SlideShare a Scribd company logo
Bootstrapping Skynet: 
Calibration and Autonomic Self-Control of 
Structured Peer-to-Peer Networks 
Timo Klerx and Kalman Graffi 
Department of Computer Science 
University of Paderborn 
Research Group Knowledge-Based Systems 
Hans Kleine Büning 
September 11, 2013 
UNIVERSITY OF PADERBORN 
Knowledge-Based Systems
Motivation Approach Evaluation Conclusion 
Outline 
1 Motivation 
2 Approach 
3 Evaluation 
4 Conclusion & Future Work 
Bootstrapping Skynet Klerx and Graffi 1/17
Motivation Approach Evaluation Conclusion 
Outline 
1 Motivation 
2 Approach 
3 Evaluation 
4 Conclusion & Future Work 
Bootstrapping Skynet Klerx and Graffi 2/17
Motivation Approach Evaluation Conclusion 
Bootstrapping SkyNet 
Towards self-optimization 
SkyNet: Management layer in PeerfactSim.KOM 
(P2P-)Systems become more and more complex 
Applications 
Parameters 
Layers 
. . . 
Ideally, systems manage themselves 
Choose parameters 
Defend attacks 
Restore network structure 
. . . 
Bootstrapping Skynet Klerx and Graffi 3/17
Motivation Approach Evaluation Conclusion 
MAPE 
How to achieve self-management? 
Monitor 
Analyze 
Plan 
Execute 
Systems implementing the MAPE circuit are autonomous. 
Everything except Planning is already implemented. 
Bootstrapping Skynet Klerx and Graffi 4/17
Motivation Approach Evaluation Conclusion 
Outline 
1 Motivation 
2 Approach 
3 Evaluation 
4 Conclusion & Future Work 
Bootstrapping Skynet Klerx and Graffi 5/17
Motivation Approach Evaluation Conclusion 
Plan Phase 
Idea 
Offline 
Gather data by simulation 
Learn the interdependencies in the data 
Construct a regressor with goal as input to compute parameter 
values 
Online 
Define a desired goal 
Ask the regressor for optimal parameter values 
Change parameter values on every node 
Bootstrapping Skynet Klerx and Graffi 6/17
Motivation Approach Evaluation Conclusion 
Plan Phase 
Idea 
Offline 
Gather data by simulation 
Learn the interdependencies in the data 
Construct a regressor with goal as input to compute parameter 
values 
Online 
Define a desired goal 
Ask the regressor for optimal parameter values 
Change parameter values on every node 
Bootstrapping Skynet Klerx and Graffi 6/17
Motivation Approach Evaluation Conclusion 
Neural Networks 
Basics 
Classification and regression 
(Often) supervised learning – need labeled training data 
Learn effects of parameters 
Input must be specified precisely 
Can approximate arbitrary functions with arbitrary precision 
Bootstrapping Skynet Klerx and Graffi 7/17
Motivation Approach Evaluation Conclusion 
Data Generation 
Data characteristics 
Three types of figures 
Environment Parameters (E, |E| = 5) – Changed by all users 
node count, churn, . . . 
Overlay Parameters (O, |O| = 8) – Changeable by single nodes 
message timeout, max hop count, . . . 
Metrics (M, |M| = 18) – Performance values 
avg. hop count, avg. network messages in, . . . 
View as function f : E × O ! M 
Bootstrapping Skynet Klerx and Graffi 8/17
Motivation Approach Evaluation Conclusion 
Data Generation 
Combination approaches 
Full factorial design 
AQll possible combinations of parameters ni 
=1 |pi | 
Takes too much time 
One factorial design 
Only one parameter varied at a time 
RPest set to default values ni 
=1 |pi | 
Few data points 
Mixed factorial design 
sj 
Tradeoff between one and full factorial design 
Some parameters (E) in full factorial design, others (O) set to 
Qdefault values ej Pt 
1 || · 
=k=1 |ok | 
Bootstrapping Skynet Klerx and Graffi 9/17
Motivation Approach Evaluation Conclusion 
Data Generation 
Combination approaches 
Full factorial design 
AQll possible combinations of parameters ni 
=1 |pi | 
Takes too much time 
One factorial design 
Only one parameter varied at a time 
RPest set to default values ni 
=1 |pi | 
Few data points 
Mixed factorial design 
sj 
Tradeoff between one and full factorial design 
Some parameters (E) in full factorial design, others (O) set to 
Qdefault values ej Pt 
1 || · 
=k=1 |ok | 
Bootstrapping Skynet Klerx and Graffi 9/17
Motivation Approach Evaluation Conclusion 
Data Generation 
Combination approaches 
Full factorial design 
AQll possible combinations of parameters ni 
=1 |pi | 
Takes too much time 
One factorial design 
Only one parameter varied at a time 
RPest set to default values ni 
=1 |pi | 
Few data points 
Mixed factorial design 
sj 
Tradeoff between one and full factorial design 
Some parameters (E) in full factorial design, others (O) set to 
Qdefault values ej Pt 
1 || · 
=k=1 |ok | 
Bootstrapping Skynet Klerx and Graffi 9/17
Motivation Approach Evaluation Conclusion 
Neural Networks 
Learn the data characteristics 
Remember function f : E × O ! M 
Reorder f to ^f : M × E ! O 
M: The preferred state 
E: The current environment state 
v 2 ^f : (m1, ...,mr , e1, ..., es , o1, ..., ot ) 
Approximate ^f : Predict the overlay parameter values when given 
environment state and a goal 
Only realistic goals as input 
Train with resilient backpropagation 
One neural network for each overlay parameter 
Split data in three disjoint sets: training, validation, prediction 
Bootstrapping Skynet Klerx and Graffi 10/17
Motivation Approach Evaluation Conclusion 
Neural Networks 
Learn the data characteristics 
Remember function f : E × O ! M 
Reorder f to ^f : M × E ! O 
M: The preferred state 
E: The current environment state 
v 2 ^f : (m1, ...,mr , e1, ..., es , o1, ..., ot ) 
Approximate ^f : Predict the overlay parameter values when given 
environment state and a goal 
Only realistic goals as input 
Train with resilient backpropagation 
One neural network for each overlay parameter 
Split data in three disjoint sets: training, validation, prediction 
Bootstrapping Skynet Klerx and Graffi 10/17
Motivation Approach Evaluation Conclusion 
Neural Networks 
Learn the data characteristics 
Remember function f : E × O ! M 
Reorder f to ^f : M × E ! O 
M: The preferred state 
E: The current environment state 
v 2 ^f : (m1, ...,mr , e1, ..., es , o1, ..., ot ) 
Metrics 
... 
Environment 
Parameters 
Overlay 
Parameter 
Hidden 
Layer(s) 
... 
Approximate ^f : Predict the overlay parameter values when given 
environment state and a goal 
Only realistic goals as input 
Train with resilient backpropagation 
One neural network for each overlay parameter 
Split data in three disjoint sets: training, validation, prediction 
Bootstrapping Skynet Klerx and Graffi 10/17
Motivation Approach Evaluation Conclusion 
Outline 
1 Motivation 
2 Approach 
3 Evaluation 
4 Conclusion & Future Work 
Bootstrapping Skynet Klerx and Graffi 11/17
Motivation Approach Evaluation Conclusion 
Overview 
Which generation approach leads to good results? 
Mixed factorial design (65,100 combinations) 
Most of the overlay parameter values are the default value 
Always predict "default" results in small errors 
One factorial design (80 combinations) 
Use feature selection (CFS and PCA) 
Not all parameters predicted successfully 
Bootstrapping Skynet Klerx and Graffi 12/17
Motivation Approach Evaluation Conclusion 
Prediction Quality 
Error while/after training 
o1 =message timeout 
o6 =update fingertable interval 
o7 =update neighbors interval 
o8 =update successor interval 
o2 =message resend 
o3 =operation timeout 
o4 =operation max. redos 
o5 =max hop count 
120 
100 
80 
60 
40 
20 
0 
o1 o2 o3 o4 o5 o6 o7 o8 
Error in Percent 
Parameter 
cfs 
pca 
no fs 
(a) validation 
120 
100 
80 
60 
40 
20 
0 
o1 o2 o3 o4 o5 o6 o7 o8 
Error in Percent 
Parameter 
cfs 
pca 
no fs 
(b) prediction 
Figure: Error on prediction and validation set 
Bootstrapping Skynet Klerx and Graffi 13/17
Motivation Approach Evaluation Conclusion 
Prediction Quality 
Error in the MAPE circuit without feature selection 
0.3 
0.28 
0.26 
0.24 
0.22 
0.2 
0.18 
0.16 
0.14 
0.12 
w1 w1 w1 w2 w2 w2 w3 w3 w3 
Avg. Duration (m16) 
Message Timeout (o1) 
optimal 
predicted 
200 
180 
160 
140 
120 
100 
80 
60 
40 
20 
0 
optimal 
predicted 
w1 w1 w1 w2 w2 w2 w3 w3 w3 
Avg. Net Messages Out (m2) 
Update Fingertable Interval (o6) 
90 
80 
70 
60 
50 
40 
30 
20 
optimal 
predicted 
w1 w1 w1 w2 w2 w2 w3 w3 w3 
Avg. Net Messages Out (m2) 
Update Neighbors Interval (o7) 
65 
60 
55 
50 
45 
40 
35 
30 
optimal 
predicted 
w1 w1 w1 w2 w2 w2 w3 w3 w3 
Avg. Net Messages Out (m2) 
Update Successor Interval (o8) 
Bootstrapping Skynet Klerx and Graffi 14/17
Motivation Approach Evaluation Conclusion 
Outline 
1 Motivation 
2 Approach 
3 Evaluation 
4 Conclusion & Future Work 
Bootstrapping Skynet Klerx and Graffi 15/17
Motivation Approach Evaluation Conclusion 
Conclusion 
Mixed factorial design not suitable 
MAPE circuit closed in a proof-of-concept 
Feature selection not beneficial 
Evaluation results are ambiguous 
Good results for some parameters, bad for others 
Bootstrapping Skynet Klerx and Graffi 16/17
Motivation Approach Evaluation Conclusion 
Future Work 
Investigate the other parameters 
Try full factorial design with less parameters, but more granular 
Design more metrics 
Embed the implemented MAPE circuit in a real system 
Decentralize the neural network(s) – use local view 
Bootstrapping Skynet Klerx and Graffi 17/17
Motivation Approach Evaluation Conclusion 
Future Work 
Investigate the other parameters 
Try full factorial design with less parameters, but more granular 
Design more metrics 
Embed the implemented MAPE circuit in a real system 
Decentralize the neural network(s) – use local view 
Thank you for your attention! 
Bootstrapping Skynet Klerx and Graffi 17/17
Parameter values Evaluation 
Outline 
5 Parameter values 
6 Evaluation 
Bootstrapping Skynet Klerx and Graffi A-1
Parameter values Evaluation 
Overlay Parameters 
Code Overlay Parameter Unit default 
o1 Message Timeout s 10 
o2 Message Resend # 3 
o3 Operation Timeout s 120 
o4 Operation Max. Redos # 3 
o5 Max Hop Count # 50 
o6 Upd. Finger Table Intv. ms 30 
o7 Upd. Neighbors Intv. ms 30 
o8 Upd. Successor Intv. ms 30 
Bootstrapping Skynet Klerx and Graffi A-2
Parameter values Evaluation 
Environment Parameters 
Code Env. Parameter Unit default 
e1 Node Count # 1000 
e2 Churn Factor # 0 
e3 Mean Session Length s 1 
e4 Bandwidth MB/s OECD 
e5 Random Lookup Rate 1/h 30 
Bootstrapping Skynet Klerx and Graffi A-3
Parameter values Evaluation 
Metrics 
Code Metrics Unit 
Messages 
m1 Avg. Network Message In # 
m2 Avg. Network Message Out # 
m3 Avg. Transport Message In # 
m4 Avg. Transport Message Out # 
m5 Avg. Forwarded Queries # 
m6 Avg. Service Message Throughput #/s 
m7 St. Dev. Service Message Throughput #/s 
m8 Avg. Service Message Count # 
m9 St. Dev. Service Message Count # 
Traffic 
m10 Avg. Network Bytes Sent kB 
m11 Avg. Transport Bytes Sent kB 
m12 Avg. Free Upload Bandwidth kB/s 
Performance 
m13 Avg. Hop Count # 
m14 Avg. Lookup Hops # 
m15 St. Dev. Lookup Hops # 
m16 Avg. Lookup Duration s 
m17 St. Dev. Lookup Duration s 
m18 Avg. Operation Duration s 
Bootstrapping Skynet Klerx and Graffi A-4
Parameter values Evaluation 
Parameter Variations 
Code Mixed Factorial One Factorial 
o1 5, 10, 20 2,3,4,5,8,10,12,15,18,20 
o2 0, 1, 3, 10 0,1,2,3,4,5,7,8,9 
o3 60, 120, 300 60,90,120,150,180, 
210,240,270,285,300 
o4 0, 1, 3, 10 0,1,2,3,4,5,7,8,9,10 
o5 5, 10, 25, 50, 100 3,5,7,10,17,35,50,75,100 
o6 3, 10, 30, 60 3,5,7,10,15,20,30,40,50,60 
o7 3, 10, 30, 60 3,5,7,10,15,20,30,40,50,60 
o8 3, 10, 30, 60 3,5,7,10,15,20,30,40,50,60 
e1 10, 33, 100, 330, 1000 
1000, 3300, 10000 
e2 0, 1 
10 , 3 
10 0 
e3 30, 60; 180,1 1 
e4 OECD, random: 
1-2, 5-10, 10- 
30, 1-30 
OECD 
e5 0, 1, 3, 6, 30 30 
Bootstrapping Skynet Klerx and Graffi A-5
Parameter values Evaluation 
Outline 
5 Parameter values 
6 Evaluation 
Bootstrapping Skynet Klerx and Graffi A-6
Parameter values Evaluation 
Process of Evaluation 
Parameter 
Value 
X 
Parameter 
Value 
X‘ 
Metric 
Vector 
M 
Metric 
Vector 
M‘ 
Neural 
Network 
Simulation Simulation 
compare 
compare 
Bootstrapping Skynet Klerx and Graffi A-7
Parameter values Evaluation 
Results of Evaluation 
Table: Comparison of X, X0, M and M0 
Timestamp X X0 M M0 |1 − M 
M0 | |1 − X 
X0 | 
For o1 and m16 
w1 6s 6s 0.14 0.15 0.07 0.00 
w2 11s 11s 0.18 0.20 0.10 0.00 
w3 19s 18s 0.24 0.27 0.11 0.06 
For o6 and m2 
w1 4s 4s 175.00 173.66 0.01 0.00 
w2 25s 26s 39.60 38.34 0.03 0.04 
w3 55s 54s 24.50 25.51 0.04 0.02 
For o7 and m2 
w1 6s 4.6s 65.80 77.27 0.15 0.30 
w2 25s 27.5s 36.60 35.98 0.02 0.09 
w3 51s 55s 31.70 31.63 0.00 0.07 
For o8 and m2 
w1 4s 3.9s 60.21 60.90 0.01 0.03 
w2 37s 36s 34.27 34.10 0.00 0.03 
w3 55s 52s 33.21 33.00 0.01 0.06 
Bootstrapping Skynet Klerx and Graffi A-8

More Related Content

PDF
Low Power High-Performance Computing on the BeagleBoard Platform
PPTX
Avi Pfeffer, Principal Scientist, Charles River Analytics at MLconf SEA - 5/2...
PDF
Integrative Parallel Programming in HPC
PDF
The Machinery behind Deep Learning
PDF
ANSSummer2015
PPTX
Braxton McKee, CEO & Founder, Ufora at MLconf NYC - 4/15/16
Low Power High-Performance Computing on the BeagleBoard Platform
Avi Pfeffer, Principal Scientist, Charles River Analytics at MLconf SEA - 5/2...
Integrative Parallel Programming in HPC
The Machinery behind Deep Learning
ANSSummer2015
Braxton McKee, CEO & Founder, Ufora at MLconf NYC - 4/15/16

What's hot (20)

PPTX
Heterogeneous Defect Prediction (

ESEC/FSE 2015)
PPT
03 How to Keep Domain Requirements Models Reasonably Sized
PPTX
A Highly Parallel Semi-Dataflow FPGA Architecture for Large-Scale N-Body Simu...
PDF
Rapport_Cemracs2012
PDF
Deep Learning and Optimization Methods
PPT
Slicing of Object-Oriented Programs
PDF
Large Scale Kernel Learning using Block Coordinate Descent
PPTX
Using Derivation-Free Optimization in the Hadoop Cluster with Terasort
PDF
Deep Stream Dynamic Graph Analytics with Grapharis - Massimo Perini
PDF
Rajat Monga, Engineering Director, TensorFlow, Google at MLconf 2016
PPT
Fast optimization intevacoct6_3final
PDF
Simulation of Wireless Communication Systems
PDF
A shared-filesystem-memory approach for running IDA in parallel over informal...
PDF
Subgraph Matching for Resource Allocation in the Federated Cloud Environment
PDF
201907 AutoML and Neural Architecture Search
PDF
Erin LeDell, Machine Learning Scientist, H2O.ai at MLconf ATL 2016
PDF
DNR - Auto deep lab paper review ppt
PDF
Programing Slicing and Its applications
PDF
Detection focal loss 딥러닝 논문읽기 모임 발표자료
PPTX
Mit cilk
Heterogeneous Defect Prediction (

ESEC/FSE 2015)
03 How to Keep Domain Requirements Models Reasonably Sized
A Highly Parallel Semi-Dataflow FPGA Architecture for Large-Scale N-Body Simu...
Rapport_Cemracs2012
Deep Learning and Optimization Methods
Slicing of Object-Oriented Programs
Large Scale Kernel Learning using Block Coordinate Descent
Using Derivation-Free Optimization in the Hadoop Cluster with Terasort
Deep Stream Dynamic Graph Analytics with Grapharis - Massimo Perini
Rajat Monga, Engineering Director, TensorFlow, Google at MLconf 2016
Fast optimization intevacoct6_3final
Simulation of Wireless Communication Systems
A shared-filesystem-memory approach for running IDA in parallel over informal...
Subgraph Matching for Resource Allocation in the Federated Cloud Environment
201907 AutoML and Neural Architecture Search
Erin LeDell, Machine Learning Scientist, H2O.ai at MLconf ATL 2016
DNR - Auto deep lab paper review ppt
Programing Slicing and Its applications
Detection focal loss 딥러닝 논문읽기 모임 발표자료
Mit cilk
Ad

Viewers also liked (8)

PDF
Minnie Welch autograph_book
PPT
Zakat syakir
PDF
William Kelly's Scrapbook
PDF
Research_report-2
PPTX
этнография
PDF
Grace Brewster Murray hopper
PDF
Forskningsrapport 2015 M tryk 3-2
Minnie Welch autograph_book
Zakat syakir
William Kelly's Scrapbook
Research_report-2
этнография
Grace Brewster Murray hopper
Forskningsrapport 2015 M tryk 3-2
Ad

Similar to IEEE P2P 2013 - Bootstrapping Skynet: Calibration and Autonomic Self-Control of Structured Peer-to-Peer Networks (20)

PPTX
RAMSES: Robust Analytic Models for Science at Extreme Scales
PDF
Fast Insights to Optimized Vectorization and Memory Using Cache-aware Rooflin...
PDF
Scafi: Scala with Computational Fields
PDF
PRETZEL: Opening the Black Box of Machine Learning Prediction Serving Systems
PDF
Modeling and Optimization of Resource Allocation in Cloud [PhD Thesis Progres...
PDF
Program Performance Analysis Toolkit Adaptor
PPT
Presentation
PDF
Log Analytics in Datacenter with Apache Spark and Machine Learning
PDF
Log Analytics in Datacenter with Apache Spark and Machine Learning
PDF
CLIM Program: Remote Sensing Workshop, The Earth System Grid Federation as a ...
PDF
Apache SystemML Optimizer and Runtime techniques by Arvind Surve and Matthias...
PDF
Apache SystemML Optimizer and Runtime techniques by Arvind Surve and Matthias...
PDF
AN IMPROVED METHOD FOR IDENTIFYING WELL-TEST INTERPRETATION MODEL BASED ON AG...
DOCX
Sample Project Report okokokokokokokokok
PDF
PID2143641
PDF
Heuristic design of experiments w meta gradient search
PPTX
Swift Parallel Scripting for High-Performance Workflow
PPT
Probe Debugging
RAMSES: Robust Analytic Models for Science at Extreme Scales
Fast Insights to Optimized Vectorization and Memory Using Cache-aware Rooflin...
Scafi: Scala with Computational Fields
PRETZEL: Opening the Black Box of Machine Learning Prediction Serving Systems
Modeling and Optimization of Resource Allocation in Cloud [PhD Thesis Progres...
Program Performance Analysis Toolkit Adaptor
Presentation
Log Analytics in Datacenter with Apache Spark and Machine Learning
Log Analytics in Datacenter with Apache Spark and Machine Learning
CLIM Program: Remote Sensing Workshop, The Earth System Grid Federation as a ...
Apache SystemML Optimizer and Runtime techniques by Arvind Surve and Matthias...
Apache SystemML Optimizer and Runtime techniques by Arvind Surve and Matthias...
AN IMPROVED METHOD FOR IDENTIFYING WELL-TEST INTERPRETATION MODEL BASED ON AG...
Sample Project Report okokokokokokokokok
PID2143641
Heuristic design of experiments w meta gradient search
Swift Parallel Scripting for High-Performance Workflow
Probe Debugging

More from Kalman Graffi (20)

PDF
IEEE CRS 2014 - Secure Distributed Data Structures for Peer-to-Peer-based Soc...
PPTX
LibreSocial - P2P Framework for Social Networks - Overview
PPTX
IEEE ICCCN 2013 - Continuous Gossip-based Aggregation through Dynamic Informa...
PPT
IEEE ICC 2013 - Symbiotic Coupling of P2P and Cloud Systems: The Wikipedia Case
PPT
IEEE HPCS 2013 - Comparative Evaluation of Peer-to-Peer Systems Using Peerfac...
PPTX
Kalman Graffi - IEEE NetSys 2013 - Ca-Re-Chord - A Churn Resistant Self-stabi...
PDF
Kalman Graffi - IEEE NetSys 2013 - Adding Capacity-Aware Storage Indirection ...
PPT
Kalman Graffi - IEEE ICC 2013 - Symbiotic Coupling of Peer-to-Peer and Cloud ...
PPT
Kalman Graffi - IEEE HPCS 2013 - Comparative Evaluation of P2P Systems Using ...
PDF
Kalman Graffi - Monitoring and Management of P2P Systems - 2010
PPT
IEEE CCNC 2011: Kalman Graffi - LifeSocial.KOM: A Secure and P2P-based Soluti...
PDF
Kalman Graffi - 15 Slide on Monitoring P2P Systems - 2010
PDF
QuaP2P Lunchtalk on Online Social Networks 2010 - LifeSocial
PPT
LifeSocial - A P2P-Platform for Secure Online Social Networks
PDF
Dagstuhl 2010 - Kalman Graffi - Alternative, more promising IT Paradigms for ...
PDF
Kalman Graffi - 10 Slide - 2010
PDF
Kalman Graffi - 1 Slide - 2010
PPT
Kalman Graffi - Sichere Digitale Soziale Netzwerke – Eine Chance für E-Learni...
PDF
Kalman Graffi - 3rd Research Talk - 2010
PPT
Cebit 2009 - Kalman Graffi - LifeSocial.KOM - Eine dezentrale Plattform für s...
IEEE CRS 2014 - Secure Distributed Data Structures for Peer-to-Peer-based Soc...
LibreSocial - P2P Framework for Social Networks - Overview
IEEE ICCCN 2013 - Continuous Gossip-based Aggregation through Dynamic Informa...
IEEE ICC 2013 - Symbiotic Coupling of P2P and Cloud Systems: The Wikipedia Case
IEEE HPCS 2013 - Comparative Evaluation of Peer-to-Peer Systems Using Peerfac...
Kalman Graffi - IEEE NetSys 2013 - Ca-Re-Chord - A Churn Resistant Self-stabi...
Kalman Graffi - IEEE NetSys 2013 - Adding Capacity-Aware Storage Indirection ...
Kalman Graffi - IEEE ICC 2013 - Symbiotic Coupling of Peer-to-Peer and Cloud ...
Kalman Graffi - IEEE HPCS 2013 - Comparative Evaluation of P2P Systems Using ...
Kalman Graffi - Monitoring and Management of P2P Systems - 2010
IEEE CCNC 2011: Kalman Graffi - LifeSocial.KOM: A Secure and P2P-based Soluti...
Kalman Graffi - 15 Slide on Monitoring P2P Systems - 2010
QuaP2P Lunchtalk on Online Social Networks 2010 - LifeSocial
LifeSocial - A P2P-Platform for Secure Online Social Networks
Dagstuhl 2010 - Kalman Graffi - Alternative, more promising IT Paradigms for ...
Kalman Graffi - 10 Slide - 2010
Kalman Graffi - 1 Slide - 2010
Kalman Graffi - Sichere Digitale Soziale Netzwerke – Eine Chance für E-Learni...
Kalman Graffi - 3rd Research Talk - 2010
Cebit 2009 - Kalman Graffi - LifeSocial.KOM - Eine dezentrale Plattform für s...

Recently uploaded (20)

PDF
Introduction to the IoT system, how the IoT system works
PPT
isotopes_sddsadsaadasdasdasdasdsa1213.ppt
PPTX
presentation_pfe-universite-molay-seltan.pptx
DOCX
Unit-3 cyber security network security of internet system
PDF
Testing WebRTC applications at scale.pdf
PPTX
June-4-Sermon-Powerpoint.pptx USE THIS FOR YOUR MOTIVATION
PPTX
introduction about ICD -10 & ICD-11 ppt.pptx
PDF
Tenda Login Guide: Access Your Router in 5 Easy Steps
PDF
WebRTC in SignalWire - troubleshooting media negotiation
PDF
The New Creative Director: How AI Tools for Social Media Content Creation Are...
PDF
How to Ensure Data Integrity During Shopify Migration_ Best Practices for Sec...
PPT
Design_with_Watersergyerge45hrbgre4top (1).ppt
PPTX
522797556-Unit-2-Temperature-measurement-1-1.pptx
PDF
Vigrab.top – Online Tool for Downloading and Converting Social Media Videos a...
PPTX
Introduction about ICD -10 and ICD11 on 5.8.25.pptx
PPTX
Funds Management Learning Material for Beg
PPTX
Digital Literacy And Online Safety on internet
PPTX
international classification of diseases ICD-10 review PPT.pptx
PPTX
PptxGenJS_Demo_Chart_20250317130215833.pptx
PDF
SASE Traffic Flow - ZTNA Connector-1.pdf
Introduction to the IoT system, how the IoT system works
isotopes_sddsadsaadasdasdasdasdsa1213.ppt
presentation_pfe-universite-molay-seltan.pptx
Unit-3 cyber security network security of internet system
Testing WebRTC applications at scale.pdf
June-4-Sermon-Powerpoint.pptx USE THIS FOR YOUR MOTIVATION
introduction about ICD -10 & ICD-11 ppt.pptx
Tenda Login Guide: Access Your Router in 5 Easy Steps
WebRTC in SignalWire - troubleshooting media negotiation
The New Creative Director: How AI Tools for Social Media Content Creation Are...
How to Ensure Data Integrity During Shopify Migration_ Best Practices for Sec...
Design_with_Watersergyerge45hrbgre4top (1).ppt
522797556-Unit-2-Temperature-measurement-1-1.pptx
Vigrab.top – Online Tool for Downloading and Converting Social Media Videos a...
Introduction about ICD -10 and ICD11 on 5.8.25.pptx
Funds Management Learning Material for Beg
Digital Literacy And Online Safety on internet
international classification of diseases ICD-10 review PPT.pptx
PptxGenJS_Demo_Chart_20250317130215833.pptx
SASE Traffic Flow - ZTNA Connector-1.pdf

IEEE P2P 2013 - Bootstrapping Skynet: Calibration and Autonomic Self-Control of Structured Peer-to-Peer Networks

  • 1. Bootstrapping Skynet: Calibration and Autonomic Self-Control of Structured Peer-to-Peer Networks Timo Klerx and Kalman Graffi Department of Computer Science University of Paderborn Research Group Knowledge-Based Systems Hans Kleine Büning September 11, 2013 UNIVERSITY OF PADERBORN Knowledge-Based Systems
  • 2. Motivation Approach Evaluation Conclusion Outline 1 Motivation 2 Approach 3 Evaluation 4 Conclusion & Future Work Bootstrapping Skynet Klerx and Graffi 1/17
  • 3. Motivation Approach Evaluation Conclusion Outline 1 Motivation 2 Approach 3 Evaluation 4 Conclusion & Future Work Bootstrapping Skynet Klerx and Graffi 2/17
  • 4. Motivation Approach Evaluation Conclusion Bootstrapping SkyNet Towards self-optimization SkyNet: Management layer in PeerfactSim.KOM (P2P-)Systems become more and more complex Applications Parameters Layers . . . Ideally, systems manage themselves Choose parameters Defend attacks Restore network structure . . . Bootstrapping Skynet Klerx and Graffi 3/17
  • 5. Motivation Approach Evaluation Conclusion MAPE How to achieve self-management? Monitor Analyze Plan Execute Systems implementing the MAPE circuit are autonomous. Everything except Planning is already implemented. Bootstrapping Skynet Klerx and Graffi 4/17
  • 6. Motivation Approach Evaluation Conclusion Outline 1 Motivation 2 Approach 3 Evaluation 4 Conclusion & Future Work Bootstrapping Skynet Klerx and Graffi 5/17
  • 7. Motivation Approach Evaluation Conclusion Plan Phase Idea Offline Gather data by simulation Learn the interdependencies in the data Construct a regressor with goal as input to compute parameter values Online Define a desired goal Ask the regressor for optimal parameter values Change parameter values on every node Bootstrapping Skynet Klerx and Graffi 6/17
  • 8. Motivation Approach Evaluation Conclusion Plan Phase Idea Offline Gather data by simulation Learn the interdependencies in the data Construct a regressor with goal as input to compute parameter values Online Define a desired goal Ask the regressor for optimal parameter values Change parameter values on every node Bootstrapping Skynet Klerx and Graffi 6/17
  • 9. Motivation Approach Evaluation Conclusion Neural Networks Basics Classification and regression (Often) supervised learning – need labeled training data Learn effects of parameters Input must be specified precisely Can approximate arbitrary functions with arbitrary precision Bootstrapping Skynet Klerx and Graffi 7/17
  • 10. Motivation Approach Evaluation Conclusion Data Generation Data characteristics Three types of figures Environment Parameters (E, |E| = 5) – Changed by all users node count, churn, . . . Overlay Parameters (O, |O| = 8) – Changeable by single nodes message timeout, max hop count, . . . Metrics (M, |M| = 18) – Performance values avg. hop count, avg. network messages in, . . . View as function f : E × O ! M Bootstrapping Skynet Klerx and Graffi 8/17
  • 11. Motivation Approach Evaluation Conclusion Data Generation Combination approaches Full factorial design AQll possible combinations of parameters ni =1 |pi | Takes too much time One factorial design Only one parameter varied at a time RPest set to default values ni =1 |pi | Few data points Mixed factorial design sj Tradeoff between one and full factorial design Some parameters (E) in full factorial design, others (O) set to Qdefault values ej Pt 1 || · =k=1 |ok | Bootstrapping Skynet Klerx and Graffi 9/17
  • 12. Motivation Approach Evaluation Conclusion Data Generation Combination approaches Full factorial design AQll possible combinations of parameters ni =1 |pi | Takes too much time One factorial design Only one parameter varied at a time RPest set to default values ni =1 |pi | Few data points Mixed factorial design sj Tradeoff between one and full factorial design Some parameters (E) in full factorial design, others (O) set to Qdefault values ej Pt 1 || · =k=1 |ok | Bootstrapping Skynet Klerx and Graffi 9/17
  • 13. Motivation Approach Evaluation Conclusion Data Generation Combination approaches Full factorial design AQll possible combinations of parameters ni =1 |pi | Takes too much time One factorial design Only one parameter varied at a time RPest set to default values ni =1 |pi | Few data points Mixed factorial design sj Tradeoff between one and full factorial design Some parameters (E) in full factorial design, others (O) set to Qdefault values ej Pt 1 || · =k=1 |ok | Bootstrapping Skynet Klerx and Graffi 9/17
  • 14. Motivation Approach Evaluation Conclusion Neural Networks Learn the data characteristics Remember function f : E × O ! M Reorder f to ^f : M × E ! O M: The preferred state E: The current environment state v 2 ^f : (m1, ...,mr , e1, ..., es , o1, ..., ot ) Approximate ^f : Predict the overlay parameter values when given environment state and a goal Only realistic goals as input Train with resilient backpropagation One neural network for each overlay parameter Split data in three disjoint sets: training, validation, prediction Bootstrapping Skynet Klerx and Graffi 10/17
  • 15. Motivation Approach Evaluation Conclusion Neural Networks Learn the data characteristics Remember function f : E × O ! M Reorder f to ^f : M × E ! O M: The preferred state E: The current environment state v 2 ^f : (m1, ...,mr , e1, ..., es , o1, ..., ot ) Approximate ^f : Predict the overlay parameter values when given environment state and a goal Only realistic goals as input Train with resilient backpropagation One neural network for each overlay parameter Split data in three disjoint sets: training, validation, prediction Bootstrapping Skynet Klerx and Graffi 10/17
  • 16. Motivation Approach Evaluation Conclusion Neural Networks Learn the data characteristics Remember function f : E × O ! M Reorder f to ^f : M × E ! O M: The preferred state E: The current environment state v 2 ^f : (m1, ...,mr , e1, ..., es , o1, ..., ot ) Metrics ... Environment Parameters Overlay Parameter Hidden Layer(s) ... Approximate ^f : Predict the overlay parameter values when given environment state and a goal Only realistic goals as input Train with resilient backpropagation One neural network for each overlay parameter Split data in three disjoint sets: training, validation, prediction Bootstrapping Skynet Klerx and Graffi 10/17
  • 17. Motivation Approach Evaluation Conclusion Outline 1 Motivation 2 Approach 3 Evaluation 4 Conclusion & Future Work Bootstrapping Skynet Klerx and Graffi 11/17
  • 18. Motivation Approach Evaluation Conclusion Overview Which generation approach leads to good results? Mixed factorial design (65,100 combinations) Most of the overlay parameter values are the default value Always predict "default" results in small errors One factorial design (80 combinations) Use feature selection (CFS and PCA) Not all parameters predicted successfully Bootstrapping Skynet Klerx and Graffi 12/17
  • 19. Motivation Approach Evaluation Conclusion Prediction Quality Error while/after training o1 =message timeout o6 =update fingertable interval o7 =update neighbors interval o8 =update successor interval o2 =message resend o3 =operation timeout o4 =operation max. redos o5 =max hop count 120 100 80 60 40 20 0 o1 o2 o3 o4 o5 o6 o7 o8 Error in Percent Parameter cfs pca no fs (a) validation 120 100 80 60 40 20 0 o1 o2 o3 o4 o5 o6 o7 o8 Error in Percent Parameter cfs pca no fs (b) prediction Figure: Error on prediction and validation set Bootstrapping Skynet Klerx and Graffi 13/17
  • 20. Motivation Approach Evaluation Conclusion Prediction Quality Error in the MAPE circuit without feature selection 0.3 0.28 0.26 0.24 0.22 0.2 0.18 0.16 0.14 0.12 w1 w1 w1 w2 w2 w2 w3 w3 w3 Avg. Duration (m16) Message Timeout (o1) optimal predicted 200 180 160 140 120 100 80 60 40 20 0 optimal predicted w1 w1 w1 w2 w2 w2 w3 w3 w3 Avg. Net Messages Out (m2) Update Fingertable Interval (o6) 90 80 70 60 50 40 30 20 optimal predicted w1 w1 w1 w2 w2 w2 w3 w3 w3 Avg. Net Messages Out (m2) Update Neighbors Interval (o7) 65 60 55 50 45 40 35 30 optimal predicted w1 w1 w1 w2 w2 w2 w3 w3 w3 Avg. Net Messages Out (m2) Update Successor Interval (o8) Bootstrapping Skynet Klerx and Graffi 14/17
  • 21. Motivation Approach Evaluation Conclusion Outline 1 Motivation 2 Approach 3 Evaluation 4 Conclusion & Future Work Bootstrapping Skynet Klerx and Graffi 15/17
  • 22. Motivation Approach Evaluation Conclusion Conclusion Mixed factorial design not suitable MAPE circuit closed in a proof-of-concept Feature selection not beneficial Evaluation results are ambiguous Good results for some parameters, bad for others Bootstrapping Skynet Klerx and Graffi 16/17
  • 23. Motivation Approach Evaluation Conclusion Future Work Investigate the other parameters Try full factorial design with less parameters, but more granular Design more metrics Embed the implemented MAPE circuit in a real system Decentralize the neural network(s) – use local view Bootstrapping Skynet Klerx and Graffi 17/17
  • 24. Motivation Approach Evaluation Conclusion Future Work Investigate the other parameters Try full factorial design with less parameters, but more granular Design more metrics Embed the implemented MAPE circuit in a real system Decentralize the neural network(s) – use local view Thank you for your attention! Bootstrapping Skynet Klerx and Graffi 17/17
  • 25. Parameter values Evaluation Outline 5 Parameter values 6 Evaluation Bootstrapping Skynet Klerx and Graffi A-1
  • 26. Parameter values Evaluation Overlay Parameters Code Overlay Parameter Unit default o1 Message Timeout s 10 o2 Message Resend # 3 o3 Operation Timeout s 120 o4 Operation Max. Redos # 3 o5 Max Hop Count # 50 o6 Upd. Finger Table Intv. ms 30 o7 Upd. Neighbors Intv. ms 30 o8 Upd. Successor Intv. ms 30 Bootstrapping Skynet Klerx and Graffi A-2
  • 27. Parameter values Evaluation Environment Parameters Code Env. Parameter Unit default e1 Node Count # 1000 e2 Churn Factor # 0 e3 Mean Session Length s 1 e4 Bandwidth MB/s OECD e5 Random Lookup Rate 1/h 30 Bootstrapping Skynet Klerx and Graffi A-3
  • 28. Parameter values Evaluation Metrics Code Metrics Unit Messages m1 Avg. Network Message In # m2 Avg. Network Message Out # m3 Avg. Transport Message In # m4 Avg. Transport Message Out # m5 Avg. Forwarded Queries # m6 Avg. Service Message Throughput #/s m7 St. Dev. Service Message Throughput #/s m8 Avg. Service Message Count # m9 St. Dev. Service Message Count # Traffic m10 Avg. Network Bytes Sent kB m11 Avg. Transport Bytes Sent kB m12 Avg. Free Upload Bandwidth kB/s Performance m13 Avg. Hop Count # m14 Avg. Lookup Hops # m15 St. Dev. Lookup Hops # m16 Avg. Lookup Duration s m17 St. Dev. Lookup Duration s m18 Avg. Operation Duration s Bootstrapping Skynet Klerx and Graffi A-4
  • 29. Parameter values Evaluation Parameter Variations Code Mixed Factorial One Factorial o1 5, 10, 20 2,3,4,5,8,10,12,15,18,20 o2 0, 1, 3, 10 0,1,2,3,4,5,7,8,9 o3 60, 120, 300 60,90,120,150,180, 210,240,270,285,300 o4 0, 1, 3, 10 0,1,2,3,4,5,7,8,9,10 o5 5, 10, 25, 50, 100 3,5,7,10,17,35,50,75,100 o6 3, 10, 30, 60 3,5,7,10,15,20,30,40,50,60 o7 3, 10, 30, 60 3,5,7,10,15,20,30,40,50,60 o8 3, 10, 30, 60 3,5,7,10,15,20,30,40,50,60 e1 10, 33, 100, 330, 1000 1000, 3300, 10000 e2 0, 1 10 , 3 10 0 e3 30, 60; 180,1 1 e4 OECD, random: 1-2, 5-10, 10- 30, 1-30 OECD e5 0, 1, 3, 6, 30 30 Bootstrapping Skynet Klerx and Graffi A-5
  • 30. Parameter values Evaluation Outline 5 Parameter values 6 Evaluation Bootstrapping Skynet Klerx and Graffi A-6
  • 31. Parameter values Evaluation Process of Evaluation Parameter Value X Parameter Value X‘ Metric Vector M Metric Vector M‘ Neural Network Simulation Simulation compare compare Bootstrapping Skynet Klerx and Graffi A-7
  • 32. Parameter values Evaluation Results of Evaluation Table: Comparison of X, X0, M and M0 Timestamp X X0 M M0 |1 − M M0 | |1 − X X0 | For o1 and m16 w1 6s 6s 0.14 0.15 0.07 0.00 w2 11s 11s 0.18 0.20 0.10 0.00 w3 19s 18s 0.24 0.27 0.11 0.06 For o6 and m2 w1 4s 4s 175.00 173.66 0.01 0.00 w2 25s 26s 39.60 38.34 0.03 0.04 w3 55s 54s 24.50 25.51 0.04 0.02 For o7 and m2 w1 6s 4.6s 65.80 77.27 0.15 0.30 w2 25s 27.5s 36.60 35.98 0.02 0.09 w3 51s 55s 31.70 31.63 0.00 0.07 For o8 and m2 w1 4s 3.9s 60.21 60.90 0.01 0.03 w2 37s 36s 34.27 34.10 0.00 0.03 w3 55s 52s 33.21 33.00 0.01 0.06 Bootstrapping Skynet Klerx and Graffi A-8