Icy Moon Surface Simulation and
Stereo Depth Estimation for Sampling Autonomy
Ramchander Bhaskara1, Georgios Georgakis2,
Jeremy Nash2, MarissaCameron2, Joseph Bowkett2,
Adnan Ansar2, Manoranjan Majji1,Paul Backes2
1Texas A&M University | 2Jet Propulsion Laboratory
Motivation
Engineering representation for icy-moon surface exploration at
sampling scale.
1. System design: Spectral understanding for surface autonomy
a. Imaging sensor designand selection
b. Computer vision algorithms
2. Analysis: Most challenging environments for visual perception
Will legacy vision pipelines be sufficient for perception?
2
Topics
1. Review: Challenges in icy-moon surface simulations
2. Software: Graphical Utility for Icy-Moon Surface Simulations
(GUISS)
3. Analysis: Stereo Depth Estimation
• Stereo matching evaluation under challengingvisual hypotheses
4. Conclusion & ongoing work: Are simulations enough?
3
1. Review
Icy world study | Objectives | Challenges | Literature
4
1. Review – the why.
5
• Hydrothermal activity –
Enceladus/Europa
• Europa Clipper
• Jupiter Icy Moons Explorer (JUICE)
• Decadal survey: Enceladus Orbilander Enceladus plume - Cassini
Source: JPL/NASA
SAR image mosaic
Source: JPL/NASA
1. Review – the objectives.
6
Enceladus plume - Cassini
Source: JPL/NASA
SAR image mosaic
Source: JPL/NASA
• Sampling of plume materials
• Hard engineeringproblem
• Perception system goals:
• Recover topography(DEM) and
texture for site selection
• Fault identification
• Localization
• Excavation tracking
Perception systemdevelopment for sampling
autonomy
1. Review – the challenges.
• Structural diversity
• Plain, dominated by ice blocks
• Surface disruptionsand faulting
• Largely unknownat high resolution
• Spectral diversity
• High albedo > 0.8 (Enceladus)
• Backscattering
• Crystalline and amorphousice
• Freshsnow, plumes, and salts
• Subsurface water
• Ice thickness: 3-30 kms
7
4m/pixel
Enceladus’South pole terrain (Cassini,
JPL/Caltech)
Structural Mapping of Enceladus (CassiniISS, JPL/NASA)
1. Review – Literature.
• Scientific rendering for planetary surface simulations
8
Simulator Features
SurRender (Airbus) large scalesimulations.
NaRPA (Texas A&M) Limited to Lambertian models.
SurRender (Airbus) large scalesimulations, validation of radiometric and sensor models. Shader
limitations.
PANGU (ESA) Standard in vision based navigation.Limited availability.
SISPO(Univ. of Tartu) Image aberrations and environment models.
OceanWATERS (NASA) No systematictreatmentof reflectancemodels.
DUST (NASA) Lunar simulations at scalewith accurate lighting, DTMs integrated.
DARTS (JPL) SAELSim– focus is on lander dynamics.
2. Rendering system
Overview | Terrain | Texture | Lighting | Sensor models
9
2. Graphical Utility for Icy-Moon Surface Simulations (GUISS)
Overview
• Python application using Blender
Cycles
• Easy to adopt and reconfigure
• Open shading language (OSL)
• Building blocks
• Terrain modeling
• Texture modeling
• Lighting
• Sensor
10
GUISS rendering pipeline
Software: https://github.com/nasa-jpl/guiss
2. GUISS – Terrain modeling.
11
• Diverse observation geometries –
procedural methods
• FractionalBrownian motion
• Import DEMs (Earth analogues)
• Custom meshes (glaciers)
• Features: rock distribution
Terrain modeling
Source: Crow-Willard et al.|Enceladus structural diversity
2. GUISS – Terrain modeling.
12
• Procedural elevation models
• FractionalBrownian motion
• Smooth randomness throughnoise
functionsto construct self-similarity.
Primitives
Multi-fractal
Hetero-terrain
Hybrid
Voronoi
Blender: Mesh with noise variations
Gaea: Perlin noise example
2. GUISS – Terrain modeling.
13
Scenereconstructions from Europa lander field testingcampaign Matanuska Glacier,
AK.
Rocky and ridged terrainsfrom Gaea
software.
Procedural multi-fractal terrains,icy penitente
features.
2. GUISS – Terrain modeling.
14
Rock distribution
• Varying scales and densities
• meta data.
RGB image Semantic segmentationmask Instance segmentationmask
2. GUISS – Texture modeling.
15
• Spectrally challenging
environments
• High albedo (Europa 0.64,
Enceladus 0.81)
• Roughness(fresh snow – very low)
• Specular
• Subsurface scattering
• Texture (UV) mapping
• Procedural texture displacement.
Texture modeling
Shader used: Principled Bidirectional ScatteringDistribution Function (PrincipledBSDF)
2. GUISS – Texture modeling.
16
• UV mapping
• Field campaigns– dense
reconstruction
• Catalog of albedo, displacement,
normal, transmission,roughness
maps
• UV texture mapping
• ConsistentUV scaling: map object
coordinatesto UV coordinates
• Blending texturedtiles
ReconstructedUV
texture
Albedo and
transmission maps:
snow and rocks
Example renders: UV mapping onto a mesh
2. GUISS – Texture modeling.
17
• Procedural texture
• Effectto displace the regolithic
surface
• Variationsthrough changesin
surface normals
• Proceduraladjustments to surface
roughnessand normals
• Blender Cycles (Principled BSDF) for
realismand subsurfacescattering
effects.
Representativescene:procedural
displacement
2. GUISS – Texture modeling.
18
Subsurface scattering
Transmission factor
2. GUISS - Lighting.
• Illumination model
• Directand indirectsources
• Scaled models
• Angular diameter
• Relative distances
• Irradiance and observation
geometry: NAIF.
19
Illumination model
NAIF: Navigationand Ancillary Information
Facility
Representative terrain:Sun elevation
angles
2. GUISS - Sensor.
20
• Camera
• Blender supported capabilities
• Motion blur
• Lens type and distortion
• Panoramic and stereoscopic
• Noise and denoising filters
• Output
• Stereo image pair
• Groundtruth depth
• Segmentation passes.
Stereoimage pair
Semantic
mask
Instance
mask
Depth map
3. Stereo depth estimation
analysis
Sampling autonomy | Baselines | Datasets | Evaluation | Results
21
3. Depth estimation – Baselines.
22
• StereoBM1
• Block Matching
• # Disparities
• Sum of Absolute Differences(SAD)
• JPLV2
• Used on Mars Exploration Rover
• DSMNet3
• Deep-learningbased
• Improved generalizationto new
visual domains.
• IGEV4
• State-of-the-art.
1Scharstein and R. Szeliski,“A taxonomyandevaluation of dense two-frame
stereo correspondence algorithms,”International journal of computer vision,
vol. 47,pp. 7–42,2002.
2S.B.Goldberg, M.W. Maimone,andL. Matthies,“Stereo vision androver
navigationsoftwarefor planetary exploration,”in Proceedings, IEEE
aerospace conference, vol. 5.IEEE, 2002,pp.5–5.
3Zhang,X.Qi, R.Yang,V. Prisacariu,B. Wah,and P. Torr,“Domain-invariant
stereo matchingnetworks,”in Computer Vision–ECCV 2020:16thEuropean
Conference, Glasgow,UK, August 23–28,2020,Proceedings,Part II 16.
Springer, 2020,pp.420–439.
4G. Xu, X. Wang, X.Ding, andX. Yang,“Iterative geometry encoding volume for
stereo matching,”in Proceedings of the IEEE/CVF Conference on Computer
Vision andPattern Recognition,2023,pp. 21 91921 928.
3. Depth estimation – Datasets.
23
• Procedural terrain variation
• Planar to highly ruggedterrains
• Texture variation
• UV maps and albedo maps
• BSDF parameters
• Albedo, specularity, roughness,
transmission,subsurfacefactor.
• Lighting variations
• Sun elevation angles
• Reconstructions
Total Images Reconstructe
d
Simulated
5020 3060 1960
3. Depth estimation – Results.
24
• Qualitativeevaluation
• Deep learning methods
outperformclassicalmethods
• Trained on visually dissimilar
domains
• JPLV - comparable errorsfor real
reconstructedscenes.
3. Depth estimation – Metrics.
26
• StereoBM: 87 cm & 10.1% gap on L1
and DoD metrics.
• 2.3% DOD result of IGEV
Performance evaluation on the datasets.
• L1 Errorof DSMNet and IGEV are 0.29
and 0.26 – errorsare still significant
• IGEV’s 0.03 si-RMSE (scale-invariant).
3. Depth estimation – Metrics.
27
• Varying values of Albedo
• StereoBM and JPLV degrade
• Deep learning models exhibit robustnessto high brightness.
Metricswith varying values of albedo.
3. Analysis – Runtimes.
28
Rendering runtime
• Reconstructed scenes: 3 seconds (Intel i7 CPU) per stereopair and truth (640 x
480)
Synthetic scenes:1 minute.
Stereo depth estimation runtime
• Intel i7 CPU, NVIDIA RTX 3080 GPU (resolution:640 x 480).
4. Conclusion and ongoing work
Limitations | Development
29
4. Conclusion – Limitations.
30
• Fidelity
• Renderingsare to be validated.
• Photometric model
• Hapke type BRDF models.
• SPICE Kernel integration
• Missionlike conditions
• Sensor model
• Real sensor(noise models)
• Lidar, structured light – renderingand depth estimation
Lidar simulation development.
4. Conclusion – Limitations.
31
• Fidelity
• Renderingsare to be validated.
• Photometric model
• Hapke type BRDF models.
• SPICE Kernel integration
• Missionlike conditions
• Sensor model
• Real sensor(noise models)
• Lidar, structured light – renderingand depth estimation
Lidar simulation development.
4. Conclusion – Limitations.
32
• Fidelity
• Renderingsare to be validated.
• Photometric model
• Hapke type BRDF models.
• SPICE Kernel integration
• Missionlike conditions
• Sensor model
• Real sensor(noise models)
• Lidar, structured light – renderingand depth estimation
Hapke BRDF
PrincipledBSDF
33
https://github.com/nasa-jpl/guiss
Questions
We acknowledge the inputs of JPL technologistsIssa Nesnas,Yang Cheng, Asher Elmquist, Travis Driver,
Gregory Griffin, Spencer Diehl, Ishan Mishra, Ashish Goel, Anup Katake,Reg Willson, Micheal Swan, Deegan
Atha, Daniel Moreno, and Samuel Howell.
34
Backup slides
Noise scale: 0.5
Noise scale: 3
35
Backup slides
PrincipledBSDF Hapke BRDF
36
Backup slides
Texture from
noise
Subsurface
scattering

More Related Content

PDF
3 d video streaming for virtual exploration of planet surface
PDF
IRJET- LRMSE: A Framework on Lunar Rover for Moon Surface Exploration
PDF
“A Computer Vision System for Autonomous Satellite Maneuvering,” a Presentati...
PDF
Screen space reflections on Epsilon Engine
PPTX
Cogent3 d master slides (12 april 2009)
PDF
Simulation of collision avoidance by navigation
PPTX
RemoteSensing_DeepLearning_v2.pptx
PDF
Digital Engineering a Lunar Rover
3 d video streaming for virtual exploration of planet surface
IRJET- LRMSE: A Framework on Lunar Rover for Moon Surface Exploration
“A Computer Vision System for Autonomous Satellite Maneuvering,” a Presentati...
Screen space reflections on Epsilon Engine
Cogent3 d master slides (12 april 2009)
Simulation of collision avoidance by navigation
RemoteSensing_DeepLearning_v2.pptx
Digital Engineering a Lunar Rover

Similar to Icy Moon Surface Simulation and Stereo Depth Estimation for Sampling Autonomy CL24_2268.pdf (20)

PDF
LocalizationandMappingforAutonomousNavigationin OutdoorTerrains: A StereoVisi...
PPT
Bruce Damer's presentation of Digital Spaces, an open source 3D simulation pl...
PDF
Software Defined Visualization (SDVis): Get the Most Out of ParaView* with OS...
PDF
"Using Vision to Enable Autonomous Land, Sea and Air Vehicles," a Keynote Pre...
PPTX
The Rendering Pipeline - Challenges & Next Steps
PDF
Ground truth for monocular localization CL25_0763.pdf
PDF
Elevation mapping using stereo vision enabled heterogeneous multi-agent robot...
PDF
An Assessment of Image Matching Algorithms in Depth Estimation
PDF
1200 cash[2]
PDF
Real-time Screen-space Geometry Draping for 3D Digital Terrain Models
PDF
Marietta College Colloquium
PDF
PapersWeLove - Rendering Synthetic Objects Into Real Scenes - Paul Debevec.pdf
PDF
Robots that see like humans
PPT
Paris Master Class 2011 - 07 Dynamic Global Illumination
PDF
Building Worlds - Codebits
PDF
Scheduled Scientific Data Releases Using .backup Volumes
PPTX
A Certain Slant of Light - Past, Present and Future Challenges of Global Illu...
PPTX
Past, Present and Future Challenges of Global Illumination in Games
PDF
Intelligent Lunar Landing Site Recommender
PPTX
Calibrating Lighting and Materials in Far Cry 3
LocalizationandMappingforAutonomousNavigationin OutdoorTerrains: A StereoVisi...
Bruce Damer's presentation of Digital Spaces, an open source 3D simulation pl...
Software Defined Visualization (SDVis): Get the Most Out of ParaView* with OS...
"Using Vision to Enable Autonomous Land, Sea and Air Vehicles," a Keynote Pre...
The Rendering Pipeline - Challenges & Next Steps
Ground truth for monocular localization CL25_0763.pdf
Elevation mapping using stereo vision enabled heterogeneous multi-agent robot...
An Assessment of Image Matching Algorithms in Depth Estimation
1200 cash[2]
Real-time Screen-space Geometry Draping for 3D Digital Terrain Models
Marietta College Colloquium
PapersWeLove - Rendering Synthetic Objects Into Real Scenes - Paul Debevec.pdf
Robots that see like humans
Paris Master Class 2011 - 07 Dynamic Global Illumination
Building Worlds - Codebits
Scheduled Scientific Data Releases Using .backup Volumes
A Certain Slant of Light - Past, Present and Future Challenges of Global Illu...
Past, Present and Future Challenges of Global Illumination in Games
Intelligent Lunar Landing Site Recommender
Calibrating Lighting and Materials in Far Cry 3
Ad

More from houston3dgraphics (20)

PDF
Optically Pumped Solid State Quantum Magnetometers for space Application CL25...
PDF
Tutorial 4 Inversions by Mark Parring CL25_1478.pdf
PDF
Reflectarray RF Modeling and Optimization for the VenSAR Mission CL25_1366.pdf
PDF
Accessing the Accuracy of Landing Models for Landing on Phobos CL25_1442.pdf
PDF
Entry and Descent Mechanical Subsystems Overview and Design Drivers CL23_4219...
PDF
Different components used in space CL23_5025.pdf
PDF
Gears members in planetary componentsCL23_4925.pdf
PDF
Modeling protoplanetary Disk CL23_5122.pdf
PDF
Balancing Agility and Rigor in Model-Based Systems Engineering Presentation C...
PDF
A rapid Low cost path to lunar communication and navigation with a lunar surf...
PDF
Perseverance: The first step in Mars Sample Return CL23_5628.pdf
PDF
Gas Rich Debris Disks Origins CL23_6301.pdf
PDF
Simulation of the Miscible Cryogenic Liquids with Phase Change CL23_6479.pdf
PDF
Gas-Rich Debris Disks' Origin in Slow Photoevaporation around Intermediate Ma...
PDF
2021 AIAA Conference Psyche Journey to a Metal Planet CL23_6686.pdf
PDF
Advances in Modeling the Energy Balance of H2O ice on Mars CL24_0722.pdf
PDF
NASA ISRO Synthetic Aperture Radar CL22_1050.pdf
PDF
Thermal Vacuum Testing of the HVM3 Instrument CL24_1000.pdf
PDF
Surface Time Management and Analysis for the Mars Sample Return Mission CL24_...
PDF
Lessons Learned from the Mars Relay Network CL24_1261.pdf
Optically Pumped Solid State Quantum Magnetometers for space Application CL25...
Tutorial 4 Inversions by Mark Parring CL25_1478.pdf
Reflectarray RF Modeling and Optimization for the VenSAR Mission CL25_1366.pdf
Accessing the Accuracy of Landing Models for Landing on Phobos CL25_1442.pdf
Entry and Descent Mechanical Subsystems Overview and Design Drivers CL23_4219...
Different components used in space CL23_5025.pdf
Gears members in planetary componentsCL23_4925.pdf
Modeling protoplanetary Disk CL23_5122.pdf
Balancing Agility and Rigor in Model-Based Systems Engineering Presentation C...
A rapid Low cost path to lunar communication and navigation with a lunar surf...
Perseverance: The first step in Mars Sample Return CL23_5628.pdf
Gas Rich Debris Disks Origins CL23_6301.pdf
Simulation of the Miscible Cryogenic Liquids with Phase Change CL23_6479.pdf
Gas-Rich Debris Disks' Origin in Slow Photoevaporation around Intermediate Ma...
2021 AIAA Conference Psyche Journey to a Metal Planet CL23_6686.pdf
Advances in Modeling the Energy Balance of H2O ice on Mars CL24_0722.pdf
NASA ISRO Synthetic Aperture Radar CL22_1050.pdf
Thermal Vacuum Testing of the HVM3 Instrument CL24_1000.pdf
Surface Time Management and Analysis for the Mars Sample Return Mission CL24_...
Lessons Learned from the Mars Relay Network CL24_1261.pdf
Ad

Recently uploaded (20)

PDF
Abrasive, erosive and cavitation wear.pdf
PPTX
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PDF
Soil Improvement Techniques Note - Rabbi
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PDF
distributed database system" (DDBS) is often used to refer to both the distri...
PPTX
Feature types and data preprocessing steps
PPTX
Module 8- Technological and Communication Skills.pptx
PPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PPTX
"Array and Linked List in Data Structures with Types, Operations, Implementat...
PPTX
Current and future trends in Computer Vision.pptx
PPTX
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
PPTX
Software Engineering and software moduleing
PPTX
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
PDF
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
PDF
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
PDF
August -2025_Top10 Read_Articles_ijait.pdf
PDF
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PDF
737-MAX_SRG.pdf student reference guides
Abrasive, erosive and cavitation wear.pdf
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
Soil Improvement Techniques Note - Rabbi
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
distributed database system" (DDBS) is often used to refer to both the distri...
Feature types and data preprocessing steps
Module 8- Technological and Communication Skills.pptx
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
"Array and Linked List in Data Structures with Types, Operations, Implementat...
Current and future trends in Computer Vision.pptx
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
Software Engineering and software moduleing
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
August -2025_Top10 Read_Articles_ijait.pdf
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
737-MAX_SRG.pdf student reference guides

Icy Moon Surface Simulation and Stereo Depth Estimation for Sampling Autonomy CL24_2268.pdf

  • 1. Icy Moon Surface Simulation and Stereo Depth Estimation for Sampling Autonomy Ramchander Bhaskara1, Georgios Georgakis2, Jeremy Nash2, MarissaCameron2, Joseph Bowkett2, Adnan Ansar2, Manoranjan Majji1,Paul Backes2 1Texas A&M University | 2Jet Propulsion Laboratory
  • 2. Motivation Engineering representation for icy-moon surface exploration at sampling scale. 1. System design: Spectral understanding for surface autonomy a. Imaging sensor designand selection b. Computer vision algorithms 2. Analysis: Most challenging environments for visual perception Will legacy vision pipelines be sufficient for perception? 2
  • 3. Topics 1. Review: Challenges in icy-moon surface simulations 2. Software: Graphical Utility for Icy-Moon Surface Simulations (GUISS) 3. Analysis: Stereo Depth Estimation • Stereo matching evaluation under challengingvisual hypotheses 4. Conclusion & ongoing work: Are simulations enough? 3
  • 4. 1. Review Icy world study | Objectives | Challenges | Literature 4
  • 5. 1. Review – the why. 5 • Hydrothermal activity – Enceladus/Europa • Europa Clipper • Jupiter Icy Moons Explorer (JUICE) • Decadal survey: Enceladus Orbilander Enceladus plume - Cassini Source: JPL/NASA SAR image mosaic Source: JPL/NASA
  • 6. 1. Review – the objectives. 6 Enceladus plume - Cassini Source: JPL/NASA SAR image mosaic Source: JPL/NASA • Sampling of plume materials • Hard engineeringproblem • Perception system goals: • Recover topography(DEM) and texture for site selection • Fault identification • Localization • Excavation tracking Perception systemdevelopment for sampling autonomy
  • 7. 1. Review – the challenges. • Structural diversity • Plain, dominated by ice blocks • Surface disruptionsand faulting • Largely unknownat high resolution • Spectral diversity • High albedo > 0.8 (Enceladus) • Backscattering • Crystalline and amorphousice • Freshsnow, plumes, and salts • Subsurface water • Ice thickness: 3-30 kms 7 4m/pixel Enceladus’South pole terrain (Cassini, JPL/Caltech) Structural Mapping of Enceladus (CassiniISS, JPL/NASA)
  • 8. 1. Review – Literature. • Scientific rendering for planetary surface simulations 8 Simulator Features SurRender (Airbus) large scalesimulations. NaRPA (Texas A&M) Limited to Lambertian models. SurRender (Airbus) large scalesimulations, validation of radiometric and sensor models. Shader limitations. PANGU (ESA) Standard in vision based navigation.Limited availability. SISPO(Univ. of Tartu) Image aberrations and environment models. OceanWATERS (NASA) No systematictreatmentof reflectancemodels. DUST (NASA) Lunar simulations at scalewith accurate lighting, DTMs integrated. DARTS (JPL) SAELSim– focus is on lander dynamics.
  • 9. 2. Rendering system Overview | Terrain | Texture | Lighting | Sensor models 9
  • 10. 2. Graphical Utility for Icy-Moon Surface Simulations (GUISS) Overview • Python application using Blender Cycles • Easy to adopt and reconfigure • Open shading language (OSL) • Building blocks • Terrain modeling • Texture modeling • Lighting • Sensor 10 GUISS rendering pipeline Software: https://github.com/nasa-jpl/guiss
  • 11. 2. GUISS – Terrain modeling. 11 • Diverse observation geometries – procedural methods • FractionalBrownian motion • Import DEMs (Earth analogues) • Custom meshes (glaciers) • Features: rock distribution Terrain modeling Source: Crow-Willard et al.|Enceladus structural diversity
  • 12. 2. GUISS – Terrain modeling. 12 • Procedural elevation models • FractionalBrownian motion • Smooth randomness throughnoise functionsto construct self-similarity. Primitives Multi-fractal Hetero-terrain Hybrid Voronoi Blender: Mesh with noise variations Gaea: Perlin noise example
  • 13. 2. GUISS – Terrain modeling. 13 Scenereconstructions from Europa lander field testingcampaign Matanuska Glacier, AK. Rocky and ridged terrainsfrom Gaea software. Procedural multi-fractal terrains,icy penitente features.
  • 14. 2. GUISS – Terrain modeling. 14 Rock distribution • Varying scales and densities • meta data. RGB image Semantic segmentationmask Instance segmentationmask
  • 15. 2. GUISS – Texture modeling. 15 • Spectrally challenging environments • High albedo (Europa 0.64, Enceladus 0.81) • Roughness(fresh snow – very low) • Specular • Subsurface scattering • Texture (UV) mapping • Procedural texture displacement. Texture modeling Shader used: Principled Bidirectional ScatteringDistribution Function (PrincipledBSDF)
  • 16. 2. GUISS – Texture modeling. 16 • UV mapping • Field campaigns– dense reconstruction • Catalog of albedo, displacement, normal, transmission,roughness maps • UV texture mapping • ConsistentUV scaling: map object coordinatesto UV coordinates • Blending texturedtiles ReconstructedUV texture Albedo and transmission maps: snow and rocks Example renders: UV mapping onto a mesh
  • 17. 2. GUISS – Texture modeling. 17 • Procedural texture • Effectto displace the regolithic surface • Variationsthrough changesin surface normals • Proceduraladjustments to surface roughnessand normals • Blender Cycles (Principled BSDF) for realismand subsurfacescattering effects. Representativescene:procedural displacement
  • 18. 2. GUISS – Texture modeling. 18 Subsurface scattering Transmission factor
  • 19. 2. GUISS - Lighting. • Illumination model • Directand indirectsources • Scaled models • Angular diameter • Relative distances • Irradiance and observation geometry: NAIF. 19 Illumination model NAIF: Navigationand Ancillary Information Facility Representative terrain:Sun elevation angles
  • 20. 2. GUISS - Sensor. 20 • Camera • Blender supported capabilities • Motion blur • Lens type and distortion • Panoramic and stereoscopic • Noise and denoising filters • Output • Stereo image pair • Groundtruth depth • Segmentation passes. Stereoimage pair Semantic mask Instance mask Depth map
  • 21. 3. Stereo depth estimation analysis Sampling autonomy | Baselines | Datasets | Evaluation | Results 21
  • 22. 3. Depth estimation – Baselines. 22 • StereoBM1 • Block Matching • # Disparities • Sum of Absolute Differences(SAD) • JPLV2 • Used on Mars Exploration Rover • DSMNet3 • Deep-learningbased • Improved generalizationto new visual domains. • IGEV4 • State-of-the-art. 1Scharstein and R. Szeliski,“A taxonomyandevaluation of dense two-frame stereo correspondence algorithms,”International journal of computer vision, vol. 47,pp. 7–42,2002. 2S.B.Goldberg, M.W. Maimone,andL. Matthies,“Stereo vision androver navigationsoftwarefor planetary exploration,”in Proceedings, IEEE aerospace conference, vol. 5.IEEE, 2002,pp.5–5. 3Zhang,X.Qi, R.Yang,V. Prisacariu,B. Wah,and P. Torr,“Domain-invariant stereo matchingnetworks,”in Computer Vision–ECCV 2020:16thEuropean Conference, Glasgow,UK, August 23–28,2020,Proceedings,Part II 16. Springer, 2020,pp.420–439. 4G. Xu, X. Wang, X.Ding, andX. Yang,“Iterative geometry encoding volume for stereo matching,”in Proceedings of the IEEE/CVF Conference on Computer Vision andPattern Recognition,2023,pp. 21 91921 928.
  • 23. 3. Depth estimation – Datasets. 23 • Procedural terrain variation • Planar to highly ruggedterrains • Texture variation • UV maps and albedo maps • BSDF parameters • Albedo, specularity, roughness, transmission,subsurfacefactor. • Lighting variations • Sun elevation angles • Reconstructions Total Images Reconstructe d Simulated 5020 3060 1960
  • 24. 3. Depth estimation – Results. 24 • Qualitativeevaluation • Deep learning methods outperformclassicalmethods • Trained on visually dissimilar domains • JPLV - comparable errorsfor real reconstructedscenes.
  • 25. 3. Depth estimation – Metrics. 26 • StereoBM: 87 cm & 10.1% gap on L1 and DoD metrics. • 2.3% DOD result of IGEV Performance evaluation on the datasets. • L1 Errorof DSMNet and IGEV are 0.29 and 0.26 – errorsare still significant • IGEV’s 0.03 si-RMSE (scale-invariant).
  • 26. 3. Depth estimation – Metrics. 27 • Varying values of Albedo • StereoBM and JPLV degrade • Deep learning models exhibit robustnessto high brightness. Metricswith varying values of albedo.
  • 27. 3. Analysis – Runtimes. 28 Rendering runtime • Reconstructed scenes: 3 seconds (Intel i7 CPU) per stereopair and truth (640 x 480) Synthetic scenes:1 minute. Stereo depth estimation runtime • Intel i7 CPU, NVIDIA RTX 3080 GPU (resolution:640 x 480).
  • 28. 4. Conclusion and ongoing work Limitations | Development 29
  • 29. 4. Conclusion – Limitations. 30 • Fidelity • Renderingsare to be validated. • Photometric model • Hapke type BRDF models. • SPICE Kernel integration • Missionlike conditions • Sensor model • Real sensor(noise models) • Lidar, structured light – renderingand depth estimation Lidar simulation development.
  • 30. 4. Conclusion – Limitations. 31 • Fidelity • Renderingsare to be validated. • Photometric model • Hapke type BRDF models. • SPICE Kernel integration • Missionlike conditions • Sensor model • Real sensor(noise models) • Lidar, structured light – renderingand depth estimation Lidar simulation development.
  • 31. 4. Conclusion – Limitations. 32 • Fidelity • Renderingsare to be validated. • Photometric model • Hapke type BRDF models. • SPICE Kernel integration • Missionlike conditions • Sensor model • Real sensor(noise models) • Lidar, structured light – renderingand depth estimation Hapke BRDF PrincipledBSDF
  • 32. 33 https://github.com/nasa-jpl/guiss Questions We acknowledge the inputs of JPL technologistsIssa Nesnas,Yang Cheng, Asher Elmquist, Travis Driver, Gregory Griffin, Spencer Diehl, Ishan Mishra, Ashish Goel, Anup Katake,Reg Willson, Micheal Swan, Deegan Atha, Daniel Moreno, and Samuel Howell.
  • 33. 34 Backup slides Noise scale: 0.5 Noise scale: 3