Physics Helpline
L K Satapathy
Indefinite Integrals 13
Physics Helpline
L K Satapathy
Indefinite Integrals - 13
Answer-1
sec 1.I x dx 
(1 cos )(1 cos )
.
cos (1 cos )
x x
dx
x x
 


1 cos
.
cos
x
dx
x

 
2
sin
.
cos cos
x
dx
x x



1
1 .
cos
dx
x
 
  
 

Physics Helpline
L K Satapathy
Indefinite Integrals - 13
cos sin . sin .Put x t x dx dt x dx dt      Substitution :
2
2 1 1
4 4
dt dt
I
t t t t
    
   
 
2 2
1 1 1
log
2 2 2
t t C
     
          
     
21
log
2
t t t C
 
     
 
2 2
1 1
2 2
dt
t
 
   
    
   

2 2
2 2
log
dx
using x x a
x a
  


2
[ ]
1
log cos cos cos
2
x x x C Ans
 
     
 
Physics Helpline
L K Satapathy
Indefinite Integrals - 13
Answer-2
Substitution : sin cos .Put x t x dx dt  
2
2sin2 cos
.
6 cos 4sin
x x
I dx
x x


 
2
(4sin 1)cos
.
sin 4sin 5
x x
dx
x x


 
2
(4 1)
.
4 5
t
I dt
t t

 
 
1 22 2
2 4
2 . 7 ( )
4 5 4 5
t dt
dt I I say
t t t t

   
    
2 2
sin2 2sin cos
cos 1 sin
x x x
x x

 
2
4sin cos cos
.
6 (1 sin ) 4sin
x x x
dx
x x


  
2 2
4 8 7 2(2 4) 7
. .
4 5 4 5
t t
dt dt
t t t t
   
 
    
Physics Helpline
L K Satapathy
Indefinite Integrals - 13
2 1
1 2 2log 4 5 7tan ( 2)I I I t t t C
        
2 1
2log sin 4sin 5 7tan (sin 2) [ ]Anx x x C s
     
1 2
2 4
2 .
4 5
t
I dt
t t

 
 
2 2 2
7 7
4 5 4 4 1
dt dt
And I
t t t t
 
     
2
4 5 (2 4)Put t t u t dt du     
2
1 2 2log 2log 4 5
du
I u t t
u
     
1
2 2
7 7tan ( 2)
( 2) 1
dt
t
t

  
  1
2 2
1
tan
dx x
using
x a a a



Physics Helpline
L K Satapathy
Indefinite Integrals - 13
Answer-3
2
2
.
2 1
x
I dx
x x


 

1 22 2
1 2 2
.
2 2 1 2 1
x dx
dx I I
x x x x

   
   
 
2
1 (2 2) 2
.
2 2 1
x
dx
x x
 

 

2
1 2 4
.
2 2 1
x
dx
x x


 

1 2
1 2 2
.
2 2 1
x
I dx
x x

 
 

2
2 1 (2 2).Put x x t x dx dt     
2
1 2 1
2
dt
I t x x
t
     
Physics Helpline
L K Satapathy
Indefinite Integrals - 13
2 2 2
2 1 2 1 2
dx dx
And I
x x x x
 
    
 
2 2
2 1 log ( 1) 2 [ ]1x x x x C Ansx        
 
2
2
log ( 1) ( 1) 2x x     2 2
2 2
log
dx
using x x a
x a
  


2
log ( 1) 2 1x x x    
1 2I I I  
 
2
2
( 1) 2
dx
x

 

Physics Helpline
L K Satapathy
For More details:
www.physics-helpline.com
Subscribe our channel:
youtube.com/physics-helpline
Follow us on Facebook and Twitter:
facebook.com/physics-helpline
twitter.com/physics-helpline

More Related Content

PPTX
Indefinite Integral 17
DOCX
Trabajo para calificar la unidad 4
PDF
Integración por Fracciones Parciales MA II ccesa007
DOCX
Matematica
DOCX
Soal dan Penyelesaian tugas Kalkulus
PDF
Expresiones algebraicas y trigonométricas
DOCX
Integrales Procesos Industriales
 
DOCX
Exame telmex empresa
Indefinite Integral 17
Trabajo para calificar la unidad 4
Integración por Fracciones Parciales MA II ccesa007
Matematica
Soal dan Penyelesaian tugas Kalkulus
Expresiones algebraicas y trigonométricas
Integrales Procesos Industriales
 
Exame telmex empresa

What's hot (20)

PDF
Problemas de Integración por Fracciones Parciales MA-II ccesa007
DOCX
Ejeteoria jose rivas
PDF
6 problem eigen
DOCX
Transformada de Laplace
DOCX
Ejercicios de tranformada de laplace rafael marin
DOCX
Integrales indefinidas
PDF
X2 t02 04 forming polynomials (2013)
PPTX
Inverse Trigonometry QA.6
PDF
Tugas Matematika Kelompok 7
PDF
Tugas Matematika Kelompok 7
PDF
11 X1 T01 02 Binomial Products (2010)
DOCX
ejercicios matematica
PDF
Integration method by parts
DOCX
Asignacion de Calculo4 Carlos gonzalez Saia E
DOCX
Facultad de ingeniería taller integral seguimiento 1
DOCX
Tugas 2 matematika 2
DOCX
Teoria control ejercicios oscarr
PDF
Tugas Matematika Kelompok 7
PDF
Tugas Matematika "Kelompok 7"
DOCX
Tugas 2
Problemas de Integración por Fracciones Parciales MA-II ccesa007
Ejeteoria jose rivas
6 problem eigen
Transformada de Laplace
Ejercicios de tranformada de laplace rafael marin
Integrales indefinidas
X2 t02 04 forming polynomials (2013)
Inverse Trigonometry QA.6
Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7
11 X1 T01 02 Binomial Products (2010)
ejercicios matematica
Integration method by parts
Asignacion de Calculo4 Carlos gonzalez Saia E
Facultad de ingeniería taller integral seguimiento 1
Tugas 2 matematika 2
Teoria control ejercicios oscarr
Tugas Matematika Kelompok 7
Tugas Matematika "Kelompok 7"
Tugas 2
Ad

Viewers also liked (20)

PPTX
Inverse Trigonometry.2
PPTX
Indefinite Integrals 11
PPTX
Indefinite Integral 3
PPTX
Probability Theory 7
PPTX
Theory of Vectors 2
PPTX
Indefinite Integrals 14
PPTX
Probability Theory 4
PPTX
Theory of Vectors 1
PPTX
Probability QA 2
PPTX
Theory of Vectors 5
PPTX
Probability QA 5
PPTX
Probability QA 4
PPTX
Binomial Theorem 1
PPTX
Integralion Formulae 1
PPTX
Rotational Motion QA 1
PPTX
Binomial Theorem 3
PPTX
Theory of Vectors 3
PPTX
Probability QA 1
PPTX
Probability Theory 3
PPTX
Trigonometry.2
Inverse Trigonometry.2
Indefinite Integrals 11
Indefinite Integral 3
Probability Theory 7
Theory of Vectors 2
Indefinite Integrals 14
Probability Theory 4
Theory of Vectors 1
Probability QA 2
Theory of Vectors 5
Probability QA 5
Probability QA 4
Binomial Theorem 1
Integralion Formulae 1
Rotational Motion QA 1
Binomial Theorem 3
Theory of Vectors 3
Probability QA 1
Probability Theory 3
Trigonometry.2
Ad

More from Lakshmikanta Satapathy (20)

PPTX
Work Energy Power QA-4/ Force & Potential energy
PPTX
QA Work Energy and Power-3/ Work Energy Theorem
PPTX
QA Electromagnetism-1/ Magnetic Field & Lorentz force
PPTX
CBSE Electrostatics QA-5/ Electric Potential and Capacitance
PPTX
CBSE QA/ Electrostatics-4/ Electric Potential
PPTX
Wave Motion Theory 6/ Advanced Theory
PPTX
Wave Motion Theory 5/ Beats/ Doppler Effect
PPTX
Wave Motion Theory Part4
PPTX
Wave Motion Theory Part3
PPTX
Wave Motion theory-2
PPTX
Wave Motion Theory Part1
PPTX
Definite Integrals 8/ Integration by Parts
PPTX
Vectors QA 2/ Resultant Displacement
PPTX
Quadratic Equation 2
PPTX
Probability QA 12
PPTX
Inverse Trigonometry QA 5
PPTX
Transient Current QA 1/ LR Circuit
PPTX
Rotational Motion QA 8
PPTX
Electromagnetism QA 7/ Ammeter
PPTX
Binomial Theorem 6/Coeff of a power of x
Work Energy Power QA-4/ Force & Potential energy
QA Work Energy and Power-3/ Work Energy Theorem
QA Electromagnetism-1/ Magnetic Field & Lorentz force
CBSE Electrostatics QA-5/ Electric Potential and Capacitance
CBSE QA/ Electrostatics-4/ Electric Potential
Wave Motion Theory 6/ Advanced Theory
Wave Motion Theory 5/ Beats/ Doppler Effect
Wave Motion Theory Part4
Wave Motion Theory Part3
Wave Motion theory-2
Wave Motion Theory Part1
Definite Integrals 8/ Integration by Parts
Vectors QA 2/ Resultant Displacement
Quadratic Equation 2
Probability QA 12
Inverse Trigonometry QA 5
Transient Current QA 1/ LR Circuit
Rotational Motion QA 8
Electromagnetism QA 7/ Ammeter
Binomial Theorem 6/Coeff of a power of x

Recently uploaded (8)

PDF
5.PDFsxcc c fvfvfv fvfvwCCDSDcvvcrdcfrwcwecwdcfwe
PDF
فورمولر عمومی مضمون فزیک برای همه انجنیران
PDF
Materi seni rupa untuk sekolah dasar materi tentang seni rupa
PPTX
Madison dsfnsd dslsf sada;sdmas;ds;dls.pptx
PDF
levelling full chapter with examples and questions
PPTX
Presentation on chemistry class 11 and class 12
PDF
15 AUG 2025 PS 15 AUG 2025 PS 15 AUG 2025 PS
PDF
Cold positive punishment of the student سزادانی ئەرێنی ساردی قوتابی.pdf
5.PDFsxcc c fvfvfv fvfvwCCDSDcvvcrdcfrwcwecwdcfwe
فورمولر عمومی مضمون فزیک برای همه انجنیران
Materi seni rupa untuk sekolah dasar materi tentang seni rupa
Madison dsfnsd dslsf sada;sdmas;ds;dls.pptx
levelling full chapter with examples and questions
Presentation on chemistry class 11 and class 12
15 AUG 2025 PS 15 AUG 2025 PS 15 AUG 2025 PS
Cold positive punishment of the student سزادانی ئەرێنی ساردی قوتابی.pdf

Indefinite Integrals 13

  • 1. Physics Helpline L K Satapathy Indefinite Integrals 13
  • 2. Physics Helpline L K Satapathy Indefinite Integrals - 13 Answer-1 sec 1.I x dx  (1 cos )(1 cos ) . cos (1 cos ) x x dx x x     1 cos . cos x dx x    2 sin . cos cos x dx x x    1 1 . cos dx x        
  • 3. Physics Helpline L K Satapathy Indefinite Integrals - 13 cos sin . sin .Put x t x dx dt x dx dt      Substitution : 2 2 1 1 4 4 dt dt I t t t t            2 2 1 1 1 log 2 2 2 t t C                        21 log 2 t t t C           2 2 1 1 2 2 dt t                 2 2 2 2 log dx using x x a x a      2 [ ] 1 log cos cos cos 2 x x x C Ans          
  • 4. Physics Helpline L K Satapathy Indefinite Integrals - 13 Answer-2 Substitution : sin cos .Put x t x dx dt   2 2sin2 cos . 6 cos 4sin x x I dx x x     2 (4sin 1)cos . sin 4sin 5 x x dx x x     2 (4 1) . 4 5 t I dt t t      1 22 2 2 4 2 . 7 ( ) 4 5 4 5 t dt dt I I say t t t t           2 2 sin2 2sin cos cos 1 sin x x x x x    2 4sin cos cos . 6 (1 sin ) 4sin x x x dx x x      2 2 4 8 7 2(2 4) 7 . . 4 5 4 5 t t dt dt t t t t           
  • 5. Physics Helpline L K Satapathy Indefinite Integrals - 13 2 1 1 2 2log 4 5 7tan ( 2)I I I t t t C          2 1 2log sin 4sin 5 7tan (sin 2) [ ]Anx x x C s       1 2 2 4 2 . 4 5 t I dt t t      2 2 2 7 7 4 5 4 4 1 dt dt And I t t t t         2 4 5 (2 4)Put t t u t dt du      2 1 2 2log 2log 4 5 du I u t t u       1 2 2 7 7tan ( 2) ( 2) 1 dt t t       1 2 2 1 tan dx x using x a a a   
  • 6. Physics Helpline L K Satapathy Indefinite Integrals - 13 Answer-3 2 2 . 2 1 x I dx x x      1 22 2 1 2 2 . 2 2 1 2 1 x dx dx I I x x x x            2 1 (2 2) 2 . 2 2 1 x dx x x       2 1 2 4 . 2 2 1 x dx x x      1 2 1 2 2 . 2 2 1 x I dx x x       2 2 1 (2 2).Put x x t x dx dt      2 1 2 1 2 dt I t x x t      
  • 7. Physics Helpline L K Satapathy Indefinite Integrals - 13 2 2 2 2 1 2 1 2 dx dx And I x x x x          2 2 2 1 log ( 1) 2 [ ]1x x x x C Ansx           2 2 log ( 1) ( 1) 2x x     2 2 2 2 log dx using x x a x a      2 log ( 1) 2 1x x x     1 2I I I     2 2 ( 1) 2 dx x    
  • 8. Physics Helpline L K Satapathy For More details: www.physics-helpline.com Subscribe our channel: youtube.com/physics-helpline Follow us on Facebook and Twitter: facebook.com/physics-helpline twitter.com/physics-helpline