PAKTURK Success is a ladder you cannot climb with your hands in your pockets 1
For more news and updates visit pakturkmaths.com
CLASS
XI
For any question mail us at info@pakturkmaths.com
Composed by Engin Baştürk FEDERAL BOARD
TYPE Objective Quadratic Equations No 2
Q1: 1, 1, ,i i    is called.......................
A) The cube roots of unity B) The fourth roots of unity
C) The fifth roots of unity D) None of these
Q2: Which of the following is false?
A) The complex fourth roots of unity are conjugate of each
other
B) The real fourth roots of unity are inverse of each other
C) Sum of all the four fourth roots of unity is zero
D) Product of all the fourth roots of unity is 1
Q3: Product of all the fourth roots of unity is equal to
.............
A) 1 B) i C) 1 D) i
Q4: Find the solution set of 2
1 0x  
A)  1, 1  B)  0, 1 C)  1,0 D)  ,i i 
Q5: Find the solution set of 2
1 0x  
A)  1, 1  B)  0, 1 C)  1,0 D)  ,i i 
Q6: Evaluate  
82
1   
A) 256 B) 128 C) 256 D) 128
Q7: Evaluate 28 29
1  
A) 1 B) 0 C)  D)
2

Q8: Evaluate   2 2
1 1      
A) 4 B) 4 C) 4 D) 4
Q9: Evaluate
7 7
1 3 1 3
2 2
        
      
   
A)  B)  C) 1 D) 1
Q10: Evaluate    
5 5
1 3 1 3      
A) 32 B) 32 C) 32 D) 32
PAKTURK Success is a ladder you cannot climb with your hands in your pockets 2
Q11: The highest power of a polynomial function is called
.....
A) Degree B) Power C) Monomial D) Binomial
Q12: What is the sum of roots of 4
1 0x  
A) 1 B) 2 2i C) 0 D) 2
Q13: What is the sum of roots of 3
1 0x  
A) 1 B) 2 C) 0 D) 2 3
Q14: What is the product of roots of 3
1 0x  
A) 1 B) 2 C) 0 D) 2 3
Q15: What is the sum of real roots of 4
16 0x  
A) 1 B) 1 C) 0 D) 2 3
Q16:
2
.............  
A) 0 B) 1 C) 1 D) 
Q17: Find the remainder when 3 2
2 4 0x x x    is
divided by 1x 
A) 1 B) 2 C) 2 D) 0
Q18: Find the numerical value of k if 3 2
2 6 0x x kx   
has a remainder of12, when divided by 1x 
A) 1 B) 2 C) 4 D) 0
Q19: If 2
0ax bx c   and 2
4 0b ac  then the roots
will be....................
A) real and equal B) complex and equal
C) real and unequal D) complex and unequal
Q20: If 2
0ax bx c   and 2
4 0b ac  and not a perfect
number, then the roots will be....................
A) real and equal B) complex and equal
C) real and unequal D) complex and unequal
Answer Key
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20

More Related Content

PDF
Hssc i objective ch 8 no 1
PDF
Hssc i objective workbook
PDF
Hssc i objective ch 3 no 7
PDF
Hssc i objective ch 3 no 6
PDF
Hssc i objective ch 2 no 2
PPTX
Alg2 lesson 5-9
PDF
Hssc i objective ch 6 no 1
PDF
Hssc i objective ch 14 no 1
Hssc i objective ch 8 no 1
Hssc i objective workbook
Hssc i objective ch 3 no 7
Hssc i objective ch 3 no 6
Hssc i objective ch 2 no 2
Alg2 lesson 5-9
Hssc i objective ch 6 no 1
Hssc i objective ch 14 no 1

Similar to Hssc i objective ch 4 no 2 (20)

PDF
Hssc i objective past papers 2010
PDF
Hssc i objective past papers 2012-2
PDF
1. ct 1 (paper-1) 10 aug 2014
PDF
Q1 A-D-M Grade 9 - Mathematics week 1-4
PDF
Hssc i objective past papers 2009
PDF
Hssc i objective past papers 2013-2
PDF
Hssc i objective past papers 2012
PDF
University of central punjab assignment 2
PDF
10th-science-mcqs.pdf very good bed pppp
PDF
Correlation: Powerpoint 1- Algebra (1).pdf
PDF
10 std objective test-1
PDF
AПDЯЄÏ ѪAПÏБβΔS Mathematics 9 LM
PDF
Mathematics Learner Material 3
DOCX
Q1. Determine, without graphing, whether the given quadratic funct.docx
PPTX
Quadratic Equations in One Variables.pptx
PDF
Hssc i objective past papers 2013
ODP
Linear and quadratic equations in quantitative aptitude
ODP
Linear and quadratic equations in quantitative aptitude
DOCX
9th class maths MCQs by Ustani G.docx
PDF
Math 9 (module 1 & 2)
Hssc i objective past papers 2010
Hssc i objective past papers 2012-2
1. ct 1 (paper-1) 10 aug 2014
Q1 A-D-M Grade 9 - Mathematics week 1-4
Hssc i objective past papers 2009
Hssc i objective past papers 2013-2
Hssc i objective past papers 2012
University of central punjab assignment 2
10th-science-mcqs.pdf very good bed pppp
Correlation: Powerpoint 1- Algebra (1).pdf
10 std objective test-1
AПDЯЄÏ ѪAПÏБβΔS Mathematics 9 LM
Mathematics Learner Material 3
Q1. Determine, without graphing, whether the given quadratic funct.docx
Quadratic Equations in One Variables.pptx
Hssc i objective past papers 2013
Linear and quadratic equations in quantitative aptitude
Linear and quadratic equations in quantitative aptitude
9th class maths MCQs by Ustani G.docx
Math 9 (module 1 & 2)
Ad

More from Engin Basturk (20)

PDF
Hssc i objective past papers 2014
PDF
Hssc i objective past papers 2011
PDF
Hssc i objective ch 13 no 2
PDF
Hssc i objective ch 13 no 1
PDF
Hssc i objective ch 12 no 4
PDF
Hssc i objective ch 12 no 3
PDF
Hssc i objective ch 12 no 2
PDF
Hssc i objective ch 12 no 1
PDF
Hssc i objective ch 11 no 2
PDF
Hssc i objective ch 11 no 1
PDF
Hssc i objective ch 10 no 6
PDF
Hssc i objective ch 10 no 5
PDF
Hssc i objective ch 10 no 4
PDF
Hssc i objective ch 10 no 3
PDF
Hssc i objective ch 10 no 2
PDF
Hssc i objective ch 9 no 7
PDF
Hssc i objective ch 10 no 1
PDF
Hssc i objective ch 9 no 6
PDF
Hssc i objective ch 9 no 5
Hssc i objective past papers 2014
Hssc i objective past papers 2011
Hssc i objective ch 13 no 2
Hssc i objective ch 13 no 1
Hssc i objective ch 12 no 4
Hssc i objective ch 12 no 3
Hssc i objective ch 12 no 2
Hssc i objective ch 12 no 1
Hssc i objective ch 11 no 2
Hssc i objective ch 11 no 1
Hssc i objective ch 10 no 6
Hssc i objective ch 10 no 5
Hssc i objective ch 10 no 4
Hssc i objective ch 10 no 3
Hssc i objective ch 10 no 2
Hssc i objective ch 9 no 7
Hssc i objective ch 10 no 1
Hssc i objective ch 9 no 6
Hssc i objective ch 9 no 5
Ad

Hssc i objective ch 4 no 2

  • 1. PAKTURK Success is a ladder you cannot climb with your hands in your pockets 1 For more news and updates visit pakturkmaths.com CLASS XI For any question mail us at info@pakturkmaths.com Composed by Engin Baştürk FEDERAL BOARD TYPE Objective Quadratic Equations No 2 Q1: 1, 1, ,i i    is called....................... A) The cube roots of unity B) The fourth roots of unity C) The fifth roots of unity D) None of these Q2: Which of the following is false? A) The complex fourth roots of unity are conjugate of each other B) The real fourth roots of unity are inverse of each other C) Sum of all the four fourth roots of unity is zero D) Product of all the fourth roots of unity is 1 Q3: Product of all the fourth roots of unity is equal to ............. A) 1 B) i C) 1 D) i Q4: Find the solution set of 2 1 0x   A)  1, 1  B)  0, 1 C)  1,0 D)  ,i i  Q5: Find the solution set of 2 1 0x   A)  1, 1  B)  0, 1 C)  1,0 D)  ,i i  Q6: Evaluate   82 1    A) 256 B) 128 C) 256 D) 128 Q7: Evaluate 28 29 1   A) 1 B) 0 C)  D) 2  Q8: Evaluate   2 2 1 1       A) 4 B) 4 C) 4 D) 4 Q9: Evaluate 7 7 1 3 1 3 2 2                     A)  B)  C) 1 D) 1 Q10: Evaluate     5 5 1 3 1 3       A) 32 B) 32 C) 32 D) 32
  • 2. PAKTURK Success is a ladder you cannot climb with your hands in your pockets 2 Q11: The highest power of a polynomial function is called ..... A) Degree B) Power C) Monomial D) Binomial Q12: What is the sum of roots of 4 1 0x   A) 1 B) 2 2i C) 0 D) 2 Q13: What is the sum of roots of 3 1 0x   A) 1 B) 2 C) 0 D) 2 3 Q14: What is the product of roots of 3 1 0x   A) 1 B) 2 C) 0 D) 2 3 Q15: What is the sum of real roots of 4 16 0x   A) 1 B) 1 C) 0 D) 2 3 Q16: 2 .............   A) 0 B) 1 C) 1 D)  Q17: Find the remainder when 3 2 2 4 0x x x    is divided by 1x  A) 1 B) 2 C) 2 D) 0 Q18: Find the numerical value of k if 3 2 2 6 0x x kx    has a remainder of12, when divided by 1x  A) 1 B) 2 C) 4 D) 0 Q19: If 2 0ax bx c   and 2 4 0b ac  then the roots will be.................... A) real and equal B) complex and equal C) real and unequal D) complex and unequal Q20: If 2 0ax bx c   and 2 4 0b ac  and not a perfect number, then the roots will be.................... A) real and equal B) complex and equal C) real and unequal D) complex and unequal Answer Key 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20