SlideShare a Scribd company logo
Important spreaders in networks:
exact results on small graphs
Network epidemiology
Susceptible
meets
Infectious
Infectious
With some probability or rate
Susceptible or
Recovered
With some rate or after some time
Step 1: Compartmental models
SIR model
Was proposed by Kermack–McKendrick 1927
Is usually formulated as a differential equation system.
ds
dt
= –βsi—
di
dt
= βsi – νi—
= νidr
dt
—
Ω = r(∞) = 1 – exp[–R₀ Ω]
where R₀ = β/ν
Ω > 0 if and only if R₀ > 1
The epidemic
threshold
time
Network epidemiology
Step 2: Contact patterns
Three types of importance
Petter Holme, Three faces of node importance in network
epidemiology: Exact results for small graphs, arxiv:
1708.06456.
Inspiration:
• F. Radicchi and C. Castellano. Fundamental difference
between superblockers and superspreaders in networks.
Phys. Rev. E, 95:012318 (2017).
• U. Brandes and J. Hildenbrand. Smallest graphs with
distinct singleton centers. Network Science, 2(3):416–418
(2014).
7
susceptible infectious recovered
t = 0 t = 1 t = 2
t = 3 t = 4 t = 5
0
2
6
4
7
77
0
1
1
2
2 3
4
5
55
(a)
(b) (c) (d)6
6
6
influence
maximization
vaccinization sentinel
surveillance
Three types of importance
Three types of importance
Idea:
• Search for the smallest graph with where all three
notions of importance differ.
• Study statistics of node importance vs centrality etc over
all small graphs.
To do that, I can’t use stochastic simulations.
susceptible
infectious
recovered
sentinel
β/(2β+1)
β/(2β+1)
1/(2β+1)
β/(β+1)
1/(2β+2)
1/(2β+2)
β/(β+1)
β/(β+1)
1/(β+1)
1/(β+1)
1/(β+1)1/(β+1)
1/(2β+2)
1/(2β+1)
1 2
3
4 5 6 7
Exact calculations
probability of
infection chain
time of infection chain
contribution to avg.
time to extinction
Polynomial algebra takes time
(37762366549514108074989296025600000000000*x**73+3314686580533426042655618661089280000000000*x**72+141438610676500742111413237916368896000000000*x**71+3
911473306168632730171826549920825344000000000*x**70+78863281455383204006473293722572552273920000000*x**69+1236403293359232085532901156240802856853504000
000*x**68+15699393806584508589027640185718259048113766400000*x**67+166047926815157089435015605011671368201261465600000*x**66+149321074471363905237290341
2763316426944533092352000*x**65+11596802000132949850753533289466811302954899065292800*x**64+78746554444636009114113624901619589833746005539712000*x**63+
472189336478744088675459614584162673391547254471037440*x**62+2520838579589225935326332345418749193680539093862025984*x**61+12064010950190968998503507349
103010126875638928117001472*x**60+52056956992255933979233520314531580309411479877375753088*x**59+2035496785634842434895513764833898462626245464907560146
56*x**58+724337780103561588309914084265886452050608182621681489696*x**57+2354656050497226961862844168528304543472210933547719071080*x**56+70156492344984
24552384686112745652381839054053136427666012*x**55+19214703345853832788682064160120433484916446461152221422090*x**54+48501351479075668828643503786330661
658486963404832259702487*x**53+113092671813635674828611367354176714434189107315168498776928*x**52+244103956674073644958141865118010803740486170105474665
375344*x**51+488630192461738524748488108810018093865519958120561303765494*x**50+908600820200290624573587634392204246241182209329371400281145*x**49+15718
14192193713924618282713564682212894757971214065300446684*x**48+2533060255249516888774685502865019709652152513622605055279456*x**47+380738061109785592014
7340609199202541615833608774939794319328*x**46+5343283033579917464170385365564015741459363191088389767306398*x**45+7008169777451585300330775246188016187
941023359601556223762760*x**44+8597683922746974615895184605717665402049163153921524311480288*x**43+98732500064113677990347086832093514180452414285232600
95680092*x**42+10619889579823429590519175999126775450296264698254861098419138*x**41+10705343531834807255308847480339463995272891980674623472362352*x**40
+10118200705608779929491741668401657943488155430966316422413564*x**39+8970001049997570057132806423909486209951952062243977752430714*x**38+74609950378828
42620157347200224840242010916136536945407182547*x**37+5823838496430434727894405840870770563861889084747019155124352*x**36+426666491950679107354822841634
9608210702346234200930403133168*x**35+2933984529167138491682532365556698639754779991550409622936110*x**34+1893674869460884091813696066793009247613602165
512467381565973*x**33+1147053826336232131835158650815804999309595169018523338347692*x**32+651941666849429144426327239177240288949251173249669277824296*x
**31+347582602089688677496074681434250008936206946931462543001436*x**30+173768006766411435824870505215240768500990172474739886280840*x**29+8142176545488
7540793714432533619870680132300264456583686136*x**28+35737339262158151938098902744329827302836180844476824581984*x**27+146831621144044053430107768719158
47702033756436713414727552*x**26+5642689559748959313663642099659619418917821190195217427712*x**25+202637477920427978284399219388823599938834274487561892
4160*x**24+679293285710471972392728540425835464747889906016677284352*x**23+212308973769516687666161412820684609317746546465988738048*x**22+6177993520612
9739114397096060550049079944195609861388288*x**21+16711103480959516893824501251494340145597563371003242496*x**20+419427438958566275022405598749426314284
3645525992972288*x**19+974786785480329873601482567083721717912488928481935360*x**18+209288755404718390985128907159566824759100622961672192*x**17+4140027
9812069740664016081360574723512184740799807488*x**16+7522283805109866955995503020206903760121954966568960*x**15+1250984582973454622568956659303179360768
874779770880*x**14+189642358940050365501253044671260380916000122470400*x**13+26081445034209637896534715167941811495312398745600*x**12+323601180515126618
0678324566923195135888143155200*x**11+359819252450753508595254072745238613601340620800*x**10+35570023038312915426349438493625919964656435200*x**9+309579
2827574688435407884180504098172305408000*x**8+234354685053410645368523826403557664358400000*x**7+15193743364805385914791764255439847424000000*x**6+82660
7123241007367179342411796054016000000*x**5+36698205721449251600489578223370240000000*x**4+1276643541446883714485459091456000000000*x**3+3263138595093789
4083656417280000000000*x**2+544847137497742374674104320000000000*x+4457869163092977175756800000000000)/
(38849174012498197907452723200000000000000*x**74+3318598191984295465296750182400000000000000*x**73+137923803520060037223899260256256000000000000*x**72+3
718836854788115338745516774129664000000000000*x**71+73187564029226708723444458146842542080000000000*x**70+1121446437628800089041894262361041141760000000
000*x**69+13937137779902055729239770100875821632716800000000*x**68+144499023630993463225897485449622876114124800000000*x**67+127587886738453505303322947
2044962110670635008000000*x**66+9746370095122882492430762538399854353652121600000000*x**65+65215495588078294956304754695697556926039599349760000*x**64+3
86084747539612058845065474438915113812606522490880000*x**63+2039019743945197787806635323175732162985805873361715200*x**62+967312067951480964082283380637
2756448932826769653760000*x**61+41463182796652561547765945470954864465553792226951168000*x**60+161395707996900193288033181079336181640030323993431244800
*x**59+572985959395474247469239080818191224916889350617733529600*x**58+1862374267840213513898298449997074233654470813402085785600*x**57+5560430031086381
252746269930110412997502372446348409241600*x**56+15294884284718527165111367639524474394242463478570586521600*x**55+3886098166813866652919191163210297367
9267849216163518873600*x**54+91415494941532261154338183845834115681983965207741203353600*x**53+199509970977818775632987267744641506890636069960682414182
400*x**52+404718623257332025328917625285264020089712651667338146585600*x**51+764374715419689922968327485500214314436229021737343580569600*x**50+13460756
68348010010438588949674037750529766839631942722380800*x**49+2213199045980729092667047603056735385248916780496177533440000*x**48+340154127414103475350533
7773066649407560854431902037976320000*x**47+4892103780283080871288385104328530226580371128828639113216000*x**46+6590054588677667222257130588148263220931
392553656135566592000*x**45+8321790039667741773143733704030351277421859439309217460736000*x**44+98581441230561875321569373739644234330922765326024021095
68000*x**43+10962218518250821245562546207482370427489203414972878535065600*x**42+11448825928895319238165607419280388858411242066332743600000000*x**41+11
235149156411346177828271421184433780217549468847670036992000*x**40+10363622140030410343302319664329679035025469377574033155174400*x**39+8988410444547910
032150577099030176615855802547117158448332800*x**38+7331310976398177080061080847301200859574935432860186655948800*x**37+56242179608090918028225316305767
26104891213089910954236620800*x**36+4058302463395757204313533365763872433751951130071815225164800*x**35+275431759585599708492087256079242978478487216240
2632133836800*x**34+1758011360746200302693219873297151407720017161990685383244800*x**33+1055073126700485634917761645630646824351646318878099638579200*x*
*32+595216923608652456635301929860947101931138207761273530828800*x**31+315529879888969797201425410449602612378143848550150479052800*x**30+15710112010938
0703527501506578358977957429633622398998374400*x**29+73426181385511818150687126779106893812232809076914963968000*x**28+321936668855972964088101551329799
01682101751270559157120000*x**27+13231385437288999412775352581513090540713728729205858304000*x**26+50929796606588392109237142664473451858967488235090177
Symbolic algebra
Coding progress:
• Started with SymPy (Python) general algebraic
expressions.
• Then used SymPy’s polynomial package (100 times
faster).
• Then FLINT (C) 10000–100000 times faster.
• Then eliminating isomorphic branches of the tree (10
times faster).
https://github.com/pholme/exact-importance
Small graphs
N
no. connected
graphs
3 2
4 6
5 20
6 112
7 853
http://users.cecs.anu.edu.au/~bdm/data/graphs.html
Small graphs
Special “smallest” cases
Smallest graphs 1
6 6
6
51
12
1
4
5
6
7
3
1
2
3
4
5
6
7
0.1 1 10
0.2
0.4
0.6
0.8
1
1.2
0.1 1 10
1
2
3
4
5
0.1 1 10
β β
β
Influence
maximization
Vaccination
Sentinel
surveillance
Ω Ω
τ
[(1+√5)/2,(3+√17)/4]
[1.62..,1.78..]
β-interval
Smallest graphs 2
34 14,23 12 56
3456
21
3
6
5
4
Influence
maximization
3
4
5
0.1 1 10
1
1.5
2
2.5
0.1 1 10
0.1
0.2
0.3
0.4
0.5
0.6
0.1 1 10
0.0
0.7
2
6
Sentinel
surveillance
Vaccination
β β
β
Ω Ω
τ
Smallest graphs 3
7
1 6 75
1 6 751 6
1
2
3
4
5
0.1 1 10
1
2
3
4
5
6
7
0.1 1 10
0
0.2
0.4
0.6
0.8
1
1.2
1.4
0.1 1 10
326
3 2 5
3
2
7
5
Sentinel
surveillance
VaccinationInfluence
maximization
Ω Ω
τ
2
1
4 5
6 7
3
β β
β
Statistics for all graphs w N < 8
Overlap
0.8
0.85
0.9
0.95
1
0.1 1 10 100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1 1 10 100
0.4
0.5
0.6
0.7
0.8
0.1 1 10 100
Sentinel surveillance vs. influence maximization
β β β
(a) n = 1 (b) n = 2 (c) n = 3
J J J
Influencemaximizationvs.vaccination
Vaccination vs. sentinel surveillance
Structural explanations
3.85
3.86
3.87
3.88
3.89
3.9
3.91
3.92
0.1 1 10 100
Influence maximization Vaccination Sentinel surveillance
0.78
0.781
0.782
0.783
0.784
0.785
0.786
0.787
0.1 1 10 100
1.41
1.42
1.43
1.44
1.45
1.46
0.1 1 10 100
2
2.5
3
3.5
0.1 1 10 100
0.55
0.6
0.65
0.7
0.1 1 10 100
1
1.05
1.1
1.15
1.2
1.25
0.1 1 10 100
1.8
2
2.2
2.4
2.6
2.8
3
3.2
0.1 1 10 100
0.55
0.6
0.65
0.1 1 10 100
1
1.05
1.1
1.15
0.1 1 10 100
k
k
k
c
c
c
v
v
v
(d) n = 2 (e) n = 2 (f) n = 2
(a) n = 1 (b) n = 1 (c) n = 1
(g) n = 3 (h) n = 3 (i) n = 3
β β β
β β β
β β β
Structural explanations
1.5
2
2.5
3
0.1 1 10 100
1.6
1.8
2
2.2
2.4
0.1 1 10 100
Vaccination
Sentinelsurveillance
β
β
(b) n = 3
(a) n = 2
d
d
Summary
Paper:
• Found smallest connected graphs with three distinct
most important nodes.
• Degree is important for small β.
• Vitality is important for vaccination.
• With more than one active node, the separation
matters for influence maximization and sentinel
surveillance.
Myself:
• Learned efficient symbolic computation.
• Graph isomorphism.
• How to enumerate small graphs.
Thank you!
Collaborators:
Jari Saramäki
Naoki Masuda
Nelly Litvak
Luis Rocha
Illustrations by:
Mi Jin Lee

More Related Content

PDF
A paradox of importance in network epidemiology
PDF
Important spreaders in networks: Exact results for small graphs
PDF
Spreading processes on temporal networks
PDF
Temporal Networks of Human Interaction
PDF
Disease spreading & control in temporal networks
PDF
Complex Networks Analysis @ Universita Roma Tre
PDF
Adaptive Percolation Daniel Burkhardt Cerigo
PDF
Optimizing
 sentinel
 surveillance 
in
 static
 and 
temporal 
networks
A paradox of importance in network epidemiology
Important spreaders in networks: Exact results for small graphs
Spreading processes on temporal networks
Temporal Networks of Human Interaction
Disease spreading & control in temporal networks
Complex Networks Analysis @ Universita Roma Tre
Adaptive Percolation Daniel Burkhardt Cerigo
Optimizing
 sentinel
 surveillance 
in
 static
 and 
temporal 
networks

What's hot (17)

PDF
How the information content of your contact pattern representation affects pr...
PDF
Temporal networks - Alain Barrat
PPT
Socialnetworkanalysis (Tin180 Com)
PDF
An Adaptive Mobility Based Attack Detection Mechanism to Detect Selective For...
PDF
Machine Learning of Epidemic Processes in Networks
PDF
Opposite Opinions
PDF
Inference beyond standard network models
PDF
Maps of sparse memory networks reveal overlapping communities in network flows
PDF
Delay Tolerant Networking routing as a Game Theory problem – An Overview
PPTX
Disintegration of the small world property with increasing diversity of chemi...
PDF
An information-theoretic, all-scales approach to comparing networks
PDF
A review on routing protocols and non uniformity
PDF
IEEE NS2 PROJECT@ DREAMWEB TECHNO SOLUTION
PDF
Secure and distributed data discovery and dissemination in wireless sensor ne...
PDF
Detecting root of the rumor in social network using GSSS
How the information content of your contact pattern representation affects pr...
Temporal networks - Alain Barrat
Socialnetworkanalysis (Tin180 Com)
An Adaptive Mobility Based Attack Detection Mechanism to Detect Selective For...
Machine Learning of Epidemic Processes in Networks
Opposite Opinions
Inference beyond standard network models
Maps of sparse memory networks reveal overlapping communities in network flows
Delay Tolerant Networking routing as a Game Theory problem – An Overview
Disintegration of the small world property with increasing diversity of chemi...
An information-theoretic, all-scales approach to comparing networks
A review on routing protocols and non uniformity
IEEE NS2 PROJECT@ DREAMWEB TECHNO SOLUTION
Secure and distributed data discovery and dissemination in wireless sensor ne...
Detecting root of the rumor in social network using GSSS
Ad

Similar to Important spreaders in networks: exact results on small graphs (20)

PDF
Spreading Phenomena in Social Networks
PDF
Properties and Impact of Vicinity in Mobile Opportunistic Networks
PDF
Interference management in spectrally and energy efficient wireless networks
PDF
Nonequilibrium Network Dynamics_Inference, Fluctuation-Respones & Tipping Poi...
PDF
The big science of small networks
PPT
lecture localization-goldenberg-defense.ppt
PDF
Small world
PDF
Geometric correlations mitigate the extreme vulnerability of multiplex networ...
PDF
Interpretation of the biological knowledge using networks approach
PDF
Research of adversarial example on a deep neural network
PPT
Multivariate data analysis and visualization tools for biological data
PPT
Crankshaft protocol
PPTX
Graphical Structure Learning accelerated with POWER9
PDF
Statistical_mechanics_of_complex_network.pdf
PDF
FAST DETECTION OF DDOS ATTACKS USING NON-ADAPTIVE GROUP TESTING
PPTX
A review on early hospital mortality prediction using vital signals
PDF
PhD_defense_Alla
PDF
Distributed Beamforming in Sensor Networks
PDF
The Hidden Geometry of Multiplex Networks @ Next Generation Network Analytics
PDF
Application of ML in physical layer
Spreading Phenomena in Social Networks
Properties and Impact of Vicinity in Mobile Opportunistic Networks
Interference management in spectrally and energy efficient wireless networks
Nonequilibrium Network Dynamics_Inference, Fluctuation-Respones & Tipping Poi...
The big science of small networks
lecture localization-goldenberg-defense.ppt
Small world
Geometric correlations mitigate the extreme vulnerability of multiplex networ...
Interpretation of the biological knowledge using networks approach
Research of adversarial example on a deep neural network
Multivariate data analysis and visualization tools for biological data
Crankshaft protocol
Graphical Structure Learning accelerated with POWER9
Statistical_mechanics_of_complex_network.pdf
FAST DETECTION OF DDOS ATTACKS USING NON-ADAPTIVE GROUP TESTING
A review on early hospital mortality prediction using vital signals
PhD_defense_Alla
Distributed Beamforming in Sensor Networks
The Hidden Geometry of Multiplex Networks @ Next Generation Network Analytics
Application of ML in physical layer
Ad

More from Petter Holme (12)

PDF
Temporal network epidemiology: Subtleties and algorithms
PDF
Spin models on networks revisited
PDF
History of social simulations
PDF
Netsci 2017
PDF
Dynamics of Internet-mediated partnership formation
PDF
Modeling the evolution of the AS-level Internet: Integrating aspects of traff...
PDF
Emergence of collective memories
PDF
From land use to human mobility
PDF
Why do metabolic networks look like they do?
PDF
Modeling the fat tails of size fluctuations in organizations
PDF
From temporal to static networks, and back
PDF
Exploring spatial networks with greedy navigators
Temporal network epidemiology: Subtleties and algorithms
Spin models on networks revisited
History of social simulations
Netsci 2017
Dynamics of Internet-mediated partnership formation
Modeling the evolution of the AS-level Internet: Integrating aspects of traff...
Emergence of collective memories
From land use to human mobility
Why do metabolic networks look like they do?
Modeling the fat tails of size fluctuations in organizations
From temporal to static networks, and back
Exploring spatial networks with greedy navigators

Recently uploaded (20)

PPTX
2Systematics of Living Organisms t-.pptx
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PDF
An interstellar mission to test astrophysical black holes
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PDF
AlphaEarth Foundations and the Satellite Embedding dataset
PDF
. Radiology Case Scenariosssssssssssssss
PPTX
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
PDF
The scientific heritage No 166 (166) (2025)
PDF
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
PPTX
Comparative Structure of Integument in Vertebrates.pptx
PPTX
TOTAL hIP ARTHROPLASTY Presentation.pptx
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PPTX
2. Earth - The Living Planet Module 2ELS
DOCX
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
PDF
lecture 2026 of Sjogren's syndrome l .pdf
PPTX
Introduction to Fisheries Biotechnology_Lesson 1.pptx
PPTX
neck nodes and dissection types and lymph nodes levels
PPTX
Microbiology with diagram medical studies .pptx
2Systematics of Living Organisms t-.pptx
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
An interstellar mission to test astrophysical black holes
Phytochemical Investigation of Miliusa longipes.pdf
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
AlphaEarth Foundations and the Satellite Embedding dataset
. Radiology Case Scenariosssssssssssssss
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
The scientific heritage No 166 (166) (2025)
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
Comparative Structure of Integument in Vertebrates.pptx
TOTAL hIP ARTHROPLASTY Presentation.pptx
7. General Toxicologyfor clinical phrmacy.pptx
2. Earth - The Living Planet Module 2ELS
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
lecture 2026 of Sjogren's syndrome l .pdf
Introduction to Fisheries Biotechnology_Lesson 1.pptx
neck nodes and dissection types and lymph nodes levels
Microbiology with diagram medical studies .pptx

Important spreaders in networks: exact results on small graphs

  • 1. Important spreaders in networks: exact results on small graphs
  • 2. Network epidemiology Susceptible meets Infectious Infectious With some probability or rate Susceptible or Recovered With some rate or after some time Step 1: Compartmental models
  • 3. SIR model Was proposed by Kermack–McKendrick 1927 Is usually formulated as a differential equation system. ds dt = –βsi— di dt = βsi – νi— = νidr dt — Ω = r(∞) = 1 – exp[–R₀ Ω] where R₀ = β/ν Ω > 0 if and only if R₀ > 1 The epidemic threshold
  • 5. Three types of importance Petter Holme, Three faces of node importance in network epidemiology: Exact results for small graphs, arxiv: 1708.06456. Inspiration: • F. Radicchi and C. Castellano. Fundamental difference between superblockers and superspreaders in networks. Phys. Rev. E, 95:012318 (2017). • U. Brandes and J. Hildenbrand. Smallest graphs with distinct singleton centers. Network Science, 2(3):416–418 (2014).
  • 6. 7 susceptible infectious recovered t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 0 2 6 4 7 77 0 1 1 2 2 3 4 5 55 (a) (b) (c) (d)6 6 6 influence maximization vaccinization sentinel surveillance Three types of importance
  • 7. Three types of importance Idea: • Search for the smallest graph with where all three notions of importance differ. • Study statistics of node importance vs centrality etc over all small graphs. To do that, I can’t use stochastic simulations.
  • 9. Polynomial algebra takes time (37762366549514108074989296025600000000000*x**73+3314686580533426042655618661089280000000000*x**72+141438610676500742111413237916368896000000000*x**71+3 911473306168632730171826549920825344000000000*x**70+78863281455383204006473293722572552273920000000*x**69+1236403293359232085532901156240802856853504000 000*x**68+15699393806584508589027640185718259048113766400000*x**67+166047926815157089435015605011671368201261465600000*x**66+149321074471363905237290341 2763316426944533092352000*x**65+11596802000132949850753533289466811302954899065292800*x**64+78746554444636009114113624901619589833746005539712000*x**63+ 472189336478744088675459614584162673391547254471037440*x**62+2520838579589225935326332345418749193680539093862025984*x**61+12064010950190968998503507349 103010126875638928117001472*x**60+52056956992255933979233520314531580309411479877375753088*x**59+2035496785634842434895513764833898462626245464907560146 56*x**58+724337780103561588309914084265886452050608182621681489696*x**57+2354656050497226961862844168528304543472210933547719071080*x**56+70156492344984 24552384686112745652381839054053136427666012*x**55+19214703345853832788682064160120433484916446461152221422090*x**54+48501351479075668828643503786330661 658486963404832259702487*x**53+113092671813635674828611367354176714434189107315168498776928*x**52+244103956674073644958141865118010803740486170105474665 375344*x**51+488630192461738524748488108810018093865519958120561303765494*x**50+908600820200290624573587634392204246241182209329371400281145*x**49+15718 14192193713924618282713564682212894757971214065300446684*x**48+2533060255249516888774685502865019709652152513622605055279456*x**47+380738061109785592014 7340609199202541615833608774939794319328*x**46+5343283033579917464170385365564015741459363191088389767306398*x**45+7008169777451585300330775246188016187 941023359601556223762760*x**44+8597683922746974615895184605717665402049163153921524311480288*x**43+98732500064113677990347086832093514180452414285232600 95680092*x**42+10619889579823429590519175999126775450296264698254861098419138*x**41+10705343531834807255308847480339463995272891980674623472362352*x**40 +10118200705608779929491741668401657943488155430966316422413564*x**39+8970001049997570057132806423909486209951952062243977752430714*x**38+74609950378828 42620157347200224840242010916136536945407182547*x**37+5823838496430434727894405840870770563861889084747019155124352*x**36+426666491950679107354822841634 9608210702346234200930403133168*x**35+2933984529167138491682532365556698639754779991550409622936110*x**34+1893674869460884091813696066793009247613602165 512467381565973*x**33+1147053826336232131835158650815804999309595169018523338347692*x**32+651941666849429144426327239177240288949251173249669277824296*x **31+347582602089688677496074681434250008936206946931462543001436*x**30+173768006766411435824870505215240768500990172474739886280840*x**29+8142176545488 7540793714432533619870680132300264456583686136*x**28+35737339262158151938098902744329827302836180844476824581984*x**27+146831621144044053430107768719158 47702033756436713414727552*x**26+5642689559748959313663642099659619418917821190195217427712*x**25+202637477920427978284399219388823599938834274487561892 4160*x**24+679293285710471972392728540425835464747889906016677284352*x**23+212308973769516687666161412820684609317746546465988738048*x**22+6177993520612 9739114397096060550049079944195609861388288*x**21+16711103480959516893824501251494340145597563371003242496*x**20+419427438958566275022405598749426314284 3645525992972288*x**19+974786785480329873601482567083721717912488928481935360*x**18+209288755404718390985128907159566824759100622961672192*x**17+4140027 9812069740664016081360574723512184740799807488*x**16+7522283805109866955995503020206903760121954966568960*x**15+1250984582973454622568956659303179360768 874779770880*x**14+189642358940050365501253044671260380916000122470400*x**13+26081445034209637896534715167941811495312398745600*x**12+323601180515126618 0678324566923195135888143155200*x**11+359819252450753508595254072745238613601340620800*x**10+35570023038312915426349438493625919964656435200*x**9+309579 2827574688435407884180504098172305408000*x**8+234354685053410645368523826403557664358400000*x**7+15193743364805385914791764255439847424000000*x**6+82660 7123241007367179342411796054016000000*x**5+36698205721449251600489578223370240000000*x**4+1276643541446883714485459091456000000000*x**3+3263138595093789 4083656417280000000000*x**2+544847137497742374674104320000000000*x+4457869163092977175756800000000000)/ (38849174012498197907452723200000000000000*x**74+3318598191984295465296750182400000000000000*x**73+137923803520060037223899260256256000000000000*x**72+3 718836854788115338745516774129664000000000000*x**71+73187564029226708723444458146842542080000000000*x**70+1121446437628800089041894262361041141760000000 000*x**69+13937137779902055729239770100875821632716800000000*x**68+144499023630993463225897485449622876114124800000000*x**67+127587886738453505303322947 2044962110670635008000000*x**66+9746370095122882492430762538399854353652121600000000*x**65+65215495588078294956304754695697556926039599349760000*x**64+3 86084747539612058845065474438915113812606522490880000*x**63+2039019743945197787806635323175732162985805873361715200*x**62+967312067951480964082283380637 2756448932826769653760000*x**61+41463182796652561547765945470954864465553792226951168000*x**60+161395707996900193288033181079336181640030323993431244800 *x**59+572985959395474247469239080818191224916889350617733529600*x**58+1862374267840213513898298449997074233654470813402085785600*x**57+5560430031086381 252746269930110412997502372446348409241600*x**56+15294884284718527165111367639524474394242463478570586521600*x**55+3886098166813866652919191163210297367 9267849216163518873600*x**54+91415494941532261154338183845834115681983965207741203353600*x**53+199509970977818775632987267744641506890636069960682414182 400*x**52+404718623257332025328917625285264020089712651667338146585600*x**51+764374715419689922968327485500214314436229021737343580569600*x**50+13460756 68348010010438588949674037750529766839631942722380800*x**49+2213199045980729092667047603056735385248916780496177533440000*x**48+340154127414103475350533 7773066649407560854431902037976320000*x**47+4892103780283080871288385104328530226580371128828639113216000*x**46+6590054588677667222257130588148263220931 392553656135566592000*x**45+8321790039667741773143733704030351277421859439309217460736000*x**44+98581441230561875321569373739644234330922765326024021095 68000*x**43+10962218518250821245562546207482370427489203414972878535065600*x**42+11448825928895319238165607419280388858411242066332743600000000*x**41+11 235149156411346177828271421184433780217549468847670036992000*x**40+10363622140030410343302319664329679035025469377574033155174400*x**39+8988410444547910 032150577099030176615855802547117158448332800*x**38+7331310976398177080061080847301200859574935432860186655948800*x**37+56242179608090918028225316305767 26104891213089910954236620800*x**36+4058302463395757204313533365763872433751951130071815225164800*x**35+275431759585599708492087256079242978478487216240 2632133836800*x**34+1758011360746200302693219873297151407720017161990685383244800*x**33+1055073126700485634917761645630646824351646318878099638579200*x* *32+595216923608652456635301929860947101931138207761273530828800*x**31+315529879888969797201425410449602612378143848550150479052800*x**30+15710112010938 0703527501506578358977957429633622398998374400*x**29+73426181385511818150687126779106893812232809076914963968000*x**28+321936668855972964088101551329799 01682101751270559157120000*x**27+13231385437288999412775352581513090540713728729205858304000*x**26+50929796606588392109237142664473451858967488235090177
  • 10. Symbolic algebra Coding progress: • Started with SymPy (Python) general algebraic expressions. • Then used SymPy’s polynomial package (100 times faster). • Then FLINT (C) 10000–100000 times faster. • Then eliminating isomorphic branches of the tree (10 times faster). https://github.com/pholme/exact-importance
  • 11. Small graphs N no. connected graphs 3 2 4 6 5 20 6 112 7 853 http://users.cecs.anu.edu.au/~bdm/data/graphs.html
  • 14. Smallest graphs 1 6 6 6 51 12 1 4 5 6 7 3 1 2 3 4 5 6 7 0.1 1 10 0.2 0.4 0.6 0.8 1 1.2 0.1 1 10 1 2 3 4 5 0.1 1 10 β β β Influence maximization Vaccination Sentinel surveillance Ω Ω τ [(1+√5)/2,(3+√17)/4] [1.62..,1.78..] β-interval
  • 15. Smallest graphs 2 34 14,23 12 56 3456 21 3 6 5 4 Influence maximization 3 4 5 0.1 1 10 1 1.5 2 2.5 0.1 1 10 0.1 0.2 0.3 0.4 0.5 0.6 0.1 1 10 0.0 0.7 2 6 Sentinel surveillance Vaccination β β β Ω Ω τ
  • 16. Smallest graphs 3 7 1 6 75 1 6 751 6 1 2 3 4 5 0.1 1 10 1 2 3 4 5 6 7 0.1 1 10 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0.1 1 10 326 3 2 5 3 2 7 5 Sentinel surveillance VaccinationInfluence maximization Ω Ω τ 2 1 4 5 6 7 3 β β β
  • 17. Statistics for all graphs w N < 8
  • 18. Overlap 0.8 0.85 0.9 0.95 1 0.1 1 10 100 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 1 10 100 0.4 0.5 0.6 0.7 0.8 0.1 1 10 100 Sentinel surveillance vs. influence maximization β β β (a) n = 1 (b) n = 2 (c) n = 3 J J J Influencemaximizationvs.vaccination Vaccination vs. sentinel surveillance
  • 19. Structural explanations 3.85 3.86 3.87 3.88 3.89 3.9 3.91 3.92 0.1 1 10 100 Influence maximization Vaccination Sentinel surveillance 0.78 0.781 0.782 0.783 0.784 0.785 0.786 0.787 0.1 1 10 100 1.41 1.42 1.43 1.44 1.45 1.46 0.1 1 10 100 2 2.5 3 3.5 0.1 1 10 100 0.55 0.6 0.65 0.7 0.1 1 10 100 1 1.05 1.1 1.15 1.2 1.25 0.1 1 10 100 1.8 2 2.2 2.4 2.6 2.8 3 3.2 0.1 1 10 100 0.55 0.6 0.65 0.1 1 10 100 1 1.05 1.1 1.15 0.1 1 10 100 k k k c c c v v v (d) n = 2 (e) n = 2 (f) n = 2 (a) n = 1 (b) n = 1 (c) n = 1 (g) n = 3 (h) n = 3 (i) n = 3 β β β β β β β β β
  • 20. Structural explanations 1.5 2 2.5 3 0.1 1 10 100 1.6 1.8 2 2.2 2.4 0.1 1 10 100 Vaccination Sentinelsurveillance β β (b) n = 3 (a) n = 2 d d
  • 21. Summary Paper: • Found smallest connected graphs with three distinct most important nodes. • Degree is important for small β. • Vitality is important for vaccination. • With more than one active node, the separation matters for influence maximization and sentinel surveillance. Myself: • Learned efficient symbolic computation. • Graph isomorphism. • How to enumerate small graphs.
  • 22. Thank you! Collaborators: Jari Saramäki Naoki Masuda Nelly Litvak Luis Rocha Illustrations by: Mi Jin Lee