SlideShare a Scribd company logo
Genometry
Gregg Helt
Cyrus Harmon
Genometry
•  Motivation and Purpose
•  Points of Reference
•  Genometry interfaces
•  Genometry manipulations
•  Genometry implementation
•  Representation examples
•  Prototype apps
•  Current status, future work
Motivation and Goals
•  Desire for a more unified data model to represent
relationships between biological sequences, such as:
–  Annotations
–  Alignments
–  Sequence composition
•  More networked, less hierarchical (genome-centric,
transcript-centric)
•  Simplicity
•  Expressivity / Flexibility
•  Memory and Computational Efficiency
•  Use by others to provide core functionality for various
Affy projects
Points of Reference
•  com.neomorphic.bio models
•  Genisys DB and Genisys IDL
•  EBI mapping models
•  Apollo data models
•  BioPerl
•  BioJava
•  Closest similarity to bio alignment models and
Genisys alignment models
Basic Annotations
Transcript T
Genome G
Transcript T
G: 1000..5000
Exon E1
G:1000..1200
Exon E2
G:3000..3500
Exon E3
G:4500..5000
Genometry Annotations – Specify All Coordinates
Transcript T
Genome G
Transcript T
G: 1000..5000
T:0..1200
Exon E1
G:1000..1200
T:0..200
Exon E2
G:3000..3500
T:200..700
Exon E3
G:4500..5000
T:700..1200
Genometry Annotations – All coordinates are
relative to BioSeqs
Transcript T
Genome G
TranscriptAnnot T1
G: 1000..5000
T:0..1200
ExonAnnot E1
G:1000..1200
T:0..200
ExonAnnot E2
G:3000..3500
T:200..700
ExonAnnot E3
G:4500..5000
T:700..1200
Transcript T
Genome G
Genometry Annotations – SeqSpans encapsulate a
range along a BioSeq
Transcript T
Genome G
TranscriptAnnot T1
ExonAnnot E1 ExonAnnot E2 ExonAnnot E3
Transcript T
Genome G
G: 1000..5000
T: 0..200
G:1000..1200
T:0..200
G:3000..3500
T:200..700
G:4500..5000
T:700..1200
Genometry Core Core
•  BioSeq
–  length, residues (optional)
•  SeqSpan
–  start, end, BioSeq
•  SeqSymmetry
–  SeqSpans (breadth)
–  SeqSymmetry parent / child hierarchy (depth)
Expressiveness of Core Core
•  “Standard” annotations
•  Singleton annotations
•  Alternative Splicing
•  Pairwise alignments
•  Annotations with depth > 2
•  Annotations with breadth > 2
•  Indels
•  Structure of analyzed sequence
•  Fuzzy locations
•  All without explicit pointers from BioSeq to annotation
Genometry Modelling of Insertions and Deletions #1a
G:1000..1006
T:7..18
G:1000..1017
T:0..6
G:1006..1017
T:0..18
…AGGCAATTAATTGATCCAGGTG……GAGTCCGAATAGGGTTAGCG…
GCAATTCAATTGATCCAG TCCGAATAGGTTAGCG
G:2000..2017
T:18..34
G:2000..2010
T:28..34T:18..28
G:2011..2017
G:1000..2017
T:0..34
insertion in transcript relative to genome
(deletion in genome relative to transcript)
deletion in transcript relative to genome
(insertion in genome relative to transcript)
Genome G
Transcript T
Genometry Modelling of Insertions and Deletions #1b
G: g0..g2
T:t0..t2
…AGGCAATTAATTGATCCAGGTG……GAGTCCGAATAGGGTTAGCG…
GCAATTCAATTGATCCAG TCCGAATAGGTTAGCG
G:g3..g5
T:t3..t5
G:g3..g4
T:t4..t5T:t3..t4
G:g4+1..g5G:g0..g1
T:t0..t1 T:t1+1..t2
G:g1..g2
G:g0..g5
T:t0..t5
insertion in transcript relative to genome
(deletion in genome relative to transcript)
deletion in transcript relative to genome
(insertion in genome relative to transcript)
Genome G
Transcript T
t0 t1 t1+1 t2
g0 g1 g2 g3 g4 g4+1 g5
t3 t4 t5
Genometry Modelling of Insertions and Deletions #2
G:g0..g1
T:t0..t1 T:t1+1..t2
G:g1..g2
G: g0..g2
T:t0..t2
…AGGCAATTAATTGATCCAGGTG……GAGTCCGAATAGGGTTAGCG…
GCAATTCAATTGATCCAG TCCGAATAGGTTAGCG
G:g3..g5
T:t3..t5
G:g3..g4
T:t3..t4 T:t4..t5
G:g4+1..g5
G:g0..g5
T:t0..t5
insertion in transcript relative to genome
(deletion in genome relative to transcript)
deletion in transcript relative to genome
(insertion in genome relative to transcript)
Genome G
Transcript T
T:t1..t1+1
“C” :0..1
t0 t1 t1+1 t2
g0 g1 g2 g3 g4 g4+1 g5
t3 t4 t5
G:g4..g4+1
“G” :0..1
Genometry Modelling of Insertions and Deletions #3
G:g0..g1
T:t0..t1 T:t1+1..t2
G:g1..g2
G: g0..g2
T:t0..t2
…AGGCAATTAATTGATCCAGGTG……GAGTCCGAATAGGGTTAGCG…
GCAATTCAATTGATCCAG TCCGAATAGGTTAGCG
G:g3..g5
T:t3..t5
G:g3..g4
T:t3..t4 T:t4..t5
G:g4+1..g5
G:g0..g5
T:t0..t5
insertion in transcript relative to genome
(deletion in genome relative to transcript)
deletion in transcript relative to genome
(insertion in genome relative to transcript)
Genome G
Transcript T
T:t1..t1+1
G:g1..g1
t0 t1 t1+1 t2
g0 g1 g2 g3 g4 g4+1 g5
t3 t4 t5
G:g4..g4+1
T:t4..t4
Genometry Modelling of Insertions and Deletions #4
G:g0..g1
T:t0..t1 T:t1+1..t2
G:g1..g2
G: g0..g2
T:t0..t2
…AGGCAATTAATTGATCCAGGTG……GAGTCCGAATAGGGTTAGCG…
GCAATTCAATTGATCCAG TCCGAATAGGTTAGCG
G:g3..g5
T:t3..t5
G:g3..g4
T:t3..t4 T:t4..t5
G:g4+1..g5
G:g0..g5
T:t0..t5
insertion in transcript relative to genome
(deletion in genome relative to transcript)
deletion in transcript relative to genome
(insertion in genome relative to transcript)
Genome G
Transcript T
t0 t1 t1+1 t2
g0 g1 g2 g3 g4 g4+1 g5
t3 t4 t5
T:t1..t1+1
G:g1..g1
“C”:0..1
T:t4..t4
G:g4..g4+1
“G”:0..1
Modelling SNPs with Genometry: Two Approaches
SeqB : 0..n
SeqA : 0..x
SeqB : 0..x
“T” : 0..1
SeqB : x..x+1
SeqA : 0..m
SeqA : x+1..m
SeqB : x+1..n
SeqA : x..x+1…GGCAAGGAATGATC…SeqA
x x+1
…GGCAAGGAATGATC…SeqA
SeqB …GGCAAGTAATGATC…
x x+1
SeqA = reference chromosome
SeqB = exactly same as reference chromosome, except for one SNP
I. SNPs as annotations of differences
between sequences
II. SNPs as gaps in similarity between two sequences
T
SeqB : x..x+1
SeqA : x..x+1…GGCAAGGAATGATC…SeqA
SeqB …GGCAAGTAATGATC…
x x+1
“T” : 0..1
SeqA : x..x+1…GGCAAGGAATGATC…SeqA
T
x x+1
I.a. annotation of just reference seq
I.b. annotation of reference seq w/ variant base
I.c. annotation of reference and variant seq
Modelling SNPs with Genometry: Two Approaches
SeqB : 0..n
SeqA : 0..x
SeqB : 0..x
“T” : 0..1
SeqB : x..x+1
SeqA : 0..m
SeqA : x+1..m
SeqB : x+1..n
SeqA : x..x+1…GGCAAGGAATGATC…SeqA
x x+1
…GGCAAGGAATGATC…SeqA
SeqB …GGCAAGTAATGATC…
x x+1
SeqA = reference chromosome
SeqB = exactly same as reference chromosome, except for one SNP
I. SNPs as annotations of differences
between sequences
II. SNPs as gaps in similarity between two sequences
T
SeqB : x..x+1
SeqA : x..x+1…GGCAAGGAATGATC…SeqA
SeqB …GGCAAGTAATGATC…
x x+1
“T” : 0..1
SeqA : x..x+1…GGCAAGGAATGATC…SeqA
T
x x+1
I.a. annotation of just reference seq
I.b. annotation of reference seq w/ variant base
I.c. annotation of reference and variant seq
Sequence-oriented annotations
•  AnnotatedBioSeq
–  Contains a collection of SeqSymmetries that annotate the
sequence
–  Interfaces to retrieve annotations covered by a span within the
sequence
Annotation Networks
•  Can traverse networks of annotations, alternating between
AnnotatedBioSeqs and SeqSymmetries
protein2mRNA
proteinSpanB
mrnaSpanB
mRNA2genomic
genomicSpanC
mrnaSpanC
Annotated
GenomicSeq G
Annotated
mRNASeq M
Annotated
ProteinSeq P
m2gSub0
gSpanC0
mSpanC0
m2gSub1
gSpanC1
mSpanC1
m2gSub2
gSpanC2
mSpanC2
domainOnProtein
proteinSpanA
= AnnotatedBioSeq
= SeqSymmetry
Sequence Composition
•  CompositeBioSeq
– Contains a SeqSymmetry describing the mapping
of BioSeqs used in composition to the
CompositeBioSeq itself
Sequence Composition Representations
•  Sequence Assembly / Golden Path / etc.
•  Piecewise data loading / lazy data loading
•  Genotypes
•  Chromosomal Rearrangements
•  Primer construction
•  Reverse Complement
•  Coordinate Shifting
Genometry Modelling of Reverse Complement
Sequence B = reverse complement of Sequence A
BioSeq A
length: x
Composite
BioSeq B
length: x
A:0..x
B:x..0
Sym AB
composition
AGGCAATTAATTGATCCAGGTGGAGTCCGAATAGGGTTAGCGA
TCGCTAACCCTATTCGGACTCCACCTGGATCAATTAATTGCCT
SeqA
SeqB
MultiSequence Alignments
•  MultiSeqAlignment
–  Alignments sliced “horizontally” -- each “row” in an alignment is a
CompositeBioSeq whose composition maps another BioSeq to the same
coord space as the alignment
•  Can also slice vertically (synteny)
Alignment Representations
•  Can represent same alignment as either MultiSeqAlignment or Synteny
•  Transformation from horizontal slicing (MultiSeqAlignment) to vertical
slicing (Synteny)
Complete Genometry Core Models
•  Mutability
•  Curations
Genometry Manipulations
•  Symmetry Intersection (AND)
•  Symmetry Union (OR)
•  Symmetry Inverse (NOT)
•  Symmetry Mutual Exclusion (XOR)
•  Symmetry Transformation / Mapping
Symmetry Combination Operations
SymA
SymB
XOR(A, B)
AND(A, B)
OR(A, B)
NOT(A)
NOT(B)
Genometry Transformations
•  Every symmetry of breadth > 1 describes a mapping
between different sequences
•  Therefore every symmetry can be used to transform
coordinates of other symmetries from one sequence
to another
•  Because sequence annotations, alignments, and
composition are all based on symmetries, can use
any of them as mappings
•  Discontiguous linear mapping algorithm
•  Results of transformation are also symmetries
Coordinate
Mapping
(note that domain mapped to spliced transcript only overlaps two of the three exons,
hence only end up with two children for resulting domain2genomic symmetry)
Example – mapping domain from protein coords to genomic coords
protein2mRNA
proteinSpanB
mrnaSpanB
mRNA2genomic
genomicSpanC
mrnaSpanC
Annotated
GenomicSeq G
Annotated
mRNASeq M
Annotated
ProteinSeq P
m2gSub0
gSpanC0
mSpanC0
domain2genomic
proteinSpanA
d2gSub0
pSpanA0
mSpanA0
gSpanA0
domain2genomic
proteinSpanA
mrnaSpanA
domain2genomic
proteinSpanA
mrnaSpanA
genomicSpanA
d2gSub1
pSpanA1
mSpanA1
gSpanA1
transform via
protein2mRNA
transform via
mRNA2genomic
m2gSub1
gSpanC1
mSpanC1
m2gSub2
gSpanC2
mSpanC2
domainOnProtein
proteinSpanA
= AnnotatedBioSeq
(BioSeq)
= SeqSymmetry
(SeqAnnot)
“Growing” domain2genomic result
= MutableSeqSymmetry
IGB genome genometry data models by Gregg Helt and Cyrus Harmon
IGB genome genometry data models by Gregg Helt and Cyrus Harmon
mRNA2genomic
genomicSpanC
mrnaSpanC
m2gSub0
gSpanC0
mSpanC0
m2gSub1
gSpanC1
mSpanC1
m2gSub2
gSpanC2
mSpanC2
domain2genomic
proteinSpanA
mrnaSpanA
domain2genomic
proteinSpanA
mrnaSpanA
d2gSub0
mSpanA0
domain2genomic
proteinSpanA
mrnaSpanA
d2gSub0
mSpanA0
pSpanA0
domain2genomic
proteinSpanA
mrnaSpanA
d2gSub0
mSpanA0
pSpanA0
gSpanA0
d2gSub0
pSpanA0
mSpanA0
gSpanA0
domain2genomic
proteinSpanA
mrnaSpanA
genomicSpanA
d2gSub1
pSpanA1
mSpanA1
gSpanA1
domain2genomic
proteinSpanA
mrnaSpanA
d2gSub0
mSpanA0
pSpanA0
gSpanA0
d2gSub1
mSpanA1
pSpanA1
gSpanA1
step1b step1cstep1a
step 2
step1
(loop2)
[a,b,c]
Step 2
“roll up”
Step 1a
“sit still”
Step1b
“roll back”
Step1c
“roll forward”
Step 1
Details of “split” mapping
IGB genome genometry data models by Gregg Helt and Cyrus Harmon
Transformations Applications
•  Mapping Affy probes to genome
•  Mapping contig annotations to larger genomic assemblies
•  Mapping protein annotations to genome
•  Mapping genomic annotations to proteins and transcripts
(SNPs, for example)
•  Sequence slice-and-dice with annotation propagation
•  Propagation of annotations across versioned sequences (such
as Golden Path)
•  Deep mappings (for example, SNP to genomeA to transcriptB to
proteinC to homolog proteinD to transcriptE to genomeF to
putative SNP location in genomeF – symmetry path of depth 5)
•  Etc., etc.
Prototypes & Applications
•  GenometryTest
•  Generic Genometry Viewer
•  ProtAnnot (Ann)
•  GPView (Cyrus)
•  AlignView (Eric)
•  ContigViewer (Peter, Barry)
•  Unibrow (Transcriptome Group)
Genometry Summary
•  Genometry presents a unified model for
location-based sequence relationships
•  Sequence annotation, composition, and
alignment are all based on SeqSymmetry
•  Provides powerful genometry manipulations --
any SeqSymmetry can be used to map other
SeqSymmetries across sequences /
coordinate spaces
•  Work in progress

More Related Content

PDF
Arrays and alternative splicing
PDF
Research report (alternative splicing, protein structure; retinitis pigmentosa)
PPT
Standards in Alternative Splicing
PPT
SPLICING
PPTX
Bioinformatica t3-scoring matrices
PPTX
Bioinformatica t4-alignments
PPTX
Bioinformatics t4-alignments wim_vancriekingev2013
PDF
Variation Graphs and Structural Variation
Arrays and alternative splicing
Research report (alternative splicing, protein structure; retinitis pigmentosa)
Standards in Alternative Splicing
SPLICING
Bioinformatica t3-scoring matrices
Bioinformatica t4-alignments
Bioinformatics t4-alignments wim_vancriekingev2013
Variation Graphs and Structural Variation

Similar to IGB genome genometry data models by Gregg Helt and Cyrus Harmon (20)

PPTX
Bioinformatics
PDF
RNA sequencing analysis tutorial with NGS
PDF
LogMap: Logic-based and Scalable Ontology Matching
PPT
SyMAP Master's Thesis Presentation
PDF
RNASeq Experiment Design
PDF
Scaling up genomic analysis with ADAM
PDF
Ch06 multalign
PDF
Metagenomic Data Analysis: Computational Methods and Applications
PPTX
Mastering RNA-Seq (NGS Data Analysis) - A Critical Approach To Transcriptomic...
PDF
EVOLUTION OF ONTOLOGY-BASED MAPPINGS
PDF
02-alignment.pdf
PPTX
Bioinformatics t8-go-hmm v2014
PPTX
Lgm saarbrucken
PPT
lecture4.ppt Sequence Alignmentaldf sdfsadf
PPT
Exome Sequencing
PPTX
Protein threading using context specific alignment potential ismb-2013
PPTX
Complementing Computation with Visualization in Genomics
PPTX
Ashg2014 grc workshop_schneider
PDF
Basics of bioinformatics
PPT
DESeq Paper Journal club
Bioinformatics
RNA sequencing analysis tutorial with NGS
LogMap: Logic-based and Scalable Ontology Matching
SyMAP Master's Thesis Presentation
RNASeq Experiment Design
Scaling up genomic analysis with ADAM
Ch06 multalign
Metagenomic Data Analysis: Computational Methods and Applications
Mastering RNA-Seq (NGS Data Analysis) - A Critical Approach To Transcriptomic...
EVOLUTION OF ONTOLOGY-BASED MAPPINGS
02-alignment.pdf
Bioinformatics t8-go-hmm v2014
Lgm saarbrucken
lecture4.ppt Sequence Alignmentaldf sdfsadf
Exome Sequencing
Protein threading using context specific alignment potential ismb-2013
Complementing Computation with Visualization in Genomics
Ashg2014 grc workshop_schneider
Basics of bioinformatics
DESeq Paper Journal club
Ad

More from Ann Loraine (14)

PDF
Use Integrated Genome Browser to explore, analyze, and publish genomic data
PPTX
Visualize genomes with Integrated Genome Browser
PDF
BINF 3121 Data Analysis Report How-To
PPTX
Giving great talks in Bioinformatics - from Professional Communication class ...
PPTX
Interviewing - why some questions are off limits
PDF
RNA-Seq Analysis of Blueberry Fruit Development and Ripening
PDF
Introducing ProtAnnot - Araport workshop at PAG 2016
PPTX
Em pcr 16x9
PDF
Visualizing the genome: Techniques for presenting genome data and annotations
PDF
wings2014 Workshop 1 Design, sequence, align, count, visualize
PDF
WiNGS 2014 Workshop 2 R, RStudio, and reproducible research with knitr
PDF
RNA-Seq data analysis at wings 2014 - Workshop 3 Biological Interpretation
PDF
Linking IGB with Galaxy
PDF
RNA-Seq analysis of blueberry fruit identifies candidate genes involved in ri...
Use Integrated Genome Browser to explore, analyze, and publish genomic data
Visualize genomes with Integrated Genome Browser
BINF 3121 Data Analysis Report How-To
Giving great talks in Bioinformatics - from Professional Communication class ...
Interviewing - why some questions are off limits
RNA-Seq Analysis of Blueberry Fruit Development and Ripening
Introducing ProtAnnot - Araport workshop at PAG 2016
Em pcr 16x9
Visualizing the genome: Techniques for presenting genome data and annotations
wings2014 Workshop 1 Design, sequence, align, count, visualize
WiNGS 2014 Workshop 2 R, RStudio, and reproducible research with knitr
RNA-Seq data analysis at wings 2014 - Workshop 3 Biological Interpretation
Linking IGB with Galaxy
RNA-Seq analysis of blueberry fruit identifies candidate genes involved in ri...
Ad

Recently uploaded (20)

PDF
Biophysics 2.pdffffffffffffffffffffffffff
PPTX
Science Quipper for lesson in grade 8 Matatag Curriculum
PDF
Lymphatic System MCQs & Practice Quiz – Functions, Organs, Nodes, Ducts
PPTX
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
PDF
Placing the Near-Earth Object Impact Probability in Context
PPTX
Biomechanics of the Hip - Basic Science.pptx
PDF
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
PPTX
Overview of calcium in human muscles.pptx
PPT
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
PPT
6.1 High Risk New Born. Padetric health ppt
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PDF
Sciences of Europe No 170 (2025)
PPTX
Introcution to Microbes Burton's Biology for the Health
PPTX
TOTAL hIP ARTHROPLASTY Presentation.pptx
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PDF
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
PDF
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PPT
veterinary parasitology ````````````.ppt
Biophysics 2.pdffffffffffffffffffffffffff
Science Quipper for lesson in grade 8 Matatag Curriculum
Lymphatic System MCQs & Practice Quiz – Functions, Organs, Nodes, Ducts
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
Placing the Near-Earth Object Impact Probability in Context
Biomechanics of the Hip - Basic Science.pptx
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
Overview of calcium in human muscles.pptx
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
6.1 High Risk New Born. Padetric health ppt
7. General Toxicologyfor clinical phrmacy.pptx
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
Sciences of Europe No 170 (2025)
Introcution to Microbes Burton's Biology for the Health
TOTAL hIP ARTHROPLASTY Presentation.pptx
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
veterinary parasitology ````````````.ppt

IGB genome genometry data models by Gregg Helt and Cyrus Harmon

  • 2. Genometry •  Motivation and Purpose •  Points of Reference •  Genometry interfaces •  Genometry manipulations •  Genometry implementation •  Representation examples •  Prototype apps •  Current status, future work
  • 3. Motivation and Goals •  Desire for a more unified data model to represent relationships between biological sequences, such as: –  Annotations –  Alignments –  Sequence composition •  More networked, less hierarchical (genome-centric, transcript-centric) •  Simplicity •  Expressivity / Flexibility •  Memory and Computational Efficiency •  Use by others to provide core functionality for various Affy projects
  • 4. Points of Reference •  com.neomorphic.bio models •  Genisys DB and Genisys IDL •  EBI mapping models •  Apollo data models •  BioPerl •  BioJava •  Closest similarity to bio alignment models and Genisys alignment models
  • 5. Basic Annotations Transcript T Genome G Transcript T G: 1000..5000 Exon E1 G:1000..1200 Exon E2 G:3000..3500 Exon E3 G:4500..5000
  • 6. Genometry Annotations – Specify All Coordinates Transcript T Genome G Transcript T G: 1000..5000 T:0..1200 Exon E1 G:1000..1200 T:0..200 Exon E2 G:3000..3500 T:200..700 Exon E3 G:4500..5000 T:700..1200
  • 7. Genometry Annotations – All coordinates are relative to BioSeqs Transcript T Genome G TranscriptAnnot T1 G: 1000..5000 T:0..1200 ExonAnnot E1 G:1000..1200 T:0..200 ExonAnnot E2 G:3000..3500 T:200..700 ExonAnnot E3 G:4500..5000 T:700..1200 Transcript T Genome G
  • 8. Genometry Annotations – SeqSpans encapsulate a range along a BioSeq Transcript T Genome G TranscriptAnnot T1 ExonAnnot E1 ExonAnnot E2 ExonAnnot E3 Transcript T Genome G G: 1000..5000 T: 0..200 G:1000..1200 T:0..200 G:3000..3500 T:200..700 G:4500..5000 T:700..1200
  • 9. Genometry Core Core •  BioSeq –  length, residues (optional) •  SeqSpan –  start, end, BioSeq •  SeqSymmetry –  SeqSpans (breadth) –  SeqSymmetry parent / child hierarchy (depth)
  • 10. Expressiveness of Core Core •  “Standard” annotations •  Singleton annotations •  Alternative Splicing •  Pairwise alignments •  Annotations with depth > 2 •  Annotations with breadth > 2 •  Indels •  Structure of analyzed sequence •  Fuzzy locations •  All without explicit pointers from BioSeq to annotation
  • 11. Genometry Modelling of Insertions and Deletions #1a G:1000..1006 T:7..18 G:1000..1017 T:0..6 G:1006..1017 T:0..18 …AGGCAATTAATTGATCCAGGTG……GAGTCCGAATAGGGTTAGCG… GCAATTCAATTGATCCAG TCCGAATAGGTTAGCG G:2000..2017 T:18..34 G:2000..2010 T:28..34T:18..28 G:2011..2017 G:1000..2017 T:0..34 insertion in transcript relative to genome (deletion in genome relative to transcript) deletion in transcript relative to genome (insertion in genome relative to transcript) Genome G Transcript T
  • 12. Genometry Modelling of Insertions and Deletions #1b G: g0..g2 T:t0..t2 …AGGCAATTAATTGATCCAGGTG……GAGTCCGAATAGGGTTAGCG… GCAATTCAATTGATCCAG TCCGAATAGGTTAGCG G:g3..g5 T:t3..t5 G:g3..g4 T:t4..t5T:t3..t4 G:g4+1..g5G:g0..g1 T:t0..t1 T:t1+1..t2 G:g1..g2 G:g0..g5 T:t0..t5 insertion in transcript relative to genome (deletion in genome relative to transcript) deletion in transcript relative to genome (insertion in genome relative to transcript) Genome G Transcript T t0 t1 t1+1 t2 g0 g1 g2 g3 g4 g4+1 g5 t3 t4 t5
  • 13. Genometry Modelling of Insertions and Deletions #2 G:g0..g1 T:t0..t1 T:t1+1..t2 G:g1..g2 G: g0..g2 T:t0..t2 …AGGCAATTAATTGATCCAGGTG……GAGTCCGAATAGGGTTAGCG… GCAATTCAATTGATCCAG TCCGAATAGGTTAGCG G:g3..g5 T:t3..t5 G:g3..g4 T:t3..t4 T:t4..t5 G:g4+1..g5 G:g0..g5 T:t0..t5 insertion in transcript relative to genome (deletion in genome relative to transcript) deletion in transcript relative to genome (insertion in genome relative to transcript) Genome G Transcript T T:t1..t1+1 “C” :0..1 t0 t1 t1+1 t2 g0 g1 g2 g3 g4 g4+1 g5 t3 t4 t5 G:g4..g4+1 “G” :0..1
  • 14. Genometry Modelling of Insertions and Deletions #3 G:g0..g1 T:t0..t1 T:t1+1..t2 G:g1..g2 G: g0..g2 T:t0..t2 …AGGCAATTAATTGATCCAGGTG……GAGTCCGAATAGGGTTAGCG… GCAATTCAATTGATCCAG TCCGAATAGGTTAGCG G:g3..g5 T:t3..t5 G:g3..g4 T:t3..t4 T:t4..t5 G:g4+1..g5 G:g0..g5 T:t0..t5 insertion in transcript relative to genome (deletion in genome relative to transcript) deletion in transcript relative to genome (insertion in genome relative to transcript) Genome G Transcript T T:t1..t1+1 G:g1..g1 t0 t1 t1+1 t2 g0 g1 g2 g3 g4 g4+1 g5 t3 t4 t5 G:g4..g4+1 T:t4..t4
  • 15. Genometry Modelling of Insertions and Deletions #4 G:g0..g1 T:t0..t1 T:t1+1..t2 G:g1..g2 G: g0..g2 T:t0..t2 …AGGCAATTAATTGATCCAGGTG……GAGTCCGAATAGGGTTAGCG… GCAATTCAATTGATCCAG TCCGAATAGGTTAGCG G:g3..g5 T:t3..t5 G:g3..g4 T:t3..t4 T:t4..t5 G:g4+1..g5 G:g0..g5 T:t0..t5 insertion in transcript relative to genome (deletion in genome relative to transcript) deletion in transcript relative to genome (insertion in genome relative to transcript) Genome G Transcript T t0 t1 t1+1 t2 g0 g1 g2 g3 g4 g4+1 g5 t3 t4 t5 T:t1..t1+1 G:g1..g1 “C”:0..1 T:t4..t4 G:g4..g4+1 “G”:0..1
  • 16. Modelling SNPs with Genometry: Two Approaches SeqB : 0..n SeqA : 0..x SeqB : 0..x “T” : 0..1 SeqB : x..x+1 SeqA : 0..m SeqA : x+1..m SeqB : x+1..n SeqA : x..x+1…GGCAAGGAATGATC…SeqA x x+1 …GGCAAGGAATGATC…SeqA SeqB …GGCAAGTAATGATC… x x+1 SeqA = reference chromosome SeqB = exactly same as reference chromosome, except for one SNP I. SNPs as annotations of differences between sequences II. SNPs as gaps in similarity between two sequences T SeqB : x..x+1 SeqA : x..x+1…GGCAAGGAATGATC…SeqA SeqB …GGCAAGTAATGATC… x x+1 “T” : 0..1 SeqA : x..x+1…GGCAAGGAATGATC…SeqA T x x+1 I.a. annotation of just reference seq I.b. annotation of reference seq w/ variant base I.c. annotation of reference and variant seq
  • 17. Modelling SNPs with Genometry: Two Approaches SeqB : 0..n SeqA : 0..x SeqB : 0..x “T” : 0..1 SeqB : x..x+1 SeqA : 0..m SeqA : x+1..m SeqB : x+1..n SeqA : x..x+1…GGCAAGGAATGATC…SeqA x x+1 …GGCAAGGAATGATC…SeqA SeqB …GGCAAGTAATGATC… x x+1 SeqA = reference chromosome SeqB = exactly same as reference chromosome, except for one SNP I. SNPs as annotations of differences between sequences II. SNPs as gaps in similarity between two sequences T SeqB : x..x+1 SeqA : x..x+1…GGCAAGGAATGATC…SeqA SeqB …GGCAAGTAATGATC… x x+1 “T” : 0..1 SeqA : x..x+1…GGCAAGGAATGATC…SeqA T x x+1 I.a. annotation of just reference seq I.b. annotation of reference seq w/ variant base I.c. annotation of reference and variant seq
  • 18. Sequence-oriented annotations •  AnnotatedBioSeq –  Contains a collection of SeqSymmetries that annotate the sequence –  Interfaces to retrieve annotations covered by a span within the sequence
  • 19. Annotation Networks •  Can traverse networks of annotations, alternating between AnnotatedBioSeqs and SeqSymmetries protein2mRNA proteinSpanB mrnaSpanB mRNA2genomic genomicSpanC mrnaSpanC Annotated GenomicSeq G Annotated mRNASeq M Annotated ProteinSeq P m2gSub0 gSpanC0 mSpanC0 m2gSub1 gSpanC1 mSpanC1 m2gSub2 gSpanC2 mSpanC2 domainOnProtein proteinSpanA = AnnotatedBioSeq = SeqSymmetry
  • 20. Sequence Composition •  CompositeBioSeq – Contains a SeqSymmetry describing the mapping of BioSeqs used in composition to the CompositeBioSeq itself
  • 21. Sequence Composition Representations •  Sequence Assembly / Golden Path / etc. •  Piecewise data loading / lazy data loading •  Genotypes •  Chromosomal Rearrangements •  Primer construction •  Reverse Complement •  Coordinate Shifting
  • 22. Genometry Modelling of Reverse Complement Sequence B = reverse complement of Sequence A BioSeq A length: x Composite BioSeq B length: x A:0..x B:x..0 Sym AB composition AGGCAATTAATTGATCCAGGTGGAGTCCGAATAGGGTTAGCGA TCGCTAACCCTATTCGGACTCCACCTGGATCAATTAATTGCCT SeqA SeqB
  • 23. MultiSequence Alignments •  MultiSeqAlignment –  Alignments sliced “horizontally” -- each “row” in an alignment is a CompositeBioSeq whose composition maps another BioSeq to the same coord space as the alignment •  Can also slice vertically (synteny)
  • 24. Alignment Representations •  Can represent same alignment as either MultiSeqAlignment or Synteny •  Transformation from horizontal slicing (MultiSeqAlignment) to vertical slicing (Synteny)
  • 25. Complete Genometry Core Models •  Mutability •  Curations
  • 26. Genometry Manipulations •  Symmetry Intersection (AND) •  Symmetry Union (OR) •  Symmetry Inverse (NOT) •  Symmetry Mutual Exclusion (XOR) •  Symmetry Transformation / Mapping
  • 27. Symmetry Combination Operations SymA SymB XOR(A, B) AND(A, B) OR(A, B) NOT(A) NOT(B)
  • 28. Genometry Transformations •  Every symmetry of breadth > 1 describes a mapping between different sequences •  Therefore every symmetry can be used to transform coordinates of other symmetries from one sequence to another •  Because sequence annotations, alignments, and composition are all based on symmetries, can use any of them as mappings •  Discontiguous linear mapping algorithm •  Results of transformation are also symmetries
  • 29. Coordinate Mapping (note that domain mapped to spliced transcript only overlaps two of the three exons, hence only end up with two children for resulting domain2genomic symmetry) Example – mapping domain from protein coords to genomic coords protein2mRNA proteinSpanB mrnaSpanB mRNA2genomic genomicSpanC mrnaSpanC Annotated GenomicSeq G Annotated mRNASeq M Annotated ProteinSeq P m2gSub0 gSpanC0 mSpanC0 domain2genomic proteinSpanA d2gSub0 pSpanA0 mSpanA0 gSpanA0 domain2genomic proteinSpanA mrnaSpanA domain2genomic proteinSpanA mrnaSpanA genomicSpanA d2gSub1 pSpanA1 mSpanA1 gSpanA1 transform via protein2mRNA transform via mRNA2genomic m2gSub1 gSpanC1 mSpanC1 m2gSub2 gSpanC2 mSpanC2 domainOnProtein proteinSpanA = AnnotatedBioSeq (BioSeq) = SeqSymmetry (SeqAnnot) “Growing” domain2genomic result = MutableSeqSymmetry
  • 34. Transformations Applications •  Mapping Affy probes to genome •  Mapping contig annotations to larger genomic assemblies •  Mapping protein annotations to genome •  Mapping genomic annotations to proteins and transcripts (SNPs, for example) •  Sequence slice-and-dice with annotation propagation •  Propagation of annotations across versioned sequences (such as Golden Path) •  Deep mappings (for example, SNP to genomeA to transcriptB to proteinC to homolog proteinD to transcriptE to genomeF to putative SNP location in genomeF – symmetry path of depth 5) •  Etc., etc.
  • 35. Prototypes & Applications •  GenometryTest •  Generic Genometry Viewer •  ProtAnnot (Ann) •  GPView (Cyrus) •  AlignView (Eric) •  ContigViewer (Peter, Barry) •  Unibrow (Transcriptome Group)
  • 36. Genometry Summary •  Genometry presents a unified model for location-based sequence relationships •  Sequence annotation, composition, and alignment are all based on SeqSymmetry •  Provides powerful genometry manipulations -- any SeqSymmetry can be used to map other SeqSymmetries across sequences / coordinate spaces •  Work in progress