SlideShare a Scribd company logo
SparkR
- Play Spark Using R
Gil Chen
@HadoopCon 2016
Demo: http://goo.gl/VF77ad
about me
• R, Python & Matlab User
• Taiwan R User Group
• Taiwan Spark User Group
• Co-founder
• Data Scientist @
HadoopCon 2015
SparkR - Play Spark Using R (20160909 HadoopCon)
Outline
• Introduction to SparkR
• Demo
• Starting to use SparkR
• DataFrames: dplyr style, SQL style
• RDD v.s. DataFrames
• MLlib: GLM, K-means
• User Case
• Median: approxQuantile()
• ID Match: dplyr style, SQL style, SparkR function
• SparkR + Shiny
• The Future of SparkR
Introduction to SparkR
Spark Origin
• Apache Spark is an open source cluster computing
framework
• Originally developed at the University of California,
Berkeley's AMPLab
• The first 2 contributors of SparkR:

Shivaram Venkataraman & Zongheng Yang
https://amplab.cs.berkeley.edu/
Spark History
https://en.wikipedia.org/wiki/Apache_Spark
SparkR
DataFrames
PySpark
Key Advantages of Spark & R
+
Fast!
Flexible
Scalable
Statistical!
Interactive
Packages
https://spark-summit.org/2014/wp-content/uploads/2014/07/SparkR-SparkSummit.pdf
ggplot2
Google Search: ggplot2
ggplot2 is a plotting system for R, based on the grammar of graphics.
Shiny
http://shiny.rstudio.com/gallery/
and more impressive dashboard…
A web application framework for R
Turn your analyses into interactive web applications
No HTML, CSS, or JavaScript knowledge required
Performance
https://amplab.cs.berkeley.edu/announcing-sparkr-r-on-spark/
The runtime performance of running group-by
aggregation on 10 million integer pairs on a single
machine in R, Python and Scala.
(using the same dataset as https://goo.gl/iMLXnh)
https://people.csail.mit.edu/matei/papers/2016/sigmod_sparkr.pdf
RDD (Resilient Distributed Dataset)
https://spark.apache.org/docs/2.0.0/api/scala/#org.apache.spark.rdd.RDD
Internally, each RDD is characterized
by five main properties:
1. A list of partitions
2. A function for computing each split
3. A list of dependencies on other
RDDs
4. Optionally, a Partitioner for key-value
RDDs (e.g. to say that the RDD is
hash-partitioned)
5. Optionally, a list of preferred
locations to compute each split on
(e.g. block locations for an HDFS
file)
https://docs.cloud.databricks.com/docs/latest/courses
RDD dependencies
• Narrow dependency: Each partition of the parent RDD is used by at most
one partition of the child RDD. This means the task can be executed
locally and we don’t have to shuffle. (Eg: map, flatMap, Filter, sample etc.)
• Wide dependency: Multiple child partitions may depend on one partition
of the parent RDD. This means we have to shuffle data unless the parents
are hash-partitioned (Eg: sortByKey, reduceByKey, groupByKey, join etc.)
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
Job Scheduling
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
Black: if they are already in memory
Transformations
RDD Operations
map()
flatmap()
filter()
mapPartitions()
sample()
union()
intersection()
distinct()
groupByKey()
reduceByKey()
sortByKey()
join()
cogroup()
…
Actions
reduce()
collect()
count()
first()
take(num)
takeSample()
takeOrdered()
saveAsTextFile()
saveAsSequenceFile()
saveAsObjectFile()
countByValue()
countByKey()
foreach()
…
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
narrow
dep.
wide
dep.
lazy evaluation
RDD Example
RDDRDDRDDRDD
Transformations
Action Value
rdd <- SparkR:::textFile(sc, "txt")
words <- SparkR:::flatMap(rdd, function())
wordCount <- SparkR:::lapply(words, function(word))
counts <- SparkR:::reduceByKey(wordCount, "+", 1)
op <- SparkR:::collect(counts)
R shell
RDD
SparkR
RDD & DataFrames
before v1.6
since v2.0
array
data.frame
+ schema
SparkDataFrame
+ schema
General
Action
Transformation
DataFrames are Faster!
http://scala-phase.org/talks/rdds-dataframes-datasets-2016-06-16/#/
Beyond SQL: Speeding up Spark with DataFrames
http://www.slideshare.net/databricks/spark-sqlsse2015public
Spark Stack
https://www.safaribooksonline.com/library/view/data-analytics-with/9781491913734/ch04.html
Storage
Cluster
Manager
Processing
Engine
Access &
Interfaces
How does sparkR works?
https://people.csail.mit.edu/matei/papers/2016/sigmod_sparkr.pdf
Upgrading From SparkR 1.6 to 2.0
Before 1.6.2 Since 2.0.0
data type naming DataFrame SparkDataFrame
read csv
Package from
Databricks
built-in
function
(like approxQuantile)
X O
ML function glm
more

(or use sparklyr)
SQLContext
/ HiveContext
sparkRSQL.init(sc)
merge in
sparkR.session()
Execute Message very detailed simple
Launch on EC2 API X
https://spark.apache.org/docs/latest/sparkr.html
Demo
http://goo.gl/VF77ad
Easy Setting
1. Download
2. Decompress and Give a Path
3. Set Path and Launch SparkR in R
Documents
• If you have to use RDD, refer to AMP-Lab github:

http://amplab-extras.github.io/SparkR-pkg/rdocs/1.2/

and use “:::”

e.g. SparkR:::textFile, SparkR:::lapply
• Otherwise, refer to SparkR official documents:

https://spark.apache.org/docs/2.0.0/api/R/index.html
Starting to Use SparkR (v1.6.2)
# Set Spark path
Sys.setenv(SPARK_HOME="/usr/local/spark-1.6.2-bin-hadoop2.6/")
# Load SparkR library into your R session
library(SparkR,
lib.loc = c(file.path(Sys.getenv("SPARK_HOME"), "R", "lib")))
# Initialize SparkContext, sc:sparkContext
sc <- sparkR.init(appName = "Demo_SparkR")
# Initialize SQLContext
sqlContext <- sparkRSQL.init(sc)
# your sparkR script
# ...
# ...
sparkR.stop()
Starting to Use SparkR (v2.0.0)
# Set Spark path
Sys.setenv(SPARK_HOME="/usr/local/spark-2.0.0-bin-hadoop2.7/")
# Load SparkR library into your R session
library(SparkR,
lib.loc = c(file.path(Sys.getenv("SPARK_HOME"), "R", "lib")))
# Initialize SparkContext, sc: sparkContext
sc <- sparkR.session(appName = "Demo_SparkR")
# Initialize SQLContext (don’t need anymore since 2.0.0)
# sqlContext <- sparkRSQL.init(sc)
# your sparkR script
# ...
# ...
sparkR.stop()
DataFrames
# Load the flights CSV file using read.df
sdf <- read.df(sqlContext,"data_flights.csv",
"com.databricks.spark.csv", header = "true")
# Filter flights from JFK
jfk_flights <- filter(sdf, sdf$origin == "JFK")
# Group and aggregate flights to each destination
dest_flights <- summarize(
groupBy(jfk_flights, jfk_flights$dest),
count = n(jfk_flights$dest))
# Running SQL Queries
registerTempTable(sdf, "tempTable")
training <- sql(sqlContext,
"SELECT dest, count(dest) as cnt FROM tempTable
WHERE dest = 'JFK' GROUP BY dest")
Word Count
# read data into RDD
rdd <- SparkR:::textFile(sc, "data_word_count.txt")
# split word
words <- SparkR:::flatMap(rdd, function(line) {
strsplit(line, " ")[[1]]
})
# map: give 1 for each word
wordCount <- SparkR:::lapply(words, function(word) {
list(word, 1)
})
# reduce: count the value by key(word)
counts <- SparkR:::reduceByKey(wordCount, "+", 2)
# convert RDD to list
op <- SparkR:::collect(counts)
RDD v.s. DataFrames
flights_SDF <- read.df(sqlContext, "data_flights.csv",
source = "com.databricks.spark.csv", header = "true")
SDF_op <- flights_SDF %>%
group_by(flights_SDF$hour) %>%
summarize(sum(flights_SDF$dep_delay)) %>%
collect()
flights_RDD <- SparkR:::textFile(sc, "data_flights.csv")
RDD_op <- flights_RDD %>%
SparkR:::filterRDD(function (x) { x >= 1 }) %>%
SparkR:::lapply(function(x) {
y1 <- as.numeric(unlist(strsplit(x, ","))[2])
y2 <- as.numeric(unlist(strsplit(x, ","))[6])
return(list(y1,y2))}) %>%
SparkR:::reduceByKey(function(x,y) x + y, 1) %>%
SparkR:::collect()
DataFrames
RDD
SparkR on MLlib
SparkR supports a subset of the available R formula
operators for model fitting, including ~ . : + - ,
e.g. y ~ x1 + x2
Generalized Linear Model, GLM
# read data and cache
flights_SDF <- read.df("data_flights.csv", source = "csv",

header = "true", schema) %>% cache()
# drop NA
flights_SDF_2 <- dropna(flights_SDF, how = "any")
# split train/test dataset
train <- sample(flights_SDF_2, withReplacement = FALSE,
fraction = 0.5, seed = 42)
test <- except(flights_SDF_2, train)
# building model
gaussianGLM <- spark.glm(train, arr_delay ~ dep_delay + dist, 

family = "gaussian")
summary(gaussianGLM)
# prediction
preds <- predict(gaussianGLM, test)
K-means
# read data and cache
flights_SDF <- read.df("data_flights.csv", source = "csv",

header = "true", schema) %>% cache()
# drop NA
flights_SDF_2 <- dropna(flights_SDF, how = "any")
# clustering
kmeansModel <- spark.kmeans(flights_SDF_2, ~ arr_delay + 

dep_delay + dist + flight + dest + cancelled + 

time + dist, k = 15)
summary(kmeansModel)
cluster_op <- fitted(kmeansModel)
# clustering result
kmeansPredictions <- predict(kmeansModel, flights_SDF_2)
User Case
Median (approxQuantile)
gdf <- seq(1,10,1) %>% data.frame()
colnames(gdf) <- "seq"
sdf <- createDataFrame(gdf)
median_val <- approxQuantile(sdf, "seq", 0.5, 0) %>% print()
Calculate Median using SQL query…so complicated…
http://www.1keydata.com/tw/sql/sql-median.html
ID Match
##### method 1 : like dplyr + pipeline
join_id_m1 <- join(sdf_1, sdf_2,
sdf_1$id1 == sdf_2$id2, "inner") %>%
select("id2") %>%
collect()
##### method 2 : sql query
createOrReplaceTempView(sdf_1, "table1")
createOrReplaceTempView(sdf_2, "table2")
qry_str <- "SELECT table2.id2 FROM table1
JOIN table2 ON table1.id1 = table2.id2"
join_id_m2 <- sql(qry_str)
##### method 3 : SparkR function
join_id_m2 <- intersect(sdf_1, sdf_2) %>%
collect()
Play Pokemon Go Data
with SparkR !!
Application on SparkR
Interactive MapsWeb FrameworkCompute Engine
+
Where is the
Dragonite nest ?
+
Port: 8080 - Cluster Monitor
Capacity of each worker
Port: 4040
Jobs Monitor
cache(SparkDataFrame), long run time for first time
Advanced performance
Status of each worker
SparkR - Play Spark Using R (20160909 HadoopCon)
Some Tricks
• Customize spark config for launch
• cache()
• Some codes can’t run in Rstudio, try to use terminal
• Packages from 3rd party, like package of read csv
file from databricks
The Future of SparkR
• More MLlib API
• Advanced User Define Function
• package(“sparklyr”) from Rstudio
Reference
• SparkR: Scaling R Programs with Spark, Shivaram Venkataraman, Zongheng Yang, Davies Liu,
Eric Liang, Hossein Falaki, Xiangrui Meng, Reynold Xin, Ali Ghodsi, Michael Franklin, Ion Stoica,
and Matei Zaharia. SIGMOD 2016. June 2016.

https://people.csail.mit.edu/matei/papers/2016/sigmod_sparkr.pdf
• SparkR: Interactive R programs at Scale, Shivaram Venkataraman, Zongheng Yang. Spark
Summit, June 2014, San Francisco.

https://spark-summit.org/2014/wp-content/uploads/2014/07/SparkR-SparkSummit.pdf
• Apache Spark Official Research

http://spark.apache.org/research.html

- Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing

- http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
• Apache Spark Official Document

http://spark.apache.org/docs/latest/api/scala/
• AMPlab UC Berkeley - SparkR Project

https://github.com/amplab-extras/SparkR-pkg
• Databricks Official Blog

https://databricks.com/blog/category/engineering/spark
• R-blogger: Launch Apache Spark on AWS EC2 and Initialize SparkR Using Rstudio

https://www.r-bloggers.com/launch-apache-spark-on-aws-ec2-and-initialize-sparkr-using-rstudio-2/
Rstudio in Amazon EC2
Join Us
• Fansboard
• Web Designer (php & JavaScript)
• Editor w/ facebook & instagram
• Vpon - Data Scientist
• Taiwan Spark User Group
• Taiwan R User Group
Thanks for your attention
& Taiwan Spark User Group
& Vpon Data Team

More Related Content

PDF
Yarn Resource Management Using Machine Learning
PDF
Data profiling in Apache Calcite
PPTX
SparkR - Scalable machine learning - Utah R Users Group - U of U - June 17th
PPTX
Keeping Spark on Track: Productionizing Spark for ETL
PPTX
ETL with SPARK - First Spark London meetup
PPTX
Up and running with pyspark
PDF
Everyday I'm Shuffling - Tips for Writing Better Spark Programs, Strata San J...
PDF
Sparkly Notebook: Interactive Analysis and Visualization with Spark
Yarn Resource Management Using Machine Learning
Data profiling in Apache Calcite
SparkR - Scalable machine learning - Utah R Users Group - U of U - June 17th
Keeping Spark on Track: Productionizing Spark for ETL
ETL with SPARK - First Spark London meetup
Up and running with pyspark
Everyday I'm Shuffling - Tips for Writing Better Spark Programs, Strata San J...
Sparkly Notebook: Interactive Analysis and Visualization with Spark

What's hot (20)

PDF
Scalable Data Science with SparkR
PDF
From DataFrames to Tungsten: A Peek into Spark's Future-(Reynold Xin, Databri...
PPTX
Frustration-Reduced PySpark: Data engineering with DataFrames
PDF
A really really fast introduction to PySpark - lightning fast cluster computi...
PDF
Advanced Spark Programming - Part 2 | Big Data Hadoop Spark Tutorial | CloudxLab
PDF
From HelloWorld to Configurable and Reusable Apache Spark Applications in Sca...
PDF
Boston Apache Spark User Group (the Spahk group) - Introduction to Spark - 15...
PDF
Apache Carbondata: An Indexed Columnar File Format for Interactive Query with...
PPTX
Parallelizing Existing R Packages with SparkR
PDF
PySpark in practice slides
PPTX
Spark tutorial
PDF
PySaprk
PDF
Easy, scalable, fault tolerant stream processing with structured streaming - ...
PPTX
Processing Large Data with Apache Spark -- HasGeek
PDF
Apache Spark RDDs
PDF
Spark Summit EU talk by Ted Malaska
PPTX
Apache spark Intro
PDF
Apache Spark Core – Practical Optimization
PDF
Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal-(Josh Ro...
PDF
Monitoring the Dynamic Resource Usage of Scala and Python Spark Jobs in Yarn:...
Scalable Data Science with SparkR
From DataFrames to Tungsten: A Peek into Spark's Future-(Reynold Xin, Databri...
Frustration-Reduced PySpark: Data engineering with DataFrames
A really really fast introduction to PySpark - lightning fast cluster computi...
Advanced Spark Programming - Part 2 | Big Data Hadoop Spark Tutorial | CloudxLab
From HelloWorld to Configurable and Reusable Apache Spark Applications in Sca...
Boston Apache Spark User Group (the Spahk group) - Introduction to Spark - 15...
Apache Carbondata: An Indexed Columnar File Format for Interactive Query with...
Parallelizing Existing R Packages with SparkR
PySpark in practice slides
Spark tutorial
PySaprk
Easy, scalable, fault tolerant stream processing with structured streaming - ...
Processing Large Data with Apache Spark -- HasGeek
Apache Spark RDDs
Spark Summit EU talk by Ted Malaska
Apache spark Intro
Apache Spark Core – Practical Optimization
Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal-(Josh Ro...
Monitoring the Dynamic Resource Usage of Scala and Python Spark Jobs in Yarn:...
Ad

Viewers also liked (8)

PDF
Introduction to SparkR
PDF
SparkR: Enabling Interactive Data Science at Scale
PDF
Strata NYC 2015 - Supercharging R with Apache Spark
PDF
Using SparkR to Scale Data Science Applications in Production. Lessons from t...
PDF
Scalable Data Science in Python and R on Apache Spark
PDF
SSR: Structured Streaming on R for Machine Learning with Felix Cheung
PDF
Scalable Data Science with SparkR: Spark Summit East talk by Felix Cheung
PDF
SparkR: The Past, the Present and the Future-(Shivaram Venkataraman and Rui S...
Introduction to SparkR
SparkR: Enabling Interactive Data Science at Scale
Strata NYC 2015 - Supercharging R with Apache Spark
Using SparkR to Scale Data Science Applications in Production. Lessons from t...
Scalable Data Science in Python and R on Apache Spark
SSR: Structured Streaming on R for Machine Learning with Felix Cheung
Scalable Data Science with SparkR: Spark Summit East talk by Felix Cheung
SparkR: The Past, the Present and the Future-(Shivaram Venkataraman and Rui S...
Ad

Similar to SparkR - Play Spark Using R (20160909 HadoopCon) (20)

PDF
Data processing with spark in r &amp; python
PPT
Apache spark-melbourne-april-2015-meetup
PDF
Apache Spark Overview @ ferret
PDF
Scaling Analytics with Apache Spark
PPTX
Large Scale Machine Learning with Apache Spark
PDF
Introduction to SparkR | Big Data Hadoop Spark Tutorial | CloudxLab
PDF
Spark streaming , Spark SQL
PDF
Big data analysis using spark r published
PDF
Vancouver AWS Meetup Slides 11-20-2018 Apache Spark with Amazon EMR
PDF
Spark-summit-2013 Matei Zaharia
PDF
A Data Frame Abstraction Layer for SparkR-(Chris Freeman, Alteryx)
PDF
Sparkr sigmod
PDF
Spark SQL Deep Dive @ Melbourne Spark Meetup
PDF
Spark The Definitive Guide Big Data Processing Made Simple Bill Chambers
PPTX
Introduction to Apache Spark
PPTX
Intro to Apache Spark by CTO of Twingo
PDF
Apache Spark - Dataframes & Spark SQL - Part 1 | Big Data Hadoop Spark Tutori...
PPTX
Machine Learning with SparkR
PDF
Sandy Ryza – Software Engineer, Cloudera at MLconf ATL
Data processing with spark in r &amp; python
Apache spark-melbourne-april-2015-meetup
Apache Spark Overview @ ferret
Scaling Analytics with Apache Spark
Large Scale Machine Learning with Apache Spark
Introduction to SparkR | Big Data Hadoop Spark Tutorial | CloudxLab
Spark streaming , Spark SQL
Big data analysis using spark r published
Vancouver AWS Meetup Slides 11-20-2018 Apache Spark with Amazon EMR
Spark-summit-2013 Matei Zaharia
A Data Frame Abstraction Layer for SparkR-(Chris Freeman, Alteryx)
Sparkr sigmod
Spark SQL Deep Dive @ Melbourne Spark Meetup
Spark The Definitive Guide Big Data Processing Made Simple Bill Chambers
Introduction to Apache Spark
Intro to Apache Spark by CTO of Twingo
Apache Spark - Dataframes & Spark SQL - Part 1 | Big Data Hadoop Spark Tutori...
Machine Learning with SparkR
Sandy Ryza – Software Engineer, Cloudera at MLconf ATL

Recently uploaded (20)

PPT
Miokarditis (Inflamasi pada Otot Jantung)
PPTX
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
PPTX
IBA_Chapter_11_Slides_Final_Accessible.pptx
PDF
“Getting Started with Data Analytics Using R – Concepts, Tools & Case Studies”
PDF
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
PPTX
advance b rammar.pptxfdgdfgdfsgdfgsdgfdfgdfgsdfgdfgdfg
PPTX
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
PDF
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
PPTX
Major-Components-ofNKJNNKNKNKNKronment.pptx
PPTX
Supervised vs unsupervised machine learning algorithms
PPTX
Database Infoormation System (DBIS).pptx
PPTX
Acceptance and paychological effects of mandatory extra coach I classes.pptx
PPTX
oil_refinery_comprehensive_20250804084928 (1).pptx
PPTX
CEE 2 REPORT G7.pptxbdbshjdgsgjgsjfiuhsd
PPTX
Business Acumen Training GuidePresentation.pptx
PPTX
05. PRACTICAL GUIDE TO MICROSOFT EXCEL.pptx
PDF
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
PDF
Lecture1 pattern recognition............
PPT
Chapter 2 METAL FORMINGhhhhhhhjjjjmmmmmmmmm
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
Miokarditis (Inflamasi pada Otot Jantung)
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
IBA_Chapter_11_Slides_Final_Accessible.pptx
“Getting Started with Data Analytics Using R – Concepts, Tools & Case Studies”
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
advance b rammar.pptxfdgdfgdfsgdfgsdgfdfgdfgsdfgdfgdfg
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
Major-Components-ofNKJNNKNKNKNKronment.pptx
Supervised vs unsupervised machine learning algorithms
Database Infoormation System (DBIS).pptx
Acceptance and paychological effects of mandatory extra coach I classes.pptx
oil_refinery_comprehensive_20250804084928 (1).pptx
CEE 2 REPORT G7.pptxbdbshjdgsgjgsjfiuhsd
Business Acumen Training GuidePresentation.pptx
05. PRACTICAL GUIDE TO MICROSOFT EXCEL.pptx
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
Lecture1 pattern recognition............
Chapter 2 METAL FORMINGhhhhhhhjjjjmmmmmmmmm
168300704-gasification-ppt.pdfhghhhsjsjhsuxush

SparkR - Play Spark Using R (20160909 HadoopCon)

  • 1. SparkR - Play Spark Using R Gil Chen @HadoopCon 2016 Demo: http://goo.gl/VF77ad
  • 2. about me • R, Python & Matlab User • Taiwan R User Group • Taiwan Spark User Group • Co-founder • Data Scientist @
  • 5. Outline • Introduction to SparkR • Demo • Starting to use SparkR • DataFrames: dplyr style, SQL style • RDD v.s. DataFrames • MLlib: GLM, K-means • User Case • Median: approxQuantile() • ID Match: dplyr style, SQL style, SparkR function • SparkR + Shiny • The Future of SparkR
  • 7. Spark Origin • Apache Spark is an open source cluster computing framework • Originally developed at the University of California, Berkeley's AMPLab • The first 2 contributors of SparkR:
 Shivaram Venkataraman & Zongheng Yang https://amplab.cs.berkeley.edu/
  • 9. Key Advantages of Spark & R + Fast! Flexible Scalable Statistical! Interactive Packages https://spark-summit.org/2014/wp-content/uploads/2014/07/SparkR-SparkSummit.pdf
  • 10. ggplot2 Google Search: ggplot2 ggplot2 is a plotting system for R, based on the grammar of graphics.
  • 11. Shiny http://shiny.rstudio.com/gallery/ and more impressive dashboard… A web application framework for R Turn your analyses into interactive web applications No HTML, CSS, or JavaScript knowledge required
  • 12. Performance https://amplab.cs.berkeley.edu/announcing-sparkr-r-on-spark/ The runtime performance of running group-by aggregation on 10 million integer pairs on a single machine in R, Python and Scala. (using the same dataset as https://goo.gl/iMLXnh) https://people.csail.mit.edu/matei/papers/2016/sigmod_sparkr.pdf
  • 13. RDD (Resilient Distributed Dataset) https://spark.apache.org/docs/2.0.0/api/scala/#org.apache.spark.rdd.RDD Internally, each RDD is characterized by five main properties: 1. A list of partitions 2. A function for computing each split 3. A list of dependencies on other RDDs 4. Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned) 5. Optionally, a list of preferred locations to compute each split on (e.g. block locations for an HDFS file) https://docs.cloud.databricks.com/docs/latest/courses
  • 14. RDD dependencies • Narrow dependency: Each partition of the parent RDD is used by at most one partition of the child RDD. This means the task can be executed locally and we don’t have to shuffle. (Eg: map, flatMap, Filter, sample etc.) • Wide dependency: Multiple child partitions may depend on one partition of the parent RDD. This means we have to shuffle data unless the parents are hash-partitioned (Eg: sortByKey, reduceByKey, groupByKey, join etc.) http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
  • 17. RDD Example RDDRDDRDDRDD Transformations Action Value rdd <- SparkR:::textFile(sc, "txt") words <- SparkR:::flatMap(rdd, function()) wordCount <- SparkR:::lapply(words, function(word)) counts <- SparkR:::reduceByKey(wordCount, "+", 1) op <- SparkR:::collect(counts)
  • 18. R shell RDD SparkR RDD & DataFrames before v1.6 since v2.0 array data.frame + schema SparkDataFrame + schema General Action Transformation
  • 19. DataFrames are Faster! http://scala-phase.org/talks/rdds-dataframes-datasets-2016-06-16/#/ Beyond SQL: Speeding up Spark with DataFrames http://www.slideshare.net/databricks/spark-sqlsse2015public
  • 21. How does sparkR works? https://people.csail.mit.edu/matei/papers/2016/sigmod_sparkr.pdf
  • 22. Upgrading From SparkR 1.6 to 2.0 Before 1.6.2 Since 2.0.0 data type naming DataFrame SparkDataFrame read csv Package from Databricks built-in function (like approxQuantile) X O ML function glm more
 (or use sparklyr) SQLContext / HiveContext sparkRSQL.init(sc) merge in sparkR.session() Execute Message very detailed simple Launch on EC2 API X https://spark.apache.org/docs/latest/sparkr.html
  • 24. Easy Setting 1. Download 2. Decompress and Give a Path 3. Set Path and Launch SparkR in R
  • 25. Documents • If you have to use RDD, refer to AMP-Lab github:
 http://amplab-extras.github.io/SparkR-pkg/rdocs/1.2/
 and use “:::”
 e.g. SparkR:::textFile, SparkR:::lapply • Otherwise, refer to SparkR official documents:
 https://spark.apache.org/docs/2.0.0/api/R/index.html
  • 26. Starting to Use SparkR (v1.6.2) # Set Spark path Sys.setenv(SPARK_HOME="/usr/local/spark-1.6.2-bin-hadoop2.6/") # Load SparkR library into your R session library(SparkR, lib.loc = c(file.path(Sys.getenv("SPARK_HOME"), "R", "lib"))) # Initialize SparkContext, sc:sparkContext sc <- sparkR.init(appName = "Demo_SparkR") # Initialize SQLContext sqlContext <- sparkRSQL.init(sc) # your sparkR script # ... # ... sparkR.stop()
  • 27. Starting to Use SparkR (v2.0.0) # Set Spark path Sys.setenv(SPARK_HOME="/usr/local/spark-2.0.0-bin-hadoop2.7/") # Load SparkR library into your R session library(SparkR, lib.loc = c(file.path(Sys.getenv("SPARK_HOME"), "R", "lib"))) # Initialize SparkContext, sc: sparkContext sc <- sparkR.session(appName = "Demo_SparkR") # Initialize SQLContext (don’t need anymore since 2.0.0) # sqlContext <- sparkRSQL.init(sc) # your sparkR script # ... # ... sparkR.stop()
  • 28. DataFrames # Load the flights CSV file using read.df sdf <- read.df(sqlContext,"data_flights.csv", "com.databricks.spark.csv", header = "true") # Filter flights from JFK jfk_flights <- filter(sdf, sdf$origin == "JFK") # Group and aggregate flights to each destination dest_flights <- summarize( groupBy(jfk_flights, jfk_flights$dest), count = n(jfk_flights$dest)) # Running SQL Queries registerTempTable(sdf, "tempTable") training <- sql(sqlContext, "SELECT dest, count(dest) as cnt FROM tempTable WHERE dest = 'JFK' GROUP BY dest")
  • 29. Word Count # read data into RDD rdd <- SparkR:::textFile(sc, "data_word_count.txt") # split word words <- SparkR:::flatMap(rdd, function(line) { strsplit(line, " ")[[1]] }) # map: give 1 for each word wordCount <- SparkR:::lapply(words, function(word) { list(word, 1) }) # reduce: count the value by key(word) counts <- SparkR:::reduceByKey(wordCount, "+", 2) # convert RDD to list op <- SparkR:::collect(counts)
  • 30. RDD v.s. DataFrames flights_SDF <- read.df(sqlContext, "data_flights.csv", source = "com.databricks.spark.csv", header = "true") SDF_op <- flights_SDF %>% group_by(flights_SDF$hour) %>% summarize(sum(flights_SDF$dep_delay)) %>% collect() flights_RDD <- SparkR:::textFile(sc, "data_flights.csv") RDD_op <- flights_RDD %>% SparkR:::filterRDD(function (x) { x >= 1 }) %>% SparkR:::lapply(function(x) { y1 <- as.numeric(unlist(strsplit(x, ","))[2]) y2 <- as.numeric(unlist(strsplit(x, ","))[6]) return(list(y1,y2))}) %>% SparkR:::reduceByKey(function(x,y) x + y, 1) %>% SparkR:::collect() DataFrames RDD
  • 31. SparkR on MLlib SparkR supports a subset of the available R formula operators for model fitting, including ~ . : + - , e.g. y ~ x1 + x2
  • 32. Generalized Linear Model, GLM # read data and cache flights_SDF <- read.df("data_flights.csv", source = "csv",
 header = "true", schema) %>% cache() # drop NA flights_SDF_2 <- dropna(flights_SDF, how = "any") # split train/test dataset train <- sample(flights_SDF_2, withReplacement = FALSE, fraction = 0.5, seed = 42) test <- except(flights_SDF_2, train) # building model gaussianGLM <- spark.glm(train, arr_delay ~ dep_delay + dist, 
 family = "gaussian") summary(gaussianGLM) # prediction preds <- predict(gaussianGLM, test)
  • 33. K-means # read data and cache flights_SDF <- read.df("data_flights.csv", source = "csv",
 header = "true", schema) %>% cache() # drop NA flights_SDF_2 <- dropna(flights_SDF, how = "any") # clustering kmeansModel <- spark.kmeans(flights_SDF_2, ~ arr_delay + 
 dep_delay + dist + flight + dest + cancelled + 
 time + dist, k = 15) summary(kmeansModel) cluster_op <- fitted(kmeansModel) # clustering result kmeansPredictions <- predict(kmeansModel, flights_SDF_2)
  • 35. Median (approxQuantile) gdf <- seq(1,10,1) %>% data.frame() colnames(gdf) <- "seq" sdf <- createDataFrame(gdf) median_val <- approxQuantile(sdf, "seq", 0.5, 0) %>% print() Calculate Median using SQL query…so complicated… http://www.1keydata.com/tw/sql/sql-median.html
  • 36. ID Match ##### method 1 : like dplyr + pipeline join_id_m1 <- join(sdf_1, sdf_2, sdf_1$id1 == sdf_2$id2, "inner") %>% select("id2") %>% collect() ##### method 2 : sql query createOrReplaceTempView(sdf_1, "table1") createOrReplaceTempView(sdf_2, "table2") qry_str <- "SELECT table2.id2 FROM table1 JOIN table2 ON table1.id1 = table2.id2" join_id_m2 <- sql(qry_str) ##### method 3 : SparkR function join_id_m2 <- intersect(sdf_1, sdf_2) %>% collect()
  • 37. Play Pokemon Go Data with SparkR !!
  • 38. Application on SparkR Interactive MapsWeb FrameworkCompute Engine + Where is the Dragonite nest ? +
  • 39. Port: 8080 - Cluster Monitor Capacity of each worker
  • 40. Port: 4040 Jobs Monitor cache(SparkDataFrame), long run time for first time Advanced performance Status of each worker
  • 42. Some Tricks • Customize spark config for launch • cache() • Some codes can’t run in Rstudio, try to use terminal • Packages from 3rd party, like package of read csv file from databricks
  • 43. The Future of SparkR • More MLlib API • Advanced User Define Function • package(“sparklyr”) from Rstudio
  • 44. Reference • SparkR: Scaling R Programs with Spark, Shivaram Venkataraman, Zongheng Yang, Davies Liu, Eric Liang, Hossein Falaki, Xiangrui Meng, Reynold Xin, Ali Ghodsi, Michael Franklin, Ion Stoica, and Matei Zaharia. SIGMOD 2016. June 2016.
 https://people.csail.mit.edu/matei/papers/2016/sigmod_sparkr.pdf • SparkR: Interactive R programs at Scale, Shivaram Venkataraman, Zongheng Yang. Spark Summit, June 2014, San Francisco.
 https://spark-summit.org/2014/wp-content/uploads/2014/07/SparkR-SparkSummit.pdf • Apache Spark Official Research
 http://spark.apache.org/research.html
 - Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing
 - http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf • Apache Spark Official Document
 http://spark.apache.org/docs/latest/api/scala/ • AMPlab UC Berkeley - SparkR Project
 https://github.com/amplab-extras/SparkR-pkg • Databricks Official Blog
 https://databricks.com/blog/category/engineering/spark • R-blogger: Launch Apache Spark on AWS EC2 and Initialize SparkR Using Rstudio
 https://www.r-bloggers.com/launch-apache-spark-on-aws-ec2-and-initialize-sparkr-using-rstudio-2/
  • 46. Join Us • Fansboard • Web Designer (php & JavaScript) • Editor w/ facebook & instagram • Vpon - Data Scientist • Taiwan Spark User Group • Taiwan R User Group
  • 47. Thanks for your attention & Taiwan Spark User Group & Vpon Data Team