SlideShare a Scribd company logo
J. B. Cole1, K. L. Parker Gaddis2, J. S. Clay3, & C. Maltecca2
1Animal Improvement Programs Laboratory
Agricultural Research Service, USDA
Beltsville, MD 20705-2350, USA
2Department of Animal Science
North Carolina State University
Raleigh, NC 27695-7621, USA
3Dairy Records Management Systems, Raleigh, NC, USA
john.cole@ars.usda.gov
Genomic evaluation of
dairy cattle health
2013	
  ICAR	
  Health	
  Data	
  Conference,	
  Aarhus,	
  Denmark,	
  31	
  May	
  2013	
  (2)	
   Cole	
  et	
  al.	
  
What are health and fitness traits?
l  Health and fitness traits do not generate
revenue, but they are economically
important because they impact other
traits.
l  Examples:
l  Poor fertility increases direct and indirect
costs (semen, estrus synchronization, etc.).
l  Susceptibility to disease results in
decreased revenue and increased costs
(veterinary care, withheld milk, etc.)
2013	
  ICAR	
  Health	
  Data	
  Conference,	
  Aarhus,	
  Denmark,	
  31	
  May	
  2013	
  (3)	
   Cole	
  et	
  al.	
  
Trait
Relative emphasis on traits in index (%)
PD$
1971
MFP$
1976
CY$
1984
NM$
1994
NM$
2000
NM$
2003
NM$
2006
NM$
2010
Milk 52 27 –2 6 5 0 0 0
Fat 48 46 45 25 21 22 23 19
Protein … 27 53 43 36 33 23 16
PL … … … 20 14 11 17 22
SCS … … … –6 –9 –9 –9 –10
UDC … … … … 7 7 6 7
FLC … … … … 4 4 3 4
BDC … … … … –4 –3 –4 –6
DPR … … … … … 7 9 11
SCE … … … … … –2 … …
DCE … … … … … –2 … …
CA$ … … … … … … 6 5
Increased emphasis on functional traits
2013	
  ICAR	
  Health	
  Data	
  Conference,	
  Aarhus,	
  Denmark,	
  31	
  May	
  2013	
  (4)	
   Cole	
  et	
  al.	
  
Challenges with health and fitness traits
l  Lack of information
l  Inconsistent trait definitions
l  No national database of phenotypes
l  Low heritabilities
l  Many records are needed for accurate
evaluation
l  Rates of change in genetic
improvement programs are low
2013	
  ICAR	
  Health	
  Data	
  Conference,	
  Aarhus,	
  Denmark,	
  31	
  May	
  2013	
  (5)	
   Cole	
  et	
  al.	
  
What does “low heritability” mean?
P = G + E
The percentage of total
variation attributable to
genetics is small.
•  CA$: 0.07
•  DPR: 0.04
•  PL: 0.08
•  SCS: 0.12
The percentage of total
variation attributable to
environmental factors
is large:
•  Feeding/nutrition
•  Housing
•  Reproductive
management
2013	
  ICAR	
  Health	
  Data	
  Conference,	
  Aarhus,	
  Denmark,	
  31	
  May	
  2013	
  (6)	
   Cole	
  et	
  al.	
  
0
0.5
1
1.5
2
2.5
3
1 2 3 4 5 6 7 8 9 10 11 12
2010 2011 2012 2013
Why are these traits important?
M:FP = price of 1 kg of milk /
price of 1 kg of a 16%
protein ration
Month
Milk:FeedPriceRatio
April 2013 Grain Costs
Soybeans: $14.20/bu (€0.41/kg)
Corn: $ 6.67/bu (€0.20/kg)
2013	
  ICAR	
  Health	
  Data	
  Conference,	
  Aarhus,	
  Denmark,	
  31	
  May	
  2013	
  (7)	
   Cole	
  et	
  al.	
  
How does genetic selection work?
  ΔG = genetic gain each year
  reliability = how certain we are about our estimate of
an animal’s genetic merit (genomics can é)
  selection intensity = how “picky” we are when making
mating decisions (management can é)
  genetic variance = variation in the population due to
genetics (we can’t really change this)
  generation interval = time between generations
(genomics can ê)
2013	
  ICAR	
  Health	
  Data	
  Conference,	
  Aarhus,	
  Denmark,	
  31	
  May	
  2013	
  (8)	
   Cole	
  et	
  al.	
  
Incidence of disease in on-farm data
0 10 20 30 40
Literature Incidences by Health Event
Reported Literature Incidence
CALC
CYST
DIAR
DIGE
DSAB
DYST
KETO
LAME
MAST
METR
RESP
RETP
The red asterisk indicates the mean ID/LIR from the data over all lactations. The box plots represent the ID/LIR
based on literature estimates (figure from Parker Gaddis et al., 2012, J. Dairy Sci. 95:5422–5435).
2013	
  ICAR	
  Health	
  Data	
  Conference,	
  Aarhus,	
  Denmark,	
  31	
  May	
  2013	
  (9)	
   Cole	
  et	
  al.	
  
Health event data for analysis
Health event Records Cows Herd-years
Cystic ovaries 222,937 131,194 3,369
Digestive disorders 156,520 97,430 1,780
Displaced abomasum 213,897 125,594 2,370
Ketosis 132,066 82,406 1,358
Lameness 233,392 144,382 3,191
Mastitis 274,890 164,630 3,859
Metritis 236,786 139,818 3,029
Reproductive disorders 253,272 151,315 3,360
Retained placenta 231,317 138,457 2,930
2013	
  ICAR	
  Health	
  Data	
  Conference,	
  Aarhus,	
  Denmark,	
  31	
  May	
  2013	
  (10)	
   Cole	
  et	
  al.	
  
Genetic and genomic analyses
Single-trait
genetic
Multiple-trait
genetic
Multiple-trait genomic
MAST, METR, LAME, KETO, RETP,
CYST, DSAB
1) MAST, METR, LAME, KETO
2) RETP. CYST, DSAB
Fixed parity, year-season
Random sire, herd-year
Numerator relationship matrix, A Blended matrix, H
ASReml THRGIBBS1F90
Genetic analyses included only pedigree and phenotypic data.
Genomic analyses included genotypic, pedigree, and phenotypic data.
2013	
  ICAR	
  Health	
  Data	
  Conference,	
  Aarhus,	
  Denmark,	
  31	
  May	
  2013	
  (11)	
   Cole	
  et	
  al.	
  
Methods: Single-trait genetic analysis
  Estimate heritability for common health
events occurring from 1996 to 2012
  Similar editing applied
  US records
  Parities 1 to 5
  Minimum/maximum constraints
  Lactations lasting up to 400 days
  Parity considered first versus later
2013	
  ICAR	
  Health	
  Data	
  Conference,	
  Aarhus,	
  Denmark,	
  31	
  May	
  2013	
  (12)	
   Cole	
  et	
  al.	
  
Methods: Multiple-trait genomic analyses
  Multiple-trait threshold sire model using
single-step methodology (Aguilar et al., 2011)
  THRGIBBS1F90 with genomic options
  Default genotype edits used
−  50K SNP data available for 7,883
bulls
−  Final dataset included 37,525 SNP
for 2,649 sires
2013	
  ICAR	
  Health	
  Data	
  Conference,	
  Aarhus,	
  Denmark,	
  31	
  May	
  2013	
  (13)	
   Cole	
  et	
  al.	
  
Results: Single-trait genetic analyses
0
5
10
15
20
25
30
35
CYST DIGE DSAB KETO LAME MAST METR REPR RETP
Lactational Incidence Rate for 10 best and worst sires’
daughters
LactationalIncidenceRate(%)
Health Event
LIR for 10 worst sires’
daughters
LIR for 10 best sires’
daughters
2013	
  ICAR	
  Health	
  Data	
  Conference,	
  Aarhus,	
  Denmark,	
  31	
  May	
  2013	
  (14)	
   Cole	
  et	
  al.	
  
Results: Single-trait genetic analyses
Health Event Heritability Standard Error
Cystic ovaries 0.03 0.006
Digestive disorders 0.06 0.02
Displaced abomasum 0.20 0.02
Ketosis 0.07 0.01
Lameness 0.03 0.005
Mastitis 0.05 0.006
Metritis 0.06 0.007
Respiratory disorders 0.04 0.01
Reproductive disorders 0.03 0.006
Retained placenta 0.07 0.01
2013	
  ICAR	
  Health	
  Data	
  Conference,	
  Aarhus,	
  Denmark,	
  31	
  May	
  2013	
  (15)	
   Cole	
  et	
  al.	
  
Results: Single-trait genetic analyses
0
50
100
150
200
250
300
350
CYST DIGE DSAB KETO LAME MAST METR REPR RETP
Number of sires with reliability > 0.5
Health Event
Numberofsires
2013	
  ICAR	
  Health	
  Data	
  Conference,	
  Aarhus,	
  Denmark,	
  31	
  May	
  2013	
  (16)	
   Cole	
  et	
  al.	
  
Results: Single-trait genetic analyses
Sire posterior mean of daughters’ probability to each disease
2013	
  ICAR	
  Health	
  Data	
  Conference,	
  Aarhus,	
  Denmark,	
  31	
  May	
  2013	
  (17)	
   Cole	
  et	
  al.	
  
Results: Multiple-trait genetic analysis
	
  
Mastitis	
   Metritis	
   Lameness	
  
Retained
placenta	
  
Cystic
ovaries	
   Ketosis	
  
Displaced
abomasum	
  
Mastitis	
  
0.10
(0.09, 0.12)	
  
	
   	
   	
   	
   	
   	
  
Metritis	
  
-0.30
(-0.45, -0.15)	
  
0.04
(0.03, 0.05)	
  
	
   	
   	
   	
   	
  
Lameness	
  
-0.29
(-0.46, -0.11)	
  
0.21
(0, 0.45)	
  
0.019
(0.01,0.03)	
  
	
   	
   	
   	
  
Retained
placenta	
  
0.01
(-0.14, 0.16)	
  
0.78
(0.68, 0.88)	
  
-0.14
(-0.36, 0.07)	
  
0.05
(0.03, 0.06)	
  
	
   	
   	
  
Cystic
ovaries	
  
-0.09
(-0.29, 0.13)	
  
-0.17
(-0.37, 0.06)	
  
-0.19
(-0.40, -0.06)	
  
-0.12
(-0.34, 0.12)	
  
0.026
(0.02, 0.03)	
  
	
   	
  
Ketosis	
  
-0.28
(-0.47, -0.07)	
  
0.45
(0.26, 0.64)	
  
0.08
(-0.17, 0.34)	
  
0.10
(-0.17, 0.35)	
  
-0.15
(-0.367, 0.13)	
  
0.08
(0.05, 0.11)	
  
	
  
Displaced
abomasum	
  
0.005
(-0.15, 0.17)	
  
0.44
(0.28, 0.60)	
  
-0.10
(-0.29, 0.09)	
  
0.06
(-0.12, 0.25)	
  
-0.10
(-0.31, 0.10)	
  
0.81
(0.70, 0.92)	
  
0.13
(0.11, 0.16)	
  
Estimated heritabilities (95% HPD) on diagonal and estimated genetic correlations
(95% HPD) below diagonal.
2013	
  ICAR	
  Health	
  Data	
  Conference,	
  Aarhus,	
  Denmark,	
  31	
  May	
  2013	
  (18)	
   Cole	
  et	
  al.	
  
Results: Multiple-trait genomic analysis
Mastitis Metritis Lameness
Retained
placenta
Cystic
ovaries
Ketosis
Displaced
abomasum
Mastitis
0.12
(0.10, 0.14)
Metritis
-0.36
(-0.53, -0.19)
0.04
(0.027, 0.043)
Lameness
0.13
(-0.1, 0.34)
0.026
(0.015, 0.034)
Retained
placenta
0.04
(0.03, 0.05)
Cystic
ovaries
-0.02
(-0.22, 0.16)
0.03
(0.01, 0.04)
Ketosis
-0.16
(-0.31, 0.01)
0.44
(0.26, 0.64)
0.08
(0.05, 0.10)
Displaced
abomasum
0.01
(-0.21, 0.16)
-0.11
(-0.29, 0.13)
0.12
(0.09, 0.14)
Estimated heritabilities (95% HPD) on diagonal and estimated genetic correlations
(95% HPD) below diagonal.
2013	
  ICAR	
  Health	
  Data	
  Conference,	
  Aarhus,	
  Denmark,	
  31	
  May	
  2013	
  (19)	
   Cole	
  et	
  al.	
  
Reliability with and without genomics
Event EBV Reliability GEBV Reliability Gain
Displaced
abomasum
0.30 0.40 +0.10
Ketosis 0.28 0.35 +0.07
Lameness 0.28 0.37 +0.09
Mastitis 0.30 0.41 +0.11
Metritis 0.30 0.41 +0.11
Retained placenta 0.29 0.38 +0.09
Mean reliabilities of sire PTA computed with pedigree information and genomic
information, and the gain in reliability from including genomics.
2013	
  ICAR	
  Health	
  Data	
  Conference,	
  Aarhus,	
  Denmark,	
  31	
  May	
  2013	
  (20)	
   Cole	
  et	
  al.	
  
What do we do with these PTA?
  Focus on diseases that occur frequently
enough to observe in most herds
  Put them into a selection index
  Apply selection for a long time
  There are no shortcuts
  Collect phenotypes on many daughters
  Repeated records of limited value
2013	
  ICAR	
  Health	
  Data	
  Conference,	
  Aarhus,	
  Denmark,	
  31	
  May	
  2013	
  (21)	
   Cole	
  et	
  al.	
  
Conclusions
  The data stored in on-farm computer
systems are useable for genetic
evaluation
  We can compute PTA for bulls with many
daughters
  Genomics improves reliabilities
  Multiple-trait analysis may help improve
reliabilities
2013	
  ICAR	
  Health	
  Data	
  Conference,	
  Aarhus,	
  Denmark,	
  31	
  May	
  2013	
  (22)	
   Cole	
  et	
  al.	
  
Questions?
http://gigaom.com/2012/05/31/t-mobile-pits-its-math-against-verizons-the-loser-common-sense/shutterstock_76826245/

More Related Content

PPT
Genetic Evaluation of Calving Traits in US Holsteins
PDF
Dr. Dave Rosero - Influence of Wean Age and Disease Challenge on Progeny Life...
PPT
NY Prostate Cancer Conference - F. Saad - Session 7: Predicting toxicity afte...
PPTX
Summer Research
PPTX
Osteoporosis 2016 | Antidiabetic medication use and the risk of fracture amon...
PPT
Genetic Evaluation of Stillbirth in US Holsteins Using a Sire-maternal Grands...
PPT
Use of NGS to identify the causal variant associated with a complex phenotype
PPTX
Uso e valore economico dei test genomici in azienda
Genetic Evaluation of Calving Traits in US Holsteins
Dr. Dave Rosero - Influence of Wean Age and Disease Challenge on Progeny Life...
NY Prostate Cancer Conference - F. Saad - Session 7: Predicting toxicity afte...
Summer Research
Osteoporosis 2016 | Antidiabetic medication use and the risk of fracture amon...
Genetic Evaluation of Stillbirth in US Holsteins Using a Sire-maternal Grands...
Use of NGS to identify the causal variant associated with a complex phenotype
Uso e valore economico dei test genomici in azienda

Similar to Genomic evaluation of dairy cattle health (20)

PPTX
Opportunities for genetic improvement of health and fitness traits
PDF
Validation of Producer-Recorded Health Event Data and Use in Genetic Improvem...
PPTX
Genomic evaluation of low-heritability traits: dairy cattle health as a model
PPTX
An updated version of lifetime net merit incorporating additional fertility t...
PPTX
Genomic testing: where is the greatest value?
PDF
Genetics and genomic approaches for sustainable dairy cattle improvement
PPTX
Uterine Health and Potential Connection with Genetic Variation
PPT
Vasse 150910 wayne
PPTX
Identification of functional novel traits in dairy cattle.pptx
PDF
06 - Helene Leclerc (1).pdf
PPTX
An updated version of lifetime net merit incorporating additional fertility t...
PPTX
Heat tolerance, real-life genomics and GxE issues
PPTX
Finding More Value With Genomic Testing
PPT
Principles of Dairy Cattle Breeding in Africa
PPTX
Sire Selection Considerations for Dairy Producers
PDF
Genetics, a tool to prevent mastitis in dairy cows
PDF
From contemporary comparison to genomic selection: Trends in the principles f...
PPT
Dairy Cattle Breeding in the United States
PPTX
Genetics and genomic approaches for sustainable dairy cattle improvement in s...
PPTX
Alta Genetics Sire Selection
Opportunities for genetic improvement of health and fitness traits
Validation of Producer-Recorded Health Event Data and Use in Genetic Improvem...
Genomic evaluation of low-heritability traits: dairy cattle health as a model
An updated version of lifetime net merit incorporating additional fertility t...
Genomic testing: where is the greatest value?
Genetics and genomic approaches for sustainable dairy cattle improvement
Uterine Health and Potential Connection with Genetic Variation
Vasse 150910 wayne
Identification of functional novel traits in dairy cattle.pptx
06 - Helene Leclerc (1).pdf
An updated version of lifetime net merit incorporating additional fertility t...
Heat tolerance, real-life genomics and GxE issues
Finding More Value With Genomic Testing
Principles of Dairy Cattle Breeding in Africa
Sire Selection Considerations for Dairy Producers
Genetics, a tool to prevent mastitis in dairy cows
From contemporary comparison to genomic selection: Trends in the principles f...
Dairy Cattle Breeding in the United States
Genetics and genomic approaches for sustainable dairy cattle improvement in s...
Alta Genetics Sire Selection
Ad

More from John B. Cole, Ph.D. (20)

PPTX
Crv 2015 jbc
PPTX
Using genotypes to construct phenotypes for dairy cattle breeding programs an...
PPTX
2015 AGIL Update
PPTX
If we would see further than others: research & technology today and tomorrow
PPTX
Using genotyping and whole-genome sequencing to identify causal variants asso...
PPTX
Genetic improvement programs for US dairy cattle
PPT
The hunt for a functional mutation affecting conformation and calving traits ...
PPT
Stillbirth, Longevity and Fertility Update
PPTX
New tools for genomic selection in dairy cattle
PDF
Genomic selection and systems biology – lessons from dairy cattle breeding
PPTX
The use and economic value of genomic testing for calves on dairy farms
PPTX
New applications of genomic technology in the US dairy industry
PPTX
Challenges and successes in dairy cattle genomics
PPTX
New Tools for Genomic Selection of Livestock
PPTX
PyPedal, an open source software package for pedigree analysis
PPTX
Applications of haplotypes in dairy farm management
PPTX
Genomic Selection in Dairy Cattle
PPTX
Fine-mapping of QTL using high-density SNP genotypes
PPT
Genomics Beyond EBVs
PPT
What can we do with dairy cattle genomics other than predict more accurate br...
Crv 2015 jbc
Using genotypes to construct phenotypes for dairy cattle breeding programs an...
2015 AGIL Update
If we would see further than others: research & technology today and tomorrow
Using genotyping and whole-genome sequencing to identify causal variants asso...
Genetic improvement programs for US dairy cattle
The hunt for a functional mutation affecting conformation and calving traits ...
Stillbirth, Longevity and Fertility Update
New tools for genomic selection in dairy cattle
Genomic selection and systems biology – lessons from dairy cattle breeding
The use and economic value of genomic testing for calves on dairy farms
New applications of genomic technology in the US dairy industry
Challenges and successes in dairy cattle genomics
New Tools for Genomic Selection of Livestock
PyPedal, an open source software package for pedigree analysis
Applications of haplotypes in dairy farm management
Genomic Selection in Dairy Cattle
Fine-mapping of QTL using high-density SNP genotypes
Genomics Beyond EBVs
What can we do with dairy cattle genomics other than predict more accurate br...
Ad

Recently uploaded (20)

PPTX
Overview of calcium in human muscles.pptx
PDF
Sciences of Europe No 170 (2025)
PPTX
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PPTX
famous lake in india and its disturibution and importance
PPTX
Science Quipper for lesson in grade 8 Matatag Curriculum
PPTX
BIOMOLECULES PPT........................
PPTX
Introduction to Cardiovascular system_structure and functions-1
PDF
An interstellar mission to test astrophysical black holes
PPTX
Pharmacology of Autonomic nervous system
PDF
lecture 2026 of Sjogren's syndrome l .pdf
PPT
protein biochemistry.ppt for university classes
PPTX
Vitamins & Minerals: Complete Guide to Functions, Food Sources, Deficiency Si...
DOCX
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PPTX
TOTAL hIP ARTHROPLASTY Presentation.pptx
PPTX
Fluid dynamics vivavoce presentation of prakash
PDF
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PPTX
Introduction to Fisheries Biotechnology_Lesson 1.pptx
Overview of calcium in human muscles.pptx
Sciences of Europe No 170 (2025)
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
famous lake in india and its disturibution and importance
Science Quipper for lesson in grade 8 Matatag Curriculum
BIOMOLECULES PPT........................
Introduction to Cardiovascular system_structure and functions-1
An interstellar mission to test astrophysical black holes
Pharmacology of Autonomic nervous system
lecture 2026 of Sjogren's syndrome l .pdf
protein biochemistry.ppt for university classes
Vitamins & Minerals: Complete Guide to Functions, Food Sources, Deficiency Si...
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
TOTAL hIP ARTHROPLASTY Presentation.pptx
Fluid dynamics vivavoce presentation of prakash
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
Introduction to Fisheries Biotechnology_Lesson 1.pptx

Genomic evaluation of dairy cattle health

  • 1. J. B. Cole1, K. L. Parker Gaddis2, J. S. Clay3, & C. Maltecca2 1Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD 20705-2350, USA 2Department of Animal Science North Carolina State University Raleigh, NC 27695-7621, USA 3Dairy Records Management Systems, Raleigh, NC, USA john.cole@ars.usda.gov Genomic evaluation of dairy cattle health
  • 2. 2013  ICAR  Health  Data  Conference,  Aarhus,  Denmark,  31  May  2013  (2)   Cole  et  al.   What are health and fitness traits? l  Health and fitness traits do not generate revenue, but they are economically important because they impact other traits. l  Examples: l  Poor fertility increases direct and indirect costs (semen, estrus synchronization, etc.). l  Susceptibility to disease results in decreased revenue and increased costs (veterinary care, withheld milk, etc.)
  • 3. 2013  ICAR  Health  Data  Conference,  Aarhus,  Denmark,  31  May  2013  (3)   Cole  et  al.   Trait Relative emphasis on traits in index (%) PD$ 1971 MFP$ 1976 CY$ 1984 NM$ 1994 NM$ 2000 NM$ 2003 NM$ 2006 NM$ 2010 Milk 52 27 –2 6 5 0 0 0 Fat 48 46 45 25 21 22 23 19 Protein … 27 53 43 36 33 23 16 PL … … … 20 14 11 17 22 SCS … … … –6 –9 –9 –9 –10 UDC … … … … 7 7 6 7 FLC … … … … 4 4 3 4 BDC … … … … –4 –3 –4 –6 DPR … … … … … 7 9 11 SCE … … … … … –2 … … DCE … … … … … –2 … … CA$ … … … … … … 6 5 Increased emphasis on functional traits
  • 4. 2013  ICAR  Health  Data  Conference,  Aarhus,  Denmark,  31  May  2013  (4)   Cole  et  al.   Challenges with health and fitness traits l  Lack of information l  Inconsistent trait definitions l  No national database of phenotypes l  Low heritabilities l  Many records are needed for accurate evaluation l  Rates of change in genetic improvement programs are low
  • 5. 2013  ICAR  Health  Data  Conference,  Aarhus,  Denmark,  31  May  2013  (5)   Cole  et  al.   What does “low heritability” mean? P = G + E The percentage of total variation attributable to genetics is small. •  CA$: 0.07 •  DPR: 0.04 •  PL: 0.08 •  SCS: 0.12 The percentage of total variation attributable to environmental factors is large: •  Feeding/nutrition •  Housing •  Reproductive management
  • 6. 2013  ICAR  Health  Data  Conference,  Aarhus,  Denmark,  31  May  2013  (6)   Cole  et  al.   0 0.5 1 1.5 2 2.5 3 1 2 3 4 5 6 7 8 9 10 11 12 2010 2011 2012 2013 Why are these traits important? M:FP = price of 1 kg of milk / price of 1 kg of a 16% protein ration Month Milk:FeedPriceRatio April 2013 Grain Costs Soybeans: $14.20/bu (€0.41/kg) Corn: $ 6.67/bu (€0.20/kg)
  • 7. 2013  ICAR  Health  Data  Conference,  Aarhus,  Denmark,  31  May  2013  (7)   Cole  et  al.   How does genetic selection work?   ΔG = genetic gain each year   reliability = how certain we are about our estimate of an animal’s genetic merit (genomics can é)   selection intensity = how “picky” we are when making mating decisions (management can é)   genetic variance = variation in the population due to genetics (we can’t really change this)   generation interval = time between generations (genomics can ê)
  • 8. 2013  ICAR  Health  Data  Conference,  Aarhus,  Denmark,  31  May  2013  (8)   Cole  et  al.   Incidence of disease in on-farm data 0 10 20 30 40 Literature Incidences by Health Event Reported Literature Incidence CALC CYST DIAR DIGE DSAB DYST KETO LAME MAST METR RESP RETP The red asterisk indicates the mean ID/LIR from the data over all lactations. The box plots represent the ID/LIR based on literature estimates (figure from Parker Gaddis et al., 2012, J. Dairy Sci. 95:5422–5435).
  • 9. 2013  ICAR  Health  Data  Conference,  Aarhus,  Denmark,  31  May  2013  (9)   Cole  et  al.   Health event data for analysis Health event Records Cows Herd-years Cystic ovaries 222,937 131,194 3,369 Digestive disorders 156,520 97,430 1,780 Displaced abomasum 213,897 125,594 2,370 Ketosis 132,066 82,406 1,358 Lameness 233,392 144,382 3,191 Mastitis 274,890 164,630 3,859 Metritis 236,786 139,818 3,029 Reproductive disorders 253,272 151,315 3,360 Retained placenta 231,317 138,457 2,930
  • 10. 2013  ICAR  Health  Data  Conference,  Aarhus,  Denmark,  31  May  2013  (10)   Cole  et  al.   Genetic and genomic analyses Single-trait genetic Multiple-trait genetic Multiple-trait genomic MAST, METR, LAME, KETO, RETP, CYST, DSAB 1) MAST, METR, LAME, KETO 2) RETP. CYST, DSAB Fixed parity, year-season Random sire, herd-year Numerator relationship matrix, A Blended matrix, H ASReml THRGIBBS1F90 Genetic analyses included only pedigree and phenotypic data. Genomic analyses included genotypic, pedigree, and phenotypic data.
  • 11. 2013  ICAR  Health  Data  Conference,  Aarhus,  Denmark,  31  May  2013  (11)   Cole  et  al.   Methods: Single-trait genetic analysis   Estimate heritability for common health events occurring from 1996 to 2012   Similar editing applied   US records   Parities 1 to 5   Minimum/maximum constraints   Lactations lasting up to 400 days   Parity considered first versus later
  • 12. 2013  ICAR  Health  Data  Conference,  Aarhus,  Denmark,  31  May  2013  (12)   Cole  et  al.   Methods: Multiple-trait genomic analyses   Multiple-trait threshold sire model using single-step methodology (Aguilar et al., 2011)   THRGIBBS1F90 with genomic options   Default genotype edits used −  50K SNP data available for 7,883 bulls −  Final dataset included 37,525 SNP for 2,649 sires
  • 13. 2013  ICAR  Health  Data  Conference,  Aarhus,  Denmark,  31  May  2013  (13)   Cole  et  al.   Results: Single-trait genetic analyses 0 5 10 15 20 25 30 35 CYST DIGE DSAB KETO LAME MAST METR REPR RETP Lactational Incidence Rate for 10 best and worst sires’ daughters LactationalIncidenceRate(%) Health Event LIR for 10 worst sires’ daughters LIR for 10 best sires’ daughters
  • 14. 2013  ICAR  Health  Data  Conference,  Aarhus,  Denmark,  31  May  2013  (14)   Cole  et  al.   Results: Single-trait genetic analyses Health Event Heritability Standard Error Cystic ovaries 0.03 0.006 Digestive disorders 0.06 0.02 Displaced abomasum 0.20 0.02 Ketosis 0.07 0.01 Lameness 0.03 0.005 Mastitis 0.05 0.006 Metritis 0.06 0.007 Respiratory disorders 0.04 0.01 Reproductive disorders 0.03 0.006 Retained placenta 0.07 0.01
  • 15. 2013  ICAR  Health  Data  Conference,  Aarhus,  Denmark,  31  May  2013  (15)   Cole  et  al.   Results: Single-trait genetic analyses 0 50 100 150 200 250 300 350 CYST DIGE DSAB KETO LAME MAST METR REPR RETP Number of sires with reliability > 0.5 Health Event Numberofsires
  • 16. 2013  ICAR  Health  Data  Conference,  Aarhus,  Denmark,  31  May  2013  (16)   Cole  et  al.   Results: Single-trait genetic analyses Sire posterior mean of daughters’ probability to each disease
  • 17. 2013  ICAR  Health  Data  Conference,  Aarhus,  Denmark,  31  May  2013  (17)   Cole  et  al.   Results: Multiple-trait genetic analysis   Mastitis   Metritis   Lameness   Retained placenta   Cystic ovaries   Ketosis   Displaced abomasum   Mastitis   0.10 (0.09, 0.12)               Metritis   -0.30 (-0.45, -0.15)   0.04 (0.03, 0.05)             Lameness   -0.29 (-0.46, -0.11)   0.21 (0, 0.45)   0.019 (0.01,0.03)           Retained placenta   0.01 (-0.14, 0.16)   0.78 (0.68, 0.88)   -0.14 (-0.36, 0.07)   0.05 (0.03, 0.06)         Cystic ovaries   -0.09 (-0.29, 0.13)   -0.17 (-0.37, 0.06)   -0.19 (-0.40, -0.06)   -0.12 (-0.34, 0.12)   0.026 (0.02, 0.03)       Ketosis   -0.28 (-0.47, -0.07)   0.45 (0.26, 0.64)   0.08 (-0.17, 0.34)   0.10 (-0.17, 0.35)   -0.15 (-0.367, 0.13)   0.08 (0.05, 0.11)     Displaced abomasum   0.005 (-0.15, 0.17)   0.44 (0.28, 0.60)   -0.10 (-0.29, 0.09)   0.06 (-0.12, 0.25)   -0.10 (-0.31, 0.10)   0.81 (0.70, 0.92)   0.13 (0.11, 0.16)   Estimated heritabilities (95% HPD) on diagonal and estimated genetic correlations (95% HPD) below diagonal.
  • 18. 2013  ICAR  Health  Data  Conference,  Aarhus,  Denmark,  31  May  2013  (18)   Cole  et  al.   Results: Multiple-trait genomic analysis Mastitis Metritis Lameness Retained placenta Cystic ovaries Ketosis Displaced abomasum Mastitis 0.12 (0.10, 0.14) Metritis -0.36 (-0.53, -0.19) 0.04 (0.027, 0.043) Lameness 0.13 (-0.1, 0.34) 0.026 (0.015, 0.034) Retained placenta 0.04 (0.03, 0.05) Cystic ovaries -0.02 (-0.22, 0.16) 0.03 (0.01, 0.04) Ketosis -0.16 (-0.31, 0.01) 0.44 (0.26, 0.64) 0.08 (0.05, 0.10) Displaced abomasum 0.01 (-0.21, 0.16) -0.11 (-0.29, 0.13) 0.12 (0.09, 0.14) Estimated heritabilities (95% HPD) on diagonal and estimated genetic correlations (95% HPD) below diagonal.
  • 19. 2013  ICAR  Health  Data  Conference,  Aarhus,  Denmark,  31  May  2013  (19)   Cole  et  al.   Reliability with and without genomics Event EBV Reliability GEBV Reliability Gain Displaced abomasum 0.30 0.40 +0.10 Ketosis 0.28 0.35 +0.07 Lameness 0.28 0.37 +0.09 Mastitis 0.30 0.41 +0.11 Metritis 0.30 0.41 +0.11 Retained placenta 0.29 0.38 +0.09 Mean reliabilities of sire PTA computed with pedigree information and genomic information, and the gain in reliability from including genomics.
  • 20. 2013  ICAR  Health  Data  Conference,  Aarhus,  Denmark,  31  May  2013  (20)   Cole  et  al.   What do we do with these PTA?   Focus on diseases that occur frequently enough to observe in most herds   Put them into a selection index   Apply selection for a long time   There are no shortcuts   Collect phenotypes on many daughters   Repeated records of limited value
  • 21. 2013  ICAR  Health  Data  Conference,  Aarhus,  Denmark,  31  May  2013  (21)   Cole  et  al.   Conclusions   The data stored in on-farm computer systems are useable for genetic evaluation   We can compute PTA for bulls with many daughters   Genomics improves reliabilities   Multiple-trait analysis may help improve reliabilities
  • 22. 2013  ICAR  Health  Data  Conference,  Aarhus,  Denmark,  31  May  2013  (22)   Cole  et  al.   Questions? http://gigaom.com/2012/05/31/t-mobile-pits-its-math-against-verizons-the-loser-common-sense/shutterstock_76826245/