SlideShare a Scribd company logo
How to Burn Multi-GPUs
using CUDA stress test
memo
(2017/05/20)
2017/05/20 SAKURA Internet, Inc. Research Center. SR / Naoto MATSUMOTO
(C) Copyright 1996-2017 SAKURA Internet Inc
Multi-GPUs CUDA Stress Test on CentOS7.3
2
# uname -sr; cat /etc/redhat-release
Linux 3.10.0-514.16.1.el7.x86_64
CentOS Linux release 7.3.1611 (Core)
# grep proc /proc/cpuinfo | wc -l
12
# yum groupinstall "Development Tools" -y
# yum install epel-release -y
# yum install mesa-libGLU.x86_64 mesa-libGLU-devel.x86_64 freeglut-devel -y
# wget https://developer.nvidia.com/compute/cuda/8.0/Prod2/local_installers/cuda_8.0.61_375.26_linux-run
# bash ./cuda_8.0.61_375.26_linux-run
# cd /usr/lib64; ln -sfn libGL.so.1 libGL.so
# wget http://wili.cc/blog/entries/gpu-burn/gpu_burn-0.7.tar.gz
# tar xzvf ./gpu_burn-0.7.tar.gz
# vi Makefile
NVCC=/usr/local/cuda/bin/nvcc
# make
# ./gpu_burn 100
GPU 0: Tesla K80 (UUID: GPU-45ee2619-60c8-d519-8fe3-ef2747abef4b)
GPU 1: Tesla K80 (UUID: GPU-421a091f-7faf-6764-44ce-168be00d5c83)
Initialized device 0 with 11439 MB of memory (11359 MB available, using 10223 MB of it), using FLOATS
Initialized device 1 with 11439 MB of memory (11359 MB available, using 10223 MB of it), using FLOATS
100.0% proc'd: 12720 (2102 Gflop/s) - 13356 (2283 Gflop/s) errors: 0 - 0 temps: 72 C - 57 C
Multi-GPUs CUDA Stress Test on CentOS7.3
3
# watch -n 1 nvidia-smi
Every 1.0s: nvidia-smi Sat May 20 07:16:10 2017
Sat May 20 07:16:11 2017
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 375.26 Driver Version: 375.26 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla K80 Off | A11D:00:00.0 Off | 0 |
| N/A 81C P0 132W / 149W | 10290MiB / 11439MiB | 100% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla K80 Off | ACF7:00:00.0 Off | 0 |
| N/A 60C P0 141W / 149W | 10290MiB / 11439MiB | 100% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 12039 C ./gpu_burn 10286MiB |
| 1 12037 C ./gpu_burn 10286MiB |
+-----------------------------------------------------------------------------+

More Related Content

PPT
Presentation on nfs,afs,vfs
PPT
Introduction to SSH
PDF
OpenVPN
PPTX
CXL Consortium Update: Advancing Coherent Connectivity
PPTX
Embedded c c++ programming fundamentals master
PPTX
Administración básica de ubuntu server parte 1
PPTX
Introduction and Comparison of Microprocessor Chip families
Presentation on nfs,afs,vfs
Introduction to SSH
OpenVPN
CXL Consortium Update: Advancing Coherent Connectivity
Embedded c c++ programming fundamentals master
Administración básica de ubuntu server parte 1
Introduction and Comparison of Microprocessor Chip families

More from Naoto MATSUMOTO (20)

PDF
Alder Lake-S CPU Temperature Monitoring
PDF
CPU製品出荷状況と消費電力の見える化
PDF
5Gの見える化
PDF
2023年以降のサーバークラスタリング設計(メモ)
PDF
防災を考慮した水中調査の一考察
PDF
旅するパケットの見える化
PDF
LTE-M/NB IoTを試してみる nRF9160/Thingy:91
PDF
災害時における無線モニタリングによる社会インフラの見える化
PDF
BeautifulSoup / selenium Deep dive
PDF
AMDGPU ROCm Deep dive
PDF
Network Adapter Deep dive
PDF
RTL2838 DVB-T Deep dive
PDF
x86_64 Hardware Deep dive
PDF
ADS-B, AIS, APRS cheatsheet
PDF
curl --http3 cheatsheet
PDF
3/4G USB modem Cheat Sheet
PDF
How To Train Your ARM(SBC)
PDF
全国におけるCOVID-19対策の見える化 ~宿泊業の場合~
PDF
我が国の電波の使用状況/携帯電話向け割当 (2019年3月1日現在)
PDF
私たちに訪れる(かもしれない)未来と計算機によるモノコトの見える化
Alder Lake-S CPU Temperature Monitoring
CPU製品出荷状況と消費電力の見える化
5Gの見える化
2023年以降のサーバークラスタリング設計(メモ)
防災を考慮した水中調査の一考察
旅するパケットの見える化
LTE-M/NB IoTを試してみる nRF9160/Thingy:91
災害時における無線モニタリングによる社会インフラの見える化
BeautifulSoup / selenium Deep dive
AMDGPU ROCm Deep dive
Network Adapter Deep dive
RTL2838 DVB-T Deep dive
x86_64 Hardware Deep dive
ADS-B, AIS, APRS cheatsheet
curl --http3 cheatsheet
3/4G USB modem Cheat Sheet
How To Train Your ARM(SBC)
全国におけるCOVID-19対策の見える化 ~宿泊業の場合~
我が国の電波の使用状況/携帯電話向け割当 (2019年3月1日現在)
私たちに訪れる(かもしれない)未来と計算機によるモノコトの見える化
Ad

Recently uploaded (20)

PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
KodekX | Application Modernization Development
PDF
Network Security Unit 5.pdf for BCA BBA.
PPTX
Spectroscopy.pptx food analysis technology
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Spectral efficient network and resource selection model in 5G networks
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PDF
Encapsulation theory and applications.pdf
PDF
Empathic Computing: Creating Shared Understanding
Mobile App Security Testing_ A Comprehensive Guide.pdf
The AUB Centre for AI in Media Proposal.docx
The Rise and Fall of 3GPP – Time for a Sabbatical?
Dropbox Q2 2025 Financial Results & Investor Presentation
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Chapter 3 Spatial Domain Image Processing.pdf
Diabetes mellitus diagnosis method based random forest with bat algorithm
KodekX | Application Modernization Development
Network Security Unit 5.pdf for BCA BBA.
Spectroscopy.pptx food analysis technology
Advanced methodologies resolving dimensionality complications for autism neur...
Spectral efficient network and resource selection model in 5G networks
Digital-Transformation-Roadmap-for-Companies.pptx
NewMind AI Weekly Chronicles - August'25 Week I
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
Encapsulation theory and applications.pdf
Empathic Computing: Creating Shared Understanding
Ad

How to Burn Multi-GPUs using CUDA stress test memo

  • 1. How to Burn Multi-GPUs using CUDA stress test memo (2017/05/20) 2017/05/20 SAKURA Internet, Inc. Research Center. SR / Naoto MATSUMOTO (C) Copyright 1996-2017 SAKURA Internet Inc
  • 2. Multi-GPUs CUDA Stress Test on CentOS7.3 2 # uname -sr; cat /etc/redhat-release Linux 3.10.0-514.16.1.el7.x86_64 CentOS Linux release 7.3.1611 (Core) # grep proc /proc/cpuinfo | wc -l 12 # yum groupinstall "Development Tools" -y # yum install epel-release -y # yum install mesa-libGLU.x86_64 mesa-libGLU-devel.x86_64 freeglut-devel -y # wget https://developer.nvidia.com/compute/cuda/8.0/Prod2/local_installers/cuda_8.0.61_375.26_linux-run # bash ./cuda_8.0.61_375.26_linux-run # cd /usr/lib64; ln -sfn libGL.so.1 libGL.so # wget http://wili.cc/blog/entries/gpu-burn/gpu_burn-0.7.tar.gz # tar xzvf ./gpu_burn-0.7.tar.gz # vi Makefile NVCC=/usr/local/cuda/bin/nvcc # make # ./gpu_burn 100 GPU 0: Tesla K80 (UUID: GPU-45ee2619-60c8-d519-8fe3-ef2747abef4b) GPU 1: Tesla K80 (UUID: GPU-421a091f-7faf-6764-44ce-168be00d5c83) Initialized device 0 with 11439 MB of memory (11359 MB available, using 10223 MB of it), using FLOATS Initialized device 1 with 11439 MB of memory (11359 MB available, using 10223 MB of it), using FLOATS 100.0% proc'd: 12720 (2102 Gflop/s) - 13356 (2283 Gflop/s) errors: 0 - 0 temps: 72 C - 57 C
  • 3. Multi-GPUs CUDA Stress Test on CentOS7.3 3 # watch -n 1 nvidia-smi Every 1.0s: nvidia-smi Sat May 20 07:16:10 2017 Sat May 20 07:16:11 2017 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 375.26 Driver Version: 375.26 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 Tesla K80 Off | A11D:00:00.0 Off | 0 | | N/A 81C P0 132W / 149W | 10290MiB / 11439MiB | 100% Default | +-------------------------------+----------------------+----------------------+ | 1 Tesla K80 Off | ACF7:00:00.0 Off | 0 | | N/A 60C P0 141W / 149W | 10290MiB / 11439MiB | 100% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | 0 12039 C ./gpu_burn 10286MiB | | 1 12037 C ./gpu_burn 10286MiB | +-----------------------------------------------------------------------------+