SlideShare a Scribd company logo
PROJECT UPDATE FOR IMPROVEMENT OF ‘FINAL
STRIP THICKNESS CONTROL’ IN HIGH ‘SI
ELECTRICAL STEEL’ THROUGH THE USE OF ‘DATA
ANALYTICS’
Presentation by:
Srinivasa Raghavan Ramanujam
F E A T U R E
S E L E C T I O N
M O D E L
B U I L D I N G
P R E -
P R O C E S S I N G R E S U L T S
R E C O M M E N D
A T I O N S
O V E R V I E W
Objective
Current Progress
Feature Selection
Dimensionality Reduction
Model Building
Results and Discussion
Recommendation
Future Work
F E A T U R E
S E L E C T I O N
M O D E L
B U I L D I N G
P R E -
P R O C E S S I N G R E S U L T S
R E C O M M E N D
A T I O N S
O V E R V I E W
Aim
To analyse the cold reduction of high Si steel for reducing the thickness by
90% to achieve sharp magnetic losses which are proportional to the final
strip thickness through the use of data analytics.
F E A T U R E
S E L E C T I O N
M O D E L
B U I L D I N G
P R E -
P R O C E S S I N G R E S U L T S
R E C O M M E N D
A T I O N S
O V E R V I E W
Dissertation Plan
F E A T U R E
S E L E C T I O N
M O D E L
B U I L D I N G
P R E -
P R O C E S S I N G R E S U L T S
R E C O M M E N D
A T I O N S
O V E R V I E W
Topic
Weeks
1 2 3 4 5 6 7 8 9 10 11 12
Initial Proposal
Feature Selection in Weka
Pre-processing Dataset
Model Building in Python
Analysing Results Current Position
Compiling
Report Writing
Project Approach
F E A T U R E
S E L E C T I O N
M O D E L
B U I L D I N G
P R E -
P R O C E S S I N G R E S U L T S
R E C O M M E N D
A T I O N S
O V E R V I E W
•Analyzing the generalized data
•Identifying the base of the problem
Top down
approach
•Dividing into test and train sets
•Feature Scaling
Data pre-
processing
•Identify the relation between different
attribute
Feature
Selection
•Dimensionality ReductionPCA
•Build the correct algorithm using python
•Predict the results
Model Building
Visualize Results
Current Update
F E A T U R E
S E L E C T I O N
M O D E L
B U I L D I N G
P R E -
P R O C E S S I N G R E S U L T S
R E C O M M E N D
A T I O N S
O V E R V I E W
Update Check
Exporting the IBA data into a csv
format
Trying to find a relationship between
different attribute
Develop various mathematical
model to predict the snap
Working on a GUI to perform data
mining using python
Feature
Selection
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G
R E S U L T S
R E C O M M E N D
A T I O N S
Problem: Unclean Data
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G
R E S U L T S
R E C O M M E N D
A T I O N S
Fluctuations when
velocity is zero
Solution: Removing Zeros
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G
R E S U L T S
R E C O M M E N D
A T I O N S
Feature Selection: Weka
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G
R E S U L T S
R E C O M M E N D
A T I O N S
It is the process of selecting a subset of
relevant features (variables, predictors) for
use in model construction. Feature
selection techniques are used for four
reasons:
Simplification of models to make them
easier to interpret by researchers/users,
Shorter training times,
To avoid the curse of dimensionality,
Enhanced generalization by reducing
overfitting
Point
where
snap
happens
Feature Selection: Weka
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G
R E S U L T S
R E C O M M E N D
A T I O N S
Performed for snap and non snap
coils
727 Attributes
30 coils
Six Different Models
BestFirst+ Cfs Subset Eval
Greedy StepWise+ Cfs Subset Eval
Greedy StepWise + WrapperSubset
Eval
Ranker + Principal Components
Ranker+ ReliefAttribute Eval
Ranker + CorrelationAttribute Eval
Feature Selection Result: Entire
Coil
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G
R E S U L T S
R E C O M M E N D
A T I O N S
Entry Strip Speed
Exit Strip Speed
Entry Gauge
Deviation
Exit Gauge Deviation
Total Force Feedback
Mill Speed
Right gauge coarse
deviation
Feedback Error
Single Shot Gauge Deviation
Delayed Raw Mass flow Gauge Error
Right Gauge Deviation Component
Fit
Force Error RMS
Back Capsule Force
Servo Front Load
Servo Back Load
Measured Slip
Back_Capsule_Titt
Calc mill speed
WR circ
Feature Selection Result: Snap
Time Data
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G
R E S U L T S
R E C O M M E N D
A T I O N S
Entry Strip Speed
Exit Strip Speed
Entry Gauge
Deviation
Exit Gauge Deviation
Total Force
Feedback
Mill Speed
Feedback Error
Single Shot Gauge Deviation
Right Gauge Deviation
Component Fit
Mass Flow Exit Gauge
Force Error RMS
Back Capsule Force
Servo Front Load
Servo Back Load
Measured Slip
Back_Capsule_Titt
Calc mill speed
WR circ
Feature Selection Result: Non Snap
Selection Coil
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G
R E S U L T S
R E C O M M E N D
A T I O N S
Entry Strip Speed
Exit Strip Speed
Entry Gauge
Deviation
Exit Gauge Deviation
Total Force Feedback
Mill Speed
Right gauge coarse
deviation
Feedback Error
Single Shot Gauge Deviation
Delayed Raw Mass flow Gauge Error
Left Gauge Deviation Component Fit
Right Gauge Deviation Component
Fit
Force Error RMS
Back Capsule Force
Servo Front Load
Servo Back Load
Measured Slip
Back Capsule Titt
Calc mill speed
WR circ
Data Pre-processing
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G
R E S U L T S
R E C O M M E N D
A T I O N S
Data Pre-processing
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G
R E S U L T S
R E C O M M E N D
A T I O N S
Four steps
Importing the Libraries
Importing the datasets
Splitting into test and train sets
Feature Scaling
Dimensionality Reduction
Dimensionality Reduction
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G
R E S U L T S
R E C O M M E N D
A T I O N S
Principal Component Analysis
Unsupervised Mode of Dimensionality
Reduction
Statistical procedure that uses an
orthogonal transformation to convert a
set of observations of possibly correlated
variables into a set of values of linearly
uncorrelated variables called principal
componentsSplitting into test and train
sets
Model Building
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G
R E S U L T S
R E C O M M E N D
A T I O N S
Model: Multiple Linear Regression
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G
R E S U L T S
R E C O M M E N D
A T I O N S
Multiple linear regression attempts
to model the relationship between
two or more explanatory variables
and a response variable by fitting a
linear equation to observed data.
Every value of the independent
variable x is associated with a value
of the dependent variable y
Model: Random Forest Regression
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G
R E S U L T S
R E C O M M E N D
A T I O N S
It is unexcelled in accuracy among
current algorithms.
It runs efficiently on large databases.
It can deal with a large number of
information factors without variable
erasure
Model: Decision Tree Regression
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G
R E S U L T S
R E C O M M E N D
A T I O N S
Decision tree builds regression or
classification models in the form of a
tree structure.
It breaks down a dataset into
smaller and smaller subsets while at
the same time an associated
decision tree is incrementally
developed.
The final result is a tree with
decision nodes and leaf nodes
Model Results
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G
R E S U L T S
R E C O M M E N D
A T I O N S
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G R E S U L T S
R E C O M M E N D
A T I O N S
PCA Components Model Accuracy mean
1 7.58%
2 37.62%
3 38.54%
4 40.98%
5 75.14%
6 80.61%
7 80.81%
8 82.66%
PCA Components Model Accuracy mean
9 82.76%
10 82.76%
11 82.76%
12 82.76%
13 82.76%
14 82.76%
15 82.76%
Model: Multiple Linear Regression
Model: Decision Tree Regression
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G R E S U L T S
R E C O M M E N D
A T I O N S
PCA Components Model Accuracy mean
1 92.95%
2 99.42%
3 99.88%
4 99.952%
5 99.96%
6 99.97%
7 99.97%
8 99.97%
PCA Components Model Accuracy mean
9 99.98%
10 99.98%
11 99.983%
12 99.985%
13 99.986%
14 99.986%
15 99.986%
Model: Random Forest Regression
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G R E S U L T S
R E C O M M E N D
A T I O N S
PCA Components Model Accuracy mean
1 94.77%
2 96.82%
3 98.42%
4 99.23%
5 99.45%
6 99.54%
7 99.72%
8 99.77%
PCA Components Model Accuracy mean
9 99.89%
10 99.98%
11 99.987%
12 99.998%
13 99.998%
14 99.998%
15 99.998%
Snap Identification
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G R E S U L T S
R E C O M M E N D
A T I O N S
Three primary snap identification
parameter
Total Force Feedback
Force Error RMS
Measured Slip
Snap Results
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G R E S U L T S
R E C O M M E N D
A T I O N S
7/8/2017-27/04/2018
2294 coils
K-means clustering algorithm
Parameter Value Percentage
No Snap 1279 56%
Snap 1015 44%
Snap Classification
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G R E S U L T S
R E C O M M E N D
A T I O N S
Year: 2018
837 coils
Hierarchical clustering algorithm
Parameter Value Percentage
No Snap 599 71.5%
Edge Split 76 9.08%
Pinch 14 1.06%
Scab 22 2.6%
Stress 10 1.19%
Straight Line 12 1.4%
Unknown 83 9.91%
Mixed Snap 21 2.5%
Snap Relationship Analysis
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G R E S U L T S
R E C O M M E N D
A T I O N S
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G R E S U L T S
R E C O M M E N D
A T I O N S
Snap Coil
Coil ID Speed Total Force Feedback
B02595 320 1250
B02776 310 1550
B02825 240 1230
220 1250
B02833 230 1220
B02838
300 1450
405 1250
200 1500
240 1500
B02846
400 1250
370 1260
190 1500
B02856 310 1550
B99514 310 1550
B99659
320 1550
320 1550
300 1500
300 1500
B99680
320 1550
320 1550
B99690
450 1250
250 1500
B99727 350 1250
Non Snap Coil
Coil ID Speed Total Force Feedback
B02595 200 1200
B02825
210 1300
125 1250
B02786
110 1250
150 1250
B02774
200 1400
220 1250
B02776
170 1250
190 1450
B02786
110 1100
250 1250
B02833
125 1150
175 1250
B02838
190 1300
260 1550
B02843
220 1250
400 1550
B02846
210 1350
175 1150
B02856
125 1250
150 1450
B99514 150 1250
B99727 190 1150
Recommendatio
ns
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G R E S U L T S
R E C O M M E N D
A T I O N S
Snap Improvement Methods:
Mechanical System
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G R E S U L T S
R E C O M M E N D
A T I O N S
Stress
Lubrication
Increased force value
Roll wear
Straight Line Snap
Rolling Force
Bending Force
Lubrication
Pinch
Lubrication
Load Values
The gauge is too heavy
Material defect
Scab
Material defect
Edge Split
Guide vane
Roll position
Lubrication
Thickness Control Improvement
Methods: Control System
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G R E S U L T S
R E C O M M E N D
A T I O N S
Too much noise in the data
Control System
Kalman Filter
Fuzzy logic
Convolutional Neural Network
Pictures of different snaps and put
them into model to predict the snap.
GUI Data Mining
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G R E S U L T S
R E C O M M E N D
A T I O N S
Version 2.0
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G R E S U L T S
R E C O M M E N D
A T I O N S
Future
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G R E S U L T S
R E C O M M E N D
A T I O N S
Trying to find more optimization
methods
Complete the GUI
Prepare and compile the report
O V E R V I E W
F E A T U R E
S E L E C T I O N
P R E -
P R O C E S S I N G
M O D E L
B U I L D I N G R E S U L T S
R E C O M M E N D
A T I O N S
O V E R V I E W
Thank you for your time and
patience!

More Related Content

PDF
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Autocorrelation and...
PDF
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W3 Sample Size
PDF
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W2 Statistical Process...
PDF
Deep_Learning__INAF_baroncelli.pdf
PDF
THE IMPLICATION OF STATISTICAL ANALYSIS AND FEATURE ENGINEERING FOR MODEL BUI...
PDF
THE IMPLICATION OF STATISTICAL ANALYSIS AND FEATURE ENGINEERING FOR MODEL BUI...
PDF
THE IMPLICATION OF STATISTICAL ANALYSIS AND FEATURE ENGINEERING FOR MODEL BUI...
PPTX
Condition Monitoring of Variable State Machinery
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Autocorrelation and...
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W3 Sample Size
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W2 Statistical Process...
Deep_Learning__INAF_baroncelli.pdf
THE IMPLICATION OF STATISTICAL ANALYSIS AND FEATURE ENGINEERING FOR MODEL BUI...
THE IMPLICATION OF STATISTICAL ANALYSIS AND FEATURE ENGINEERING FOR MODEL BUI...
THE IMPLICATION OF STATISTICAL ANALYSIS AND FEATURE ENGINEERING FOR MODEL BUI...
Condition Monitoring of Variable State Machinery

Similar to Improvement of strip thickness control through the process of data analytics (20)

PDF
featurers_Machinelearning___________.pdf
PDF
Machine Learning.pdf
PPTX
Agile Experiments in Machine Learning
PPTX
Feature Engineering Fundamentals Explained.pptx
PDF
Machine learning Mind Map
PDF
Z suzanne van_den_bosch
PDF
Higgs Boson Challenge
PDF
A detailed analysis of the supervised machine Learning Algorithms
PDF
Agile experiments in Machine Learning with F#
PDF
Grasping dataset
DOCX
Deep Learning Vocabulary.docx
PPTX
Data Engineer’s Lunch #67: Machine Learning - Feature Selection
PDF
Predictive Maintenance - Predict the Unpredictable
PDF
Lecture 10 - Model Testing and Evaluation, a lecture in subject module Statis...
PPTX
Data Engineer's Lunch #67: Machine Learning - Feature Selection
PDF
763354.MIPRO_2015_JovicBrkicBogunovic.pdf
PDF
Julien vachaudez - projet Autodiag
PPTX
CBM Variable Speed Machinery
PPTX
Leveraging Machine Learning for Accelerated Material Design.pptx
PDF
Lecture 8 - Feature Engineering and Optimization, a lecture in subject module...
featurers_Machinelearning___________.pdf
Machine Learning.pdf
Agile Experiments in Machine Learning
Feature Engineering Fundamentals Explained.pptx
Machine learning Mind Map
Z suzanne van_den_bosch
Higgs Boson Challenge
A detailed analysis of the supervised machine Learning Algorithms
Agile experiments in Machine Learning with F#
Grasping dataset
Deep Learning Vocabulary.docx
Data Engineer’s Lunch #67: Machine Learning - Feature Selection
Predictive Maintenance - Predict the Unpredictable
Lecture 10 - Model Testing and Evaluation, a lecture in subject module Statis...
Data Engineer's Lunch #67: Machine Learning - Feature Selection
763354.MIPRO_2015_JovicBrkicBogunovic.pdf
Julien vachaudez - projet Autodiag
CBM Variable Speed Machinery
Leveraging Machine Learning for Accelerated Material Design.pptx
Lecture 8 - Feature Engineering and Optimization, a lecture in subject module...
Ad

Recently uploaded (20)

PDF
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
PPTX
Artificial Intelligence
PDF
737-MAX_SRG.pdf student reference guides
PDF
Integrating Fractal Dimension and Time Series Analysis for Optimized Hyperspe...
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PPTX
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
PDF
86236642-Electric-Loco-Shed.pdf jfkduklg
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
PPT on Performance Review to get promotions
PDF
Categorization of Factors Affecting Classification Algorithms Selection
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PDF
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
Analyzing Impact of Pakistan Economic Corridor on Import and Export in Pakist...
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
Fundamentals of Mechanical Engineering.pptx
PPTX
Nature of X-rays, X- Ray Equipment, Fluoroscopy
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PDF
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
PDF
Visual Aids for Exploratory Data Analysis.pdf
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
Artificial Intelligence
737-MAX_SRG.pdf student reference guides
Integrating Fractal Dimension and Time Series Analysis for Optimized Hyperspe...
III.4.1.2_The_Space_Environment.p pdffdf
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
86236642-Electric-Loco-Shed.pdf jfkduklg
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPT on Performance Review to get promotions
Categorization of Factors Affecting Classification Algorithms Selection
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Analyzing Impact of Pakistan Economic Corridor on Import and Export in Pakist...
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Fundamentals of Mechanical Engineering.pptx
Nature of X-rays, X- Ray Equipment, Fluoroscopy
Exploratory_Data_Analysis_Fundamentals.pdf
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
Visual Aids for Exploratory Data Analysis.pdf
Ad

Improvement of strip thickness control through the process of data analytics

  • 1. PROJECT UPDATE FOR IMPROVEMENT OF ‘FINAL STRIP THICKNESS CONTROL’ IN HIGH ‘SI ELECTRICAL STEEL’ THROUGH THE USE OF ‘DATA ANALYTICS’ Presentation by: Srinivasa Raghavan Ramanujam F E A T U R E S E L E C T I O N M O D E L B U I L D I N G P R E - P R O C E S S I N G R E S U L T S R E C O M M E N D A T I O N S O V E R V I E W
  • 2. Objective Current Progress Feature Selection Dimensionality Reduction Model Building Results and Discussion Recommendation Future Work F E A T U R E S E L E C T I O N M O D E L B U I L D I N G P R E - P R O C E S S I N G R E S U L T S R E C O M M E N D A T I O N S O V E R V I E W
  • 3. Aim To analyse the cold reduction of high Si steel for reducing the thickness by 90% to achieve sharp magnetic losses which are proportional to the final strip thickness through the use of data analytics. F E A T U R E S E L E C T I O N M O D E L B U I L D I N G P R E - P R O C E S S I N G R E S U L T S R E C O M M E N D A T I O N S O V E R V I E W
  • 4. Dissertation Plan F E A T U R E S E L E C T I O N M O D E L B U I L D I N G P R E - P R O C E S S I N G R E S U L T S R E C O M M E N D A T I O N S O V E R V I E W Topic Weeks 1 2 3 4 5 6 7 8 9 10 11 12 Initial Proposal Feature Selection in Weka Pre-processing Dataset Model Building in Python Analysing Results Current Position Compiling Report Writing
  • 5. Project Approach F E A T U R E S E L E C T I O N M O D E L B U I L D I N G P R E - P R O C E S S I N G R E S U L T S R E C O M M E N D A T I O N S O V E R V I E W •Analyzing the generalized data •Identifying the base of the problem Top down approach •Dividing into test and train sets •Feature Scaling Data pre- processing •Identify the relation between different attribute Feature Selection •Dimensionality ReductionPCA •Build the correct algorithm using python •Predict the results Model Building Visualize Results
  • 6. Current Update F E A T U R E S E L E C T I O N M O D E L B U I L D I N G P R E - P R O C E S S I N G R E S U L T S R E C O M M E N D A T I O N S O V E R V I E W Update Check Exporting the IBA data into a csv format Trying to find a relationship between different attribute Develop various mathematical model to predict the snap Working on a GUI to perform data mining using python
  • 7. Feature Selection O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S
  • 8. Problem: Unclean Data O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S Fluctuations when velocity is zero
  • 9. Solution: Removing Zeros O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S
  • 10. Feature Selection: Weka O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S It is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Feature selection techniques are used for four reasons: Simplification of models to make them easier to interpret by researchers/users, Shorter training times, To avoid the curse of dimensionality, Enhanced generalization by reducing overfitting Point where snap happens
  • 11. Feature Selection: Weka O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S Performed for snap and non snap coils 727 Attributes 30 coils Six Different Models BestFirst+ Cfs Subset Eval Greedy StepWise+ Cfs Subset Eval Greedy StepWise + WrapperSubset Eval Ranker + Principal Components Ranker+ ReliefAttribute Eval Ranker + CorrelationAttribute Eval
  • 12. Feature Selection Result: Entire Coil O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S Entry Strip Speed Exit Strip Speed Entry Gauge Deviation Exit Gauge Deviation Total Force Feedback Mill Speed Right gauge coarse deviation Feedback Error Single Shot Gauge Deviation Delayed Raw Mass flow Gauge Error Right Gauge Deviation Component Fit Force Error RMS Back Capsule Force Servo Front Load Servo Back Load Measured Slip Back_Capsule_Titt Calc mill speed WR circ
  • 13. Feature Selection Result: Snap Time Data O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S Entry Strip Speed Exit Strip Speed Entry Gauge Deviation Exit Gauge Deviation Total Force Feedback Mill Speed Feedback Error Single Shot Gauge Deviation Right Gauge Deviation Component Fit Mass Flow Exit Gauge Force Error RMS Back Capsule Force Servo Front Load Servo Back Load Measured Slip Back_Capsule_Titt Calc mill speed WR circ
  • 14. Feature Selection Result: Non Snap Selection Coil O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S Entry Strip Speed Exit Strip Speed Entry Gauge Deviation Exit Gauge Deviation Total Force Feedback Mill Speed Right gauge coarse deviation Feedback Error Single Shot Gauge Deviation Delayed Raw Mass flow Gauge Error Left Gauge Deviation Component Fit Right Gauge Deviation Component Fit Force Error RMS Back Capsule Force Servo Front Load Servo Back Load Measured Slip Back Capsule Titt Calc mill speed WR circ
  • 15. Data Pre-processing O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S
  • 16. Data Pre-processing O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S Four steps Importing the Libraries Importing the datasets Splitting into test and train sets Feature Scaling Dimensionality Reduction
  • 17. Dimensionality Reduction O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S Principal Component Analysis Unsupervised Mode of Dimensionality Reduction Statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal componentsSplitting into test and train sets
  • 18. Model Building O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S
  • 19. Model: Multiple Linear Regression O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S Multiple linear regression attempts to model the relationship between two or more explanatory variables and a response variable by fitting a linear equation to observed data. Every value of the independent variable x is associated with a value of the dependent variable y
  • 20. Model: Random Forest Regression O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S It is unexcelled in accuracy among current algorithms. It runs efficiently on large databases. It can deal with a large number of information factors without variable erasure
  • 21. Model: Decision Tree Regression O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S Decision tree builds regression or classification models in the form of a tree structure. It breaks down a dataset into smaller and smaller subsets while at the same time an associated decision tree is incrementally developed. The final result is a tree with decision nodes and leaf nodes
  • 22. Model Results O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S
  • 23. O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S PCA Components Model Accuracy mean 1 7.58% 2 37.62% 3 38.54% 4 40.98% 5 75.14% 6 80.61% 7 80.81% 8 82.66% PCA Components Model Accuracy mean 9 82.76% 10 82.76% 11 82.76% 12 82.76% 13 82.76% 14 82.76% 15 82.76% Model: Multiple Linear Regression
  • 24. Model: Decision Tree Regression O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S PCA Components Model Accuracy mean 1 92.95% 2 99.42% 3 99.88% 4 99.952% 5 99.96% 6 99.97% 7 99.97% 8 99.97% PCA Components Model Accuracy mean 9 99.98% 10 99.98% 11 99.983% 12 99.985% 13 99.986% 14 99.986% 15 99.986%
  • 25. Model: Random Forest Regression O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S PCA Components Model Accuracy mean 1 94.77% 2 96.82% 3 98.42% 4 99.23% 5 99.45% 6 99.54% 7 99.72% 8 99.77% PCA Components Model Accuracy mean 9 99.89% 10 99.98% 11 99.987% 12 99.998% 13 99.998% 14 99.998% 15 99.998%
  • 26. Snap Identification O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S Three primary snap identification parameter Total Force Feedback Force Error RMS Measured Slip
  • 27. Snap Results O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S 7/8/2017-27/04/2018 2294 coils K-means clustering algorithm Parameter Value Percentage No Snap 1279 56% Snap 1015 44%
  • 28. Snap Classification O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S Year: 2018 837 coils Hierarchical clustering algorithm Parameter Value Percentage No Snap 599 71.5% Edge Split 76 9.08% Pinch 14 1.06% Scab 22 2.6% Stress 10 1.19% Straight Line 12 1.4% Unknown 83 9.91% Mixed Snap 21 2.5%
  • 29. Snap Relationship Analysis O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S
  • 30. O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S Snap Coil Coil ID Speed Total Force Feedback B02595 320 1250 B02776 310 1550 B02825 240 1230 220 1250 B02833 230 1220 B02838 300 1450 405 1250 200 1500 240 1500 B02846 400 1250 370 1260 190 1500 B02856 310 1550 B99514 310 1550 B99659 320 1550 320 1550 300 1500 300 1500 B99680 320 1550 320 1550 B99690 450 1250 250 1500 B99727 350 1250 Non Snap Coil Coil ID Speed Total Force Feedback B02595 200 1200 B02825 210 1300 125 1250 B02786 110 1250 150 1250 B02774 200 1400 220 1250 B02776 170 1250 190 1450 B02786 110 1100 250 1250 B02833 125 1150 175 1250 B02838 190 1300 260 1550 B02843 220 1250 400 1550 B02846 210 1350 175 1150 B02856 125 1250 150 1450 B99514 150 1250 B99727 190 1150
  • 31. Recommendatio ns O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S
  • 32. Snap Improvement Methods: Mechanical System O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S Stress Lubrication Increased force value Roll wear Straight Line Snap Rolling Force Bending Force Lubrication Pinch Lubrication Load Values The gauge is too heavy Material defect Scab Material defect Edge Split Guide vane Roll position Lubrication
  • 33. Thickness Control Improvement Methods: Control System O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S Too much noise in the data Control System Kalman Filter Fuzzy logic Convolutional Neural Network Pictures of different snaps and put them into model to predict the snap.
  • 34. GUI Data Mining O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S
  • 35. Version 2.0 O V E R V I E W F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S
  • 36. Future F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S Trying to find more optimization methods Complete the GUI Prepare and compile the report O V E R V I E W
  • 37. F E A T U R E S E L E C T I O N P R E - P R O C E S S I N G M O D E L B U I L D I N G R E S U L T S R E C O M M E N D A T I O N S O V E R V I E W Thank you for your time and patience!