmala No. 12. Jaina SanskritiSamrakshaka Sangha, Sholapur,t963. 6 SeeGSS, VIl, 18, 2l for viskamhha; and VII, 7, 14, etc.for vy1sa. Also seeGupta,op. cit., pp. 17-19. l-l ! 66 govl rnr-2