SlideShare a Scribd company logo
EuroVis 2016
18th EG/VGTC Conference on Visualization
6-10 June 2016, Groningen, the Netherlands
Hierarchical Stochastic Neighbor Embedding
Nicola Pezzotti1, Thomas Höllt1, Boudewijn P.F. Lelieveldt2,
Elmar Eisemann1, Anna Vilanova1
1. Computer Graphics & Visualization, Delft University of Technology, Delft, The Netherlands
2. Division of Image Processing, Leiden Medical Center, Leiden, The Netherlands
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //EuroVis 2016
Hierarchical organization of data
Image Collection
Nature
Man-made
Ships
Vehicles
2
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
• Visualizing relationships between data points
• Parallel-Coordinate Plots do not scale
Dimensionality Reduction (DR)
3
EmbeddingHigh-Dimensional
Feature Vectors
Dimensionality
Reduction
Dim-1
Dim-2
Data
Feature
Extraction
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //EuroVis 2016
Non-linear Dimensionality Reduction
• Data often lay on a non-linear manifold in the high-dimensional space
• Widely used on real-world data
• Computationally intensive
4
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Non-Linear DR with Landmarks
5
[Landmark-SNE, Landmark-ISOMAP]
[LSP, P-LSP, LAMP, LoCH, Pekalska]
Hybrid techniques
Non linear
Dim-1
Dim-2
Emb-Dim-1
Emb-Dim-1
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
•Multiscale Dimensionality Reduction
• Non-linear DR
• Landmark based
• Hierachical exploration of the data
• Overview-first & Details-on-Demand
• Filter & Drill-in
• Proabilistic framework
Hierarchical Stochastic Neighbor Embedding
6
Hierarchical SNE
Emb-Dim-1
EuroVis 2016
Algorithm
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
8
Similarity
Based
Embedding
tSNE1
1: Van der Maaten et al. - Visualizing data using t-SNE -
Journal of Machine Learning Research - 2008.
• Localized Similarities
• Low memory footprint
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
9
Dim-1
Dim-2
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
10
Dim-1
Dim-2
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
11
Dim-1
Dim-2
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
12
Dim-1
Dim-2
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
13
Dim-1
Dim-2
Low High
Distribution
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
14
Dim-1
Dim-2
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
15
Dim-1
Dim-2
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
16
Dim-1
Dim-2
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
17
Dim-1
Dim-2
66%
33%
• Localized Area of Influence
• Low memory footprint
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
18
Similarity
Based
Embedding
tSNE
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
19
Similarity
Based
Embedding
tSNE
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
20
•Random walks
• More than 1k per ms
•Hierarchical Analysis
• Top-down
• Link between scale given by the area
of influence
EuroVis 2016
Use Case 1
Deep Learning
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Use case I: Deep Learning
22
Feature vector
4096 Dimensions
Are the images processed by AlexNet [1] organized hierarchically
by the network?
1: Krizhevsky et al. - ImageNet Classification with Deep Convolutional Neural Networks -
Advances in neural information processing systems - 2012.
Label
+
Image
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //EuroVis 2016
Use case I: Deep Learning
Test set
Nature
Man-made
100k Images
92s
23
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //EuroVis 2016
Use case I: Deep Learning
Nature
Vehicles
Appliances
Ships
Man-made
24
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //EuroVis 2016
Use case I: Deep Learning
Appliances
Ships
Vehicles Trains
Cars
Buses
25
EuroVis 2016
Use Case 2
Hyperspectral Images
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Use case II: Hyperspectral images
27
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Use case II: Hyperspectral images
28
• Pixels
• 1M Data points (1024x1024)
• Images
• 12 Dimensions
• Clusters in the Embedding
• Group of pixels that
correspond to the same
phenomenon
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Use case II: Hyperspectral images
29
Surface
Space
Low High
Influence
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Use case II: Hyperspectral images
30
Outer space
Corona
Low High
Influence
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Use case II: Hyperspectral images
31
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Use case II: Hyperspectral images
32
Low High
Influence
EuroVis 2016
Conclusion
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
• Hierarchical Stochastic Neighbor Embedding
• Novel hierarchical analysis of non-linear data
• Outperforms existing techniques
• Computation time
• Size of the data to be computed
• K-Nearest Neighbor Preservation
• Stability of the embeddings
34
Conclusions
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Questions?
This project is founded by STW
through the V.An.P.I.Re project

More Related Content

PPTX
Parallel Algorithm for Natural Neighbour Interpolation
PDF
High Dimensional Data Visualization using t-SNE
PDF
Visualizing Data Using t-SNE
PPTX
PDF
02 Modelling strategies for Nuclear Probabilistic Safety Assessment in case o...
PDF
Analyse comparative de données de génomique 3D
PDF
Detecting and Shadows in the HSV Color Space using Dynamic Thresholds
PDF
TMPA-2017: Layered Layouts for Software Systems Visualization
Parallel Algorithm for Natural Neighbour Interpolation
High Dimensional Data Visualization using t-SNE
Visualizing Data Using t-SNE
02 Modelling strategies for Nuclear Probabilistic Safety Assessment in case o...
Analyse comparative de données de génomique 3D
Detecting and Shadows in the HSV Color Space using Dynamic Thresholds
TMPA-2017: Layered Layouts for Software Systems Visualization

Similar to Hierarchical Stochastic Neighbor Embedding (8)

PDF
Inductive Entity Typing Alignment
PDF
Visualizing Genetic Programming Ancestries
PDF
Research.Essay_Chien-Chih_Weng_v3_by Prof. Karkoub
PDF
Automatic Selection of Linked Open Data features in Graph-based Recommender S...
PDF
G04743943
PDF
QMC: Transition Workshop - Selected Highlights from the Probabilistic Numeric...
PDF
solomonaddai
PPTX
Accurate and low complex cell histogram generation by bypass the gradient of ...
Inductive Entity Typing Alignment
Visualizing Genetic Programming Ancestries
Research.Essay_Chien-Chih_Weng_v3_by Prof. Karkoub
Automatic Selection of Linked Open Data features in Graph-based Recommender S...
G04743943
QMC: Transition Workshop - Selected Highlights from the Probabilistic Numeric...
solomonaddai
Accurate and low complex cell histogram generation by bypass the gradient of ...
Ad

Recently uploaded (20)

PPT
ISS -ESG Data flows What is ESG and HowHow
PPT
Predictive modeling basics in data cleaning process
PPTX
SAP 2 completion done . PRESENTATION.pptx
PDF
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
PPTX
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
PPTX
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
PPTX
oil_refinery_comprehensive_20250804084928 (1).pptx
PDF
Introduction to the R Programming Language
PPTX
climate analysis of Dhaka ,Banglades.pptx
PPTX
Introduction-to-Cloud-ComputingFinal.pptx
PDF
Galatica Smart Energy Infrastructure Startup Pitch Deck
PPTX
Data_Analytics_and_PowerBI_Presentation.pptx
PDF
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
PPT
Miokarditis (Inflamasi pada Otot Jantung)
PPTX
Supervised vs unsupervised machine learning algorithms
PPTX
Qualitative Qantitative and Mixed Methods.pptx
PDF
Introduction to Data Science and Data Analysis
PPTX
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
PPT
Reliability_Chapter_ presentation 1221.5784
PPTX
Computer network topology notes for revision
ISS -ESG Data flows What is ESG and HowHow
Predictive modeling basics in data cleaning process
SAP 2 completion done . PRESENTATION.pptx
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
oil_refinery_comprehensive_20250804084928 (1).pptx
Introduction to the R Programming Language
climate analysis of Dhaka ,Banglades.pptx
Introduction-to-Cloud-ComputingFinal.pptx
Galatica Smart Energy Infrastructure Startup Pitch Deck
Data_Analytics_and_PowerBI_Presentation.pptx
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
Miokarditis (Inflamasi pada Otot Jantung)
Supervised vs unsupervised machine learning algorithms
Qualitative Qantitative and Mixed Methods.pptx
Introduction to Data Science and Data Analysis
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
Reliability_Chapter_ presentation 1221.5784
Computer network topology notes for revision
Ad

Hierarchical Stochastic Neighbor Embedding

  • 1. EuroVis 2016 18th EG/VGTC Conference on Visualization 6-10 June 2016, Groningen, the Netherlands Hierarchical Stochastic Neighbor Embedding Nicola Pezzotti1, Thomas Höllt1, Boudewijn P.F. Lelieveldt2, Elmar Eisemann1, Anna Vilanova1 1. Computer Graphics & Visualization, Delft University of Technology, Delft, The Netherlands 2. Division of Image Processing, Leiden Medical Center, Leiden, The Netherlands
  • 2. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //EuroVis 2016 Hierarchical organization of data Image Collection Nature Man-made Ships Vehicles 2
  • 3. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // • Visualizing relationships between data points • Parallel-Coordinate Plots do not scale Dimensionality Reduction (DR) 3 EmbeddingHigh-Dimensional Feature Vectors Dimensionality Reduction Dim-1 Dim-2 Data Feature Extraction
  • 4. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //EuroVis 2016 Non-linear Dimensionality Reduction • Data often lay on a non-linear manifold in the high-dimensional space • Widely used on real-world data • Computationally intensive 4
  • 5. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // Non-Linear DR with Landmarks 5 [Landmark-SNE, Landmark-ISOMAP] [LSP, P-LSP, LAMP, LoCH, Pekalska] Hybrid techniques Non linear Dim-1 Dim-2 Emb-Dim-1 Emb-Dim-1
  • 6. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // •Multiscale Dimensionality Reduction • Non-linear DR • Landmark based • Hierachical exploration of the data • Overview-first & Details-on-Demand • Filter & Drill-in • Proabilistic framework Hierarchical Stochastic Neighbor Embedding 6 Hierarchical SNE Emb-Dim-1
  • 8. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 8 Similarity Based Embedding tSNE1 1: Van der Maaten et al. - Visualizing data using t-SNE - Journal of Machine Learning Research - 2008. • Localized Similarities • Low memory footprint
  • 9. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 9 Dim-1 Dim-2
  • 10. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 10 Dim-1 Dim-2
  • 11. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 11 Dim-1 Dim-2
  • 12. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 12 Dim-1 Dim-2
  • 13. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 13 Dim-1 Dim-2 Low High Distribution
  • 14. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 14 Dim-1 Dim-2
  • 15. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 15 Dim-1 Dim-2
  • 16. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 16 Dim-1 Dim-2
  • 17. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 17 Dim-1 Dim-2 66% 33% • Localized Area of Influence • Low memory footprint
  • 18. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 18 Similarity Based Embedding tSNE
  • 19. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 19 Similarity Based Embedding tSNE
  • 20. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 20 •Random walks • More than 1k per ms •Hierarchical Analysis • Top-down • Link between scale given by the area of influence
  • 21. EuroVis 2016 Use Case 1 Deep Learning
  • 22. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // Use case I: Deep Learning 22 Feature vector 4096 Dimensions Are the images processed by AlexNet [1] organized hierarchically by the network? 1: Krizhevsky et al. - ImageNet Classification with Deep Convolutional Neural Networks - Advances in neural information processing systems - 2012. Label + Image
  • 23. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //EuroVis 2016 Use case I: Deep Learning Test set Nature Man-made 100k Images 92s 23
  • 24. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //EuroVis 2016 Use case I: Deep Learning Nature Vehicles Appliances Ships Man-made 24
  • 25. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //EuroVis 2016 Use case I: Deep Learning Appliances Ships Vehicles Trains Cars Buses 25
  • 26. EuroVis 2016 Use Case 2 Hyperspectral Images
  • 27. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // Use case II: Hyperspectral images 27
  • 28. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // Use case II: Hyperspectral images 28 • Pixels • 1M Data points (1024x1024) • Images • 12 Dimensions • Clusters in the Embedding • Group of pixels that correspond to the same phenomenon
  • 29. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // Use case II: Hyperspectral images 29 Surface Space Low High Influence
  • 30. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // Use case II: Hyperspectral images 30 Outer space Corona Low High Influence
  • 31. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // Use case II: Hyperspectral images 31
  • 32. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // Use case II: Hyperspectral images 32 Low High Influence
  • 34. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // • Hierarchical Stochastic Neighbor Embedding • Novel hierarchical analysis of non-linear data • Outperforms existing techniques • Computation time • Size of the data to be computed • K-Nearest Neighbor Preservation • Stability of the embeddings 34 Conclusions
  • 35. EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding // Questions? This project is founded by STW through the V.An.P.I.Re project

Editor's Notes

  • #3: Images, they can be organized hierarchically based on the objects that they represent. And we can do that for different data This kind of hierarchies arise when we