SlideShare a Scribd company logo
Induction Motor
•Why induction motor (IM)?
–Robust; No brushes. No contacts on rotor shaft
–High Power/Weight ratio compared to Dc motor
–Lower Cost/Power
–Easy to manufacture
–Almost maintenance-free, except for bearing and
other mechanical parts
•Disadvantages
–Essentially a “fixed-speed” machine
–Speed is determined by the supply frequency
–To vary its speed need a variable frequency
supply
Construction
Stator
Construction
Rotor
Squirrel Cage
Construction
n=
2
P
f∗60=
120 f
p
s=
ns−n
ns
Slip rpm =ns−n= sns
f 2=
p
120
(ns−n)=
p
120
sns=sf 1
n2=
120 f2
p
=
120sf 1
p
=sns
Performance of Three-Phase Induction Motor
Example 5.1 A 3-phase, 460 V, 100 hp, 60 Hz, four pole induction machine
‑
delivers rated output power at a slip of 0.05. Determine the:
(a) Synchronous speed and motor speed.
(b) Speed of the rotating air gap field.
(c) Frequency of the rotor circuit.
(d) Slip rpm.
(e) Speed of the rotor field relative to the
(i) rotor structure.
(ii) Stator structure.
(iii) Stator rotating field.
(f) Rotor induced voltage at the operating speed, if the stator to rotor turns ratio is
‑ ‑
1 : 0.5.
Solution
:
ns=
120f
p
=
120∗60
4
=1800 rpm
n =(1− s ) ns =(1 − 0 . 05 )∗1800 =1710 rpm
(b) 1800 (same as synchronous speed)
induction_motor1_1_1_8space vector _ppt.ppt
Equivalent Circuit of the Induction Motor
Equivalent Circuit of the Induction Motor
I2=
sE2
R2+ jsX 2
P2=I2
2
R2
I2=
E2
( R2 /s )+ jX 2
P= Pag =I2
2
[R2+
R2
s
(1−s)]=I2
2 R2
s
Pmech=I2
2
R2
s
(1−s) Pmech =(1− s)∗Pag
Pmech=
(1−s)
s
P2
P2=I2
2
R2=sPag
Pag : P 2 : Pmech =1: s :(1− s)
IEEE Recommended Equivalent Circuit
‑
IEEE recommended equivalent circuit
.
Theveninequivalent circuit
V th=
Xm
√R1
2
+( X1+ Xm )
2
V 1 If R1
2
<< (X1+ X m)
2
Vth≈
Xm
X1+Xm
V1=Kth V1 Z th=
jX m (R1 + jX 1 )
R1+ j( X1+ X m)
=Rth+ jX th
If , then,
R1
2
<< ( X1+ X m)
2
Rth≃
(
Xm
X1 +Xm
)
2
R1=K th
2
R1
X th≈ X 1
Tests To Determine The Equivalent Circuit
No load test
‑
R1= R LL /2
V1=
VLL
√3
V /Phase ZNL=
V1
I1
RNL=
PNL
3I1
2
X NL =√Z NL
2
− R NL
2
X 1 + X m= X NL
Locked rotor test
‑
RBL=
PBL
3I1
2
∣BL
ZBL∣fBL=
V 1∣BL
I1∣BL
XBL∣fBL=√(ZBL
2
∣fBL−RBL
2
)
XBL=XBL∣fBL∗
Rated Frequency
Frequency at blocked rotor test
X BL≃ X1 +X 2
'
X 1 + X m= X NL X m= X NL − X 1
Blocked rotor equivalent circuit for improved value for
‑ R2
2
R=
X m
2
R2
¿
( X2
'
+ X m )
2
R2
'
R2
'
=
(X 2
'
+ X m
Xm
)
2
R R≃
(
X m
X2
'
+ Xm
)
2
R2
'
R = R BL− R1
Example 4.2 A no load test conducted on a 30 hp, 835 r/min, 440 V, 3 phase, 60 Hz
‑ ‑
squirrel cage induction motor yielded the following results:
‑
No load voltage (line to line): 440 V
‑ ‑ ‑
No load current: 14 A
‑
No load power: 1470 W
‑
Resistance measured between two terminals: 0.5 
The locked rotor test, conducted at reduced volt­
age, gave the following results:
‑
Locked rotor voltage (line to line): 163 V
‑ ‑ ‑
Locked rotor power: 7200 W
‑
Locked rotor current: 60 A
‑
Determine the equivalent circuit of the motor.
Solution
:
Assuming the stator windings are connected in way, the resistance per phase is:
R1=0 . 5/2=0 . 25 Ω
From the no load test:
‑
V 1=
V LL
√3
=
440
√3
=254 V / Phase
ZNL=
V1
I1
=
254
14
=18.143 Ω
RNL=
PNL
3I1
2
=
1470
3∗14
2
=2 .5 Ω
X NL =√Z NL
2
− R NL
2
= √18 . 1432
−2 . 52
=17 . 97
X 1 + X m= X NL=17 . 97 Ω
RBL=
PBL
3I1
2
∣BL
=
7200
3∗60
2
=0.6667 Ω
From the blocked rotor test
‑
The blocked rotor reactance is
‑
:
XBL=√(ZBL
2
− RBL
2
)=√1.56852
−0.66672
=1.42 Ω
X BL≃ X1 +X 2
'
=1.42 Ω
∴ X1 = X2
'
=0.71 Ω
X m= X NL − X 1= 17 . 97−0 .71=17 . 26 Ω
R = R BL− R1=0 . 6667−0 . 25=0 . 4167 Ω
∴ R2
'
=
(X2
'
+ X m
X m
)
2
R=(0 .71+17 .26
17 .26 )
2
∗0 .4167=0 .4517 Ω
• Example 5.3 The following test results are obtained from a three-phase 60
hp, 2200 V, six pole, 60 Hz squirrel cage induction motor.
‑ ‑
• (1) No load test:
‑
• Supply frequency = 60 Hz, Line voltage = 2200 V
• Line current = 4.5 A, Input power = 1600 W
• (2) Blocked rotor test:
‑
• Frequency = 15 Hz, Line voltage = 270 V
• Line current = 25 A, Input power = 9000 W
• (3) Average DC resistance per stator phase: 2.8 
• (a) Determine the no load rotational loss.
‑
• (b) Determine the parameters of the IEEE recommended equivalent
‑
circuit
• (c) Determine the parameters (Vth, Rth, Xth) for the Thevenin
equivalent circuit of Fig.5.16.
V 1=
2200
√3
=1270.2 V /Phase ZNL=
V1
I1
=
1270.2
4.5
=282.27 Ω
RNL=
PNL
3I1
2
=
1600
3∗4 .52
=26 .34 Ω
(a) No-Load equivalent Circuit (b) Locked rotor equivalent circuit
X NL =√Z NL
2
− R NL
2
= √282 . 272
−26 .342
=281 Ω
X 1 + X m = X NL= 281 Ω
=
281.0

.
RBL=
PBL
3I1
2
=
9000
3∗25
2
=4 .8 Ω
R2
'
=RBL−R1=4 . 8−2 . 8=2 Ω
impedance at 15 Hz is
:
ZBL=
V 1
I1
=
270
√3∗25
=6.24 Ω
The blocked rotor reactance at 15 Hz is
‑ XBL=√(6.242
−4.82
)=3.98 Ω
Its value at 60 Hz is
XBL=3.98∗
60
15
=15.92 Ω
X BL≃ X1 + X 2
'
∴ X1=X2
'
=
15.92
2
=7.96 Ω at 60 Hz
X m=281−7 . 96=273 . 04 Ω
R = R BL− R1= 4 . 8− 2. 8=2 Ω
R2
'
=(7.96+273.04
273.04 )
2
2=2.12 Ω
(
c
)
Vth≃
273.04
7.96+273.04
V1=0.97 V 1
Rth≃0.972
R1=0.972
∗2.8=2.63 Ω
X th ≃ X 1=7 . 96 Ω
PERFORMANCE CHARACTERISTICS
2
T mech=
1
ωsyn
I2
¿
R2
'
s
¿
T mech=
1
ωsyn
∗
V th
2
(Rth+ R2
'
/s)
2
+(X th+ X2
'
)
2
∗
R2
'
s
Pmech=Tmech ωmech=I 2
2
R2
s
(1−s) ωmech=
2πn
60
ωmech =(1− s ) ωsyn
ωmech=
nsyn
60
2π (1−s)
ωsyn=
120 f
P
∗
2π
60
=
4π f 1
P
T mech ωsyn=I2
2
R2
s
=Pag
Tmech=
1
ωsyn
Pag
Where
n mech= (1− s) n syn
or
At low values of slip
,
Rth +
R2
'
s
>> Xth+ X 2
'
and
R2
'
s
>> Rth
Tmech≃
1
ωsyn
∗
Vth
2
R2
'
∗s
T mech=
1
ωsyn
∗
V th
2
(Rth+ R2
'
/s)
2
+(X th+ X2
'
)
2
∗
R2
'
s
At larger values of slip
,
Rth +
R2
'
s
<< Xth + X 2
'
Tmech=
1
ωsyn
∗
V th
2
(Xth +X 2
'
)
2
∗
R2
'
s
T mech=
1
ωsyn
∗
V th
2
(Rth+ R2
'
/s)
2
+(X th+ X2
'
)
2
∗
R2
'
s
Torque speed profile at different voltages.
‑
Maximum Torque
dT / ds= 0
R2
'
STmax
=√Rth
2
+(X th +X 2
'
)
2
T mech=
1
ωsyn
∗
V th
2
(Rth+ R2
'
/s)
2
+(X th+ X2
'
)
2
∗
R2
'
s
STmax
=
R2
'
√Rth
2
+(Xth + X2
'
)
2
Then
T max=
1
2ωsyn
∗
V th
2
Rth+ √Rth
2
+(X th+ X2
'
)
2
Torque speed characteristics for varying R2
.
T max=
1
2ωsyn
∗
V th
2
Rth+ √Rth
2
+(X th+ X2
'
)
2
R1
If is small (hence Rth is negligibly small)
STmax
=
R2
'
√Rth
2
+(Xth + X2
'
)
2
T max =
1
2ωsyn
∗
V th
2
Rth+ √Rth
2
+(X th+ X2
'
)
2
sTmax
≃
R2
'
X th +X 2
'
Tmax=
1
2ωsyn
∗
V th
2
Xth+ X2
'
Then
Then
T max
T
=
(Rth +R2
'
/s)
2
+(X th+ X2
'
)
2
(Rth +R2
'
/ sTmax
)
2
+( X th +X 2
'
)
2
¿
s
sT
max
R1
If is small (hence Rth is negligibly small)
T max
T
=
(R2
'
/s)
2
+(X th+ X2
'
)
2
(R2
'
/sTmax
)
2
+( Xth +X 2
'
)
2
¿
s
sT
max
T max
T
=
(R2
'
/s )
2
+(R2
'
/ sT max
)
2
2(R2
'
¿ sT
max )
2
¿
s
sTmax
Tmax
T
=
sT max
2
+s
2
2∗sT max
¿ s
Efficiency
Power flow in an induction motor.
Pin =3V1 I1 cos θ1
The power loss in the stator winding is
: P1=3I1
2
R1
P2=3 I 2
2
R2
η=
Pout
Pin
Pag = Pin P2= sP ag
Pout = P mecj= P ag (1− s )
ηideal=
Pout
Pin
=(1−s)
Ideal Efficiency
Example 4.4 A three-phase, 460 V, 1740 rpm, 60 Hz, four-pole
wound-rotor induction motor has the following parameters per
phase:
1
R =0.25 , 2
.
0
2 

R , 5
.
0
2
1 

X
X , 30

m
X 
Therotationallossesare 1700watts.Withtherotorterminals
short-circuited,find
(a) (i)Starting currentwhenstarted directonfullvoltage.
(ii) Startingtorque.
(b) (i)Full-loadslip.
(ii) Full-loadcurrent.
(iii)Ratioofstartingcurrenttofull-loadcurrent.
(iv)Full-loadpowerfactor.
(v) Full-loadtorque.
(iv)Internalefficiencyandmotorefficiencyatfullload.
(c) (i)Slipat whichmaximumtorqueisdeveloped.
(ii) Maximumtorquedeveloped.
(d) How muchexternalresistanceperphaseshouldbe
connected intherotorcircuitsothatmaximumtorqueoccurs at
start?
RZ=0.2
ohms
Xm -30
Ohms
induction_motor1_1_1_8space vector _ppt.ppt
induction_motor1_1_1_8space vector _ppt.ppt
induction_motor1_1_1_8space vector _ppt.ppt
=163.11 N.m
ηmotor=
28022.3
32022.4
∗100=87.5
η int ernal= (1− s )∗100 = (1 − 0 . 0333 )∗100 = 96 . 7
(c) (i)
(c) (ii)
Note that for parts (a) and (b) it is not necessary to use Thevenin
equivalent circuit. Calculation can be based on the equivalent
circuit of Fig.5.15 as follows:
A three-phase, 460 V, 60 Hz, six-pole wound-rotor induction motor
drives a constant load of 100 N - m at a speed of 1140 rpm when
the rotor terminals are short-circuited. It is required to reduce the
speed of the motor to 1000 rpm by inserting resistances in the
rotor circuit. Determine the value of the resistance if the rotor
winding resistance per phase is 0.2 ohms. Neglect rotational
losses. The stator-to-rotor turns ratio is unity.
induction_motor1_1_1_8space vector _ppt.ppt
Example The following test results are obtained from three
phase 100hp,460 V, eight pole star connected induction machine
No-load test : 460 V, 60 Hz, 40 A, 4.2 kW. Blocked rotor test is
100V, 60Hz, 140A 8kW. Average DC resistor between two stator
terminals is 0.152 
(a)Determine the parameters of the equivalent circuit.
(b)The motor is connected to 3 , 460 V, 60 Hz supply and runs
at 873 rpm. Determine the input current, input power, air
gap power, rotor cupper loss, mechanical power developed,
output power and efficiency of the motor.
(c) Determine the speed of the rotor field relative to stator
structure and stator rotating field
Solution: From no load test:
(a ) Z NL=
460 /√3
40
=6 .64 Ω
RNL=
PNL
3∗I1
2
=
4200
3∗40
2
=0 . 875 Ω
X NL =√6 . 642
− 0 . 8752
=6 .58 Ω
X 1 + X m= 6 . 58 Ω
From blocked rotor test
:
RBL=
8000
3∗1402
=0 .136 Ω R1=
0.152
2
=0.076Ω
Z BL=
100/√3
140
=0 .412Ω
X BL=√0 . 4122
− 0 .1362
=0 . 389 Ω
X1=X2
'
=
0.389
2
=0.1945Ω
X m=6 . 58−0 . 1945= 6 . 3855
R = R BL− R1 = 0 . 136 − 0 . 076 = 0 . 06 Ω
R2
'
=(0.1945+6.3855
6 .3855 )
2
∗0.06=0.0637
0.076 j0.195
j6.386
j0.195
s
0637
.
0
 


X1 + X 2
'
=0 . 389
(b) ns=
120 f
P
=
120∗60
8
=900rpm
s=
ns−n
ns
=
900−873
900
=0.03
R2
'
s
=
0 .0637
0 .03
=2 .123
Input impedance
Z1=0.076+ j0.195+
( j6.386)(2.123+ j0 .195)
2.123+ j (6.386+0.195)
=2.121∠27.16
o
Ω
I1=
V1
Z1
=
460/√3
2.12∠27.16
=125.22∠−27.16o
Input power
:
Pin=3∗
460
√3
∗125.22 cos (27.16o
)=88.767 kW
Stator CU losses
:
Pst=3∗125.22
2
∗0.076=3.575 kW
Air gap power
Pag =88 . 767−3 . 575= 85 .192 kW
Rotor CU losses
P2= sP ag= 0. 03∗85 .192=2 .556 kW
Mechanical power developed
:
Pmech =(1− s) Pag =(1− 0 . 03)∗85 . 192=82 . 636 kW
Pout = P mech − Prot
From no load test
: Prot=PNL−3I1
2
∗R1=4200−3∗40
2
∗0 .076=3835.2 W
Pout=82.636∗10
3
−3835.2=78.8 kW
η=
Pout
Pin
∗100=
78.8
88.767
∗100=88.77
Example A three phase, 460 V 1450 rpm, 50 Hz, four pole
wound rotor induction motor has the following parameters per
phase ( 1
R =0.2, 2
R=0.18 , 2
1 X
X 
 =0.2, m
X =40). The
rotational losses are 1500 W. Find,
(a) Starting current when started direct on full load voltage.
Also find starting torque.
(b) (b) Slip, current, power factor, load torque and efficiency
at full load conditions.
(c) Maximum torque and slip at which maximum torque will
be developed.
(d) How much external resistance per phase should be
connected in the rotor circuit so that maximum torque
occurs at start?
V 1=
460
√3
=265.6 V / phase
Z1=0.2+ j0 .2+
j 40∗(0.18+0.2)
0.18+ j 40.2
=0.55∠46 .59
o
Ω
Ist =
V1
I1
=
265.6
0.55∠46.59
o
=482.91 ∠−46.3o
Ω
s=
1500−1450
1500
=0.0333
R2
'
s
=
0.18
0 .0333
=5 .4
Z1=0.2+ j0 .2+
j 40∗(5.4+ j0.2)
5.4+ j 45.4
=4.959 ∠10.83o
Ω
I1∣FL=
265.6
4.959∠10.83o
=53.56∠−10.83o
A
Then the power factor is: 9822
.
0
83
.
10
cos 
o
lag.
.
sec
/
08
.
157
2
*
60
1500
rad
sys 
 

 
 
V
j
j
V o
th 285
.
0
275
.
264
2
.
40
2
.
0
40
*
6
.
265




Then,
  2
.
0
198
.
0
285
.
45
281432
.
0
2
.
40
2
.
0
2
.
0
2
.
0
*
40
j
j
j
j
Z o
th 





 
∴ T=
3∗(264.275)2
∗5. 4
157.08∗(0.198+5.4)2
+(0.2+0.2)2
=228.68 Nm
Then, W
T
P sys
ag 1
.
35921
08
.
157
*
68
.
228
* 

 
Then, W
sP
P ag 1197
1
.
35921
*
0333
.
0
2 


And,   W
P
s
P ag
m 7
.
34723
1 


Then, W
P
P
P rot
m
out 7
.
33223
1500
7
.
34723 




W
Pin 41917
9822
.
0
*
56
.
53
*
6
.
265
*
3 

Then, %
26
.
79
41914
7
.
33223



in
out
P
P

∴ Tm=
3∗(264 .275)2
2∗188.5 [0.198+(0.1982
+(0.2+0.2)2
)]
1 /2
=862.56 Nm
sTmax
=
0.18
[0.1982
+(0.2+0.2)2
]
1/2
=0.4033
(d)
 
  2
/
1
2
2
2
2
.
0
2
.
0
198
.
0
1
max






 ext
T
R
R
s
Then, 446323
.
0
2 


 ext
R
R
Then, 26632
.
0
18
.
0
446323
.
0 



ext
R 
Example 5.6 The rotor current at start of a three-phase, 460 volt,
1710 rpm, 60 Hz, four pole, squirrel-cage induction motor is six
times the rotor current at full load.
(a) Determine the starting torque as percent of full load torque.
(b) Determine the slip and speed at which the motor develops
maximum torque.
(c) Determine the maximum torque developed by the motor as
percent of full load torque.
Note that the equivalent circuit parameters are not given. Therefore equivalent circuit
parameters cannot be used directly for computation.)a) The synchronous speed is
T =
I2
2
R2
sωsyn
α
I2
2
R2
s
induction_motor1_1_1_8space vector _ppt.ppt
induction_motor1_1_1_8space vector _ppt.ppt
Example 4.9 A 4 pole 50 Hz 20 hp motor has, at rated voltage
and frequency a starting torque of 150% and a maximum torque of
200 % of full load torque. Determine (i) full load speed (ii) speed
at maximum torque.
Solution:
5
.
1

FL
st
T
T
and 2
max

FL
T
T
then, 75
.
0
2
5
.
1
max


T
Tst
75
.
0
1
2
2
max max
max



T
T
st
s
s
T
T
Then, 0
75
.
0
2
75
.
0 max
max
2


 T
T s
s
Then 21525
.
2
max

T
s (unacceptable) Or 451416
.
0
max

T
s
2
*
2 max
max
2
2
max



FL
T
FL
T
FL s
s
s
s
T
T
But 451416
.
0
max

T
s
Then 2
*
451416
.
0
*
2
451416
.
0 2
2
max



FL
FL
FL s
s
T
T
0
451416
.
0
451416
.
0
*
4 2
2


 FL
FL s
s
0
203777
.
0
80566
.
1
2


 FL
FL s
s
6847
.
1

FL
s (unacceptable) or 120957
.
0

FL
s
rpm
ns 1500
4
50
*
120


then (a)   s
FL
FL n
s
n *
1

  rpm
nFL 1319
1500
*
120957
.
0
1 


(b)     rpm
n
s
n s
T
T 823
1500
*
451416
.
0
1
*
1 max
max





Example 4.10 A 3, 280 V, 60 Hz, 20 hp, four-pole induction
motor has the following equivalent circuit parameters.
12
.
0
1 
R , 1
.
0
2 

R , 25
.
0
2
1 

X
X , and 10

m
X 
The rotational loss is 400 W. For 5% slip, determine (a) The
motor speed in rpm and radians per sec. (b) The motor current. (c)
The stator cu-loss. (d) The air gap power. (e) The rotor cu-loss. (f)
The shaft power. (g) The developed torque and the shaft torque.
(h) The efficiency.
rpm
ns 1800
4
60
*
120

 , sec
/
5
.
188
2
*
60
1800
rad
s 
 

Solution:
0.12 j0.25
j10
j0.25
2
05
.
0
1
.
0

 


e
e X
R
j
Z 


 25
.
0
12
.
0
1
  o
j
j
j
j
Z 55
.
23
1314
.
2
25
.
10
2
25
.
0
2
*
10
25
.
0
12
.
0
1 





 
1
.
120
3
208
1 

V V
o
o
I 55
.
23
1314
.
2
55
.
23
1314
.
2
1
.
120
1 



 A
(c) W
P 031
.
1143
12
.
0
*
3479
.
56
*
3 2
1 

(d)   W
P o
s 9794
.
18610
55
.
23
cos
*
3479
.
56
*
1
.
120
*
3 


W
P
P
P s
ag 9485
.
17467
1 


(e) W
sP
P ag 3974
.
873
9785
.
17467
*
05
.
0
2 


(f)   W
P
s
P ag
m 5511
.
16594
1 


(g) m
N
P
T
ag
.
6682
.
92
5
.
188
9485
.
17467
5
.
188



Nm
P
T
shaft
shaft 9127
.
85
5
.
188
5511
.
16194
5
.
188



(h) %
02
.
87
100
* 

s
shaft
P
P

Example 4.11 A 30, 100 WA, 460 V, 60 Hz, eight-pole induction
machine has the following
equivalent circuit parameters:
07
.
0
1 
R , 05
.
0
2 

R , 2
.
0
2
1 

X
X , and 5
.
6

m
X 
(a) Derive the Thevenin equivalent circuit for the
induction machine.
(b)If the machine is connected to a 30, 460 V, 60 Hz supply,
determine the starting torque, the maximum torque the machine
can develop, and the speed at which the maximum torque is
developed.
(c) If the maximum torque is to occur at start, determine the
external resistance required in each rotor phase. Assume a
turns ratio (stator to rotor) of 1.2.
Solution
:
V
V
X
X
X
V
m
m
th 7
.
257
6
.
265
*
5
.
6
2
.
0
5
.
6
* 1
1





    1947
.
0
06589
.
0
5
.
6
2
.
0
07
.
0
07
.
0
2
.
0
*
5
.
6
j
j
j
j
j
jX
R th
th 





 
0.06589 j0.1947 j0.2
s
05
.
0
  
257.7V
(b)
   
 
Nm
Tst 7
.
624
2
.
0
1947
.
0
05
.
0
06589
.
0
25
.
94
05
.
0
*
7
.
257
*
3
2
2
2





 
 
Nm
T
8
.
2267
2
.
0
1947
.
0
06589
.
0
06589
.
0
25
.
94
*
2
7
.
257
*
3
2
2
2
max





 
1249
.
0
2
.
0
1947
.
0
06589
.
0
05
.
0
2
2
max




T
s
Speed in rpm for which max torque occurs
=    rpm
n
s s
T 5
.
787
900
*
1249
.
0
1
*
1 max




(c)
 
2
2
2
1
2
1
2
max
R
X
X
R
R
sT 




 
or 4
.
0
05
.
0
*
1249
.
0
1
*
1
2
2
max





 R
s
s
R
T
start
start

Then   243
.
0
2
.
1
/
05
.
0
4
.
0 2



ext
R 

More Related Content

PDF
Induction motors
PPT
Induction motor rotor circuit model and energy conservation
PPT
Induction machines
PPT
Induction machines
PPT
Induction machines
PPTX
Determination of Equivalent Circuit parameters and performance characteristic...
PDF
EM_II_PPT.pdf
PPT
Induction Machines electrical machines electrical and electronics
Induction motors
Induction motor rotor circuit model and energy conservation
Induction machines
Induction machines
Induction machines
Determination of Equivalent Circuit parameters and performance characteristic...
EM_II_PPT.pdf
Induction Machines electrical machines electrical and electronics

Similar to induction_motor1_1_1_8space vector _ppt.ppt (20)

PPTX
Induction machines
PPT
Induction Machines.ppt
PPT
Induction Machine electrical and electronics
PPT
Unit 5-6-7 a
PDF
three phase induction motor and starting methods
PPT
Rotating Electrical Machines-AC & DC Machines,Induction Motor and DC Motor
PPT
Induction Machines.ppt
PPTX
Electrical Power Systems Induction motor
PPTX
Determination of a Three - Phase Induction Machine Parameters
PPTX
Lecture_9_Three_Phase_Induction_Machine_Intro.pptx
DOCX
Induction machine
PDF
Numerical examples
PPTX
No-load & blocked rotor test, Equivalent circuit, Phasor diagram
PDF
Eso203 a ha10
PPT
EE503.29.ppt
PPT
Induction Machines like induction motor, ganerator.ppt
PDF
Third lecture of a three phase induction machine
PDF
Torque - Slip Characteristic of a three phase induction motor
PDF
Torque - Slip Characteristic of a three phase induction motor
PPTX
Computer Science Homework Help
Induction machines
Induction Machines.ppt
Induction Machine electrical and electronics
Unit 5-6-7 a
three phase induction motor and starting methods
Rotating Electrical Machines-AC & DC Machines,Induction Motor and DC Motor
Induction Machines.ppt
Electrical Power Systems Induction motor
Determination of a Three - Phase Induction Machine Parameters
Lecture_9_Three_Phase_Induction_Machine_Intro.pptx
Induction machine
Numerical examples
No-load & blocked rotor test, Equivalent circuit, Phasor diagram
Eso203 a ha10
EE503.29.ppt
Induction Machines like induction motor, ganerator.ppt
Third lecture of a three phase induction machine
Torque - Slip Characteristic of a three phase induction motor
Torque - Slip Characteristic of a three phase induction motor
Computer Science Homework Help
Ad

Recently uploaded (20)

PPT
Project quality management in manufacturing
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PDF
composite construction of structures.pdf
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PDF
Well-logging-methods_new................
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
PPT on Performance Review to get promotions
PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
web development for engineering and engineering
PPTX
additive manufacturing of ss316l using mig welding
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Project quality management in manufacturing
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
composite construction of structures.pdf
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
CYBER-CRIMES AND SECURITY A guide to understanding
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Well-logging-methods_new................
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPT on Performance Review to get promotions
CH1 Production IntroductoryConcepts.pptx
web development for engineering and engineering
additive manufacturing of ss316l using mig welding
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Ad

induction_motor1_1_1_8space vector _ppt.ppt

  • 1. Induction Motor •Why induction motor (IM)? –Robust; No brushes. No contacts on rotor shaft –High Power/Weight ratio compared to Dc motor –Lower Cost/Power –Easy to manufacture –Almost maintenance-free, except for bearing and other mechanical parts •Disadvantages –Essentially a “fixed-speed” machine –Speed is determined by the supply frequency –To vary its speed need a variable frequency supply
  • 5. n= 2 P f∗60= 120 f p s= ns−n ns Slip rpm =ns−n= sns f 2= p 120 (ns−n)= p 120 sns=sf 1 n2= 120 f2 p = 120sf 1 p =sns Performance of Three-Phase Induction Motor
  • 6. Example 5.1 A 3-phase, 460 V, 100 hp, 60 Hz, four pole induction machine ‑ delivers rated output power at a slip of 0.05. Determine the: (a) Synchronous speed and motor speed. (b) Speed of the rotating air gap field. (c) Frequency of the rotor circuit. (d) Slip rpm. (e) Speed of the rotor field relative to the (i) rotor structure. (ii) Stator structure. (iii) Stator rotating field. (f) Rotor induced voltage at the operating speed, if the stator to rotor turns ratio is ‑ ‑ 1 : 0.5. Solution : ns= 120f p = 120∗60 4 =1800 rpm n =(1− s ) ns =(1 − 0 . 05 )∗1800 =1710 rpm (b) 1800 (same as synchronous speed)
  • 8. Equivalent Circuit of the Induction Motor
  • 9. Equivalent Circuit of the Induction Motor
  • 10. I2= sE2 R2+ jsX 2 P2=I2 2 R2 I2= E2 ( R2 /s )+ jX 2 P= Pag =I2 2 [R2+ R2 s (1−s)]=I2 2 R2 s Pmech=I2 2 R2 s (1−s) Pmech =(1− s)∗Pag Pmech= (1−s) s P2 P2=I2 2 R2=sPag Pag : P 2 : Pmech =1: s :(1− s)
  • 11. IEEE Recommended Equivalent Circuit ‑ IEEE recommended equivalent circuit . Theveninequivalent circuit
  • 12. V th= Xm √R1 2 +( X1+ Xm ) 2 V 1 If R1 2 << (X1+ X m) 2 Vth≈ Xm X1+Xm V1=Kth V1 Z th= jX m (R1 + jX 1 ) R1+ j( X1+ X m) =Rth+ jX th If , then, R1 2 << ( X1+ X m) 2 Rth≃ ( Xm X1 +Xm ) 2 R1=K th 2 R1 X th≈ X 1
  • 13. Tests To Determine The Equivalent Circuit No load test ‑ R1= R LL /2 V1= VLL √3 V /Phase ZNL= V1 I1 RNL= PNL 3I1 2 X NL =√Z NL 2 − R NL 2 X 1 + X m= X NL
  • 14. Locked rotor test ‑ RBL= PBL 3I1 2 ∣BL ZBL∣fBL= V 1∣BL I1∣BL XBL∣fBL=√(ZBL 2 ∣fBL−RBL 2 ) XBL=XBL∣fBL∗ Rated Frequency Frequency at blocked rotor test
  • 15. X BL≃ X1 +X 2 ' X 1 + X m= X NL X m= X NL − X 1 Blocked rotor equivalent circuit for improved value for ‑ R2
  • 16. 2 R= X m 2 R2 ¿ ( X2 ' + X m ) 2 R2 ' R2 ' = (X 2 ' + X m Xm ) 2 R R≃ ( X m X2 ' + Xm ) 2 R2 ' R = R BL− R1
  • 17. Example 4.2 A no load test conducted on a 30 hp, 835 r/min, 440 V, 3 phase, 60 Hz ‑ ‑ squirrel cage induction motor yielded the following results: ‑ No load voltage (line to line): 440 V ‑ ‑ ‑ No load current: 14 A ‑ No load power: 1470 W ‑ Resistance measured between two terminals: 0.5  The locked rotor test, conducted at reduced volt­ age, gave the following results: ‑ Locked rotor voltage (line to line): 163 V ‑ ‑ ‑ Locked rotor power: 7200 W ‑ Locked rotor current: 60 A ‑ Determine the equivalent circuit of the motor. Solution : Assuming the stator windings are connected in way, the resistance per phase is: R1=0 . 5/2=0 . 25 Ω From the no load test: ‑ V 1= V LL √3 = 440 √3 =254 V / Phase ZNL= V1 I1 = 254 14 =18.143 Ω
  • 18. RNL= PNL 3I1 2 = 1470 3∗14 2 =2 .5 Ω X NL =√Z NL 2 − R NL 2 = √18 . 1432 −2 . 52 =17 . 97 X 1 + X m= X NL=17 . 97 Ω RBL= PBL 3I1 2 ∣BL = 7200 3∗60 2 =0.6667 Ω From the blocked rotor test ‑ The blocked rotor reactance is ‑ : XBL=√(ZBL 2 − RBL 2 )=√1.56852 −0.66672 =1.42 Ω X BL≃ X1 +X 2 ' =1.42 Ω
  • 19. ∴ X1 = X2 ' =0.71 Ω X m= X NL − X 1= 17 . 97−0 .71=17 . 26 Ω R = R BL− R1=0 . 6667−0 . 25=0 . 4167 Ω ∴ R2 ' = (X2 ' + X m X m ) 2 R=(0 .71+17 .26 17 .26 ) 2 ∗0 .4167=0 .4517 Ω
  • 20. • Example 5.3 The following test results are obtained from a three-phase 60 hp, 2200 V, six pole, 60 Hz squirrel cage induction motor. ‑ ‑ • (1) No load test: ‑ • Supply frequency = 60 Hz, Line voltage = 2200 V • Line current = 4.5 A, Input power = 1600 W • (2) Blocked rotor test: ‑ • Frequency = 15 Hz, Line voltage = 270 V • Line current = 25 A, Input power = 9000 W • (3) Average DC resistance per stator phase: 2.8  • (a) Determine the no load rotational loss. ‑ • (b) Determine the parameters of the IEEE recommended equivalent ‑ circuit • (c) Determine the parameters (Vth, Rth, Xth) for the Thevenin equivalent circuit of Fig.5.16.
  • 21. V 1= 2200 √3 =1270.2 V /Phase ZNL= V1 I1 = 1270.2 4.5 =282.27 Ω RNL= PNL 3I1 2 = 1600 3∗4 .52 =26 .34 Ω
  • 22. (a) No-Load equivalent Circuit (b) Locked rotor equivalent circuit X NL =√Z NL 2 − R NL 2 = √282 . 272 −26 .342 =281 Ω X 1 + X m = X NL= 281 Ω = 281.0  . RBL= PBL 3I1 2 = 9000 3∗25 2 =4 .8 Ω R2 ' =RBL−R1=4 . 8−2 . 8=2 Ω
  • 23. impedance at 15 Hz is : ZBL= V 1 I1 = 270 √3∗25 =6.24 Ω The blocked rotor reactance at 15 Hz is ‑ XBL=√(6.242 −4.82 )=3.98 Ω Its value at 60 Hz is XBL=3.98∗ 60 15 =15.92 Ω X BL≃ X1 + X 2 ' ∴ X1=X2 ' = 15.92 2 =7.96 Ω at 60 Hz X m=281−7 . 96=273 . 04 Ω R = R BL− R1= 4 . 8− 2. 8=2 Ω R2 ' =(7.96+273.04 273.04 ) 2 2=2.12 Ω
  • 25. PERFORMANCE CHARACTERISTICS 2 T mech= 1 ωsyn I2 ¿ R2 ' s ¿ T mech= 1 ωsyn ∗ V th 2 (Rth+ R2 ' /s) 2 +(X th+ X2 ' ) 2 ∗ R2 ' s Pmech=Tmech ωmech=I 2 2 R2 s (1−s) ωmech= 2πn 60 ωmech =(1− s ) ωsyn ωmech= nsyn 60 2π (1−s) ωsyn= 120 f P ∗ 2π 60 = 4π f 1 P T mech ωsyn=I2 2 R2 s =Pag Tmech= 1 ωsyn Pag Where n mech= (1− s) n syn or
  • 26. At low values of slip , Rth + R2 ' s >> Xth+ X 2 ' and R2 ' s >> Rth Tmech≃ 1 ωsyn ∗ Vth 2 R2 ' ∗s T mech= 1 ωsyn ∗ V th 2 (Rth+ R2 ' /s) 2 +(X th+ X2 ' ) 2 ∗ R2 ' s
  • 27. At larger values of slip , Rth + R2 ' s << Xth + X 2 ' Tmech= 1 ωsyn ∗ V th 2 (Xth +X 2 ' ) 2 ∗ R2 ' s T mech= 1 ωsyn ∗ V th 2 (Rth+ R2 ' /s) 2 +(X th+ X2 ' ) 2 ∗ R2 ' s
  • 28. Torque speed profile at different voltages. ‑
  • 29. Maximum Torque dT / ds= 0 R2 ' STmax =√Rth 2 +(X th +X 2 ' ) 2 T mech= 1 ωsyn ∗ V th 2 (Rth+ R2 ' /s) 2 +(X th+ X2 ' ) 2 ∗ R2 ' s STmax = R2 ' √Rth 2 +(Xth + X2 ' ) 2 Then T max= 1 2ωsyn ∗ V th 2 Rth+ √Rth 2 +(X th+ X2 ' ) 2
  • 30. Torque speed characteristics for varying R2 . T max= 1 2ωsyn ∗ V th 2 Rth+ √Rth 2 +(X th+ X2 ' ) 2
  • 31. R1 If is small (hence Rth is negligibly small) STmax = R2 ' √Rth 2 +(Xth + X2 ' ) 2 T max = 1 2ωsyn ∗ V th 2 Rth+ √Rth 2 +(X th+ X2 ' ) 2 sTmax ≃ R2 ' X th +X 2 ' Tmax= 1 2ωsyn ∗ V th 2 Xth+ X2 ' Then Then
  • 32. T max T = (Rth +R2 ' /s) 2 +(X th+ X2 ' ) 2 (Rth +R2 ' / sTmax ) 2 +( X th +X 2 ' ) 2 ¿ s sT max R1 If is small (hence Rth is negligibly small) T max T = (R2 ' /s) 2 +(X th+ X2 ' ) 2 (R2 ' /sTmax ) 2 +( Xth +X 2 ' ) 2 ¿ s sT max T max T = (R2 ' /s ) 2 +(R2 ' / sT max ) 2 2(R2 ' ¿ sT max ) 2 ¿ s sTmax Tmax T = sT max 2 +s 2 2∗sT max ¿ s
  • 33. Efficiency Power flow in an induction motor. Pin =3V1 I1 cos θ1 The power loss in the stator winding is : P1=3I1 2 R1 P2=3 I 2 2 R2 η= Pout Pin
  • 34. Pag = Pin P2= sP ag Pout = P mecj= P ag (1− s ) ηideal= Pout Pin =(1−s) Ideal Efficiency
  • 35. Example 4.4 A three-phase, 460 V, 1740 rpm, 60 Hz, four-pole wound-rotor induction motor has the following parameters per phase: 1 R =0.25 , 2 . 0 2   R , 5 . 0 2 1   X X , 30  m X  Therotationallossesare 1700watts.Withtherotorterminals short-circuited,find (a) (i)Starting currentwhenstarted directonfullvoltage. (ii) Startingtorque. (b) (i)Full-loadslip. (ii) Full-loadcurrent. (iii)Ratioofstartingcurrenttofull-loadcurrent. (iv)Full-loadpowerfactor. (v) Full-loadtorque. (iv)Internalefficiencyandmotorefficiencyatfullload. (c) (i)Slipat whichmaximumtorqueisdeveloped. (ii) Maximumtorquedeveloped. (d) How muchexternalresistanceperphaseshouldbe connected intherotorcircuitsothatmaximumtorqueoccurs at start? RZ=0.2 ohms Xm -30 Ohms
  • 40. ηmotor= 28022.3 32022.4 ∗100=87.5 η int ernal= (1− s )∗100 = (1 − 0 . 0333 )∗100 = 96 . 7 (c) (i) (c) (ii)
  • 41. Note that for parts (a) and (b) it is not necessary to use Thevenin equivalent circuit. Calculation can be based on the equivalent circuit of Fig.5.15 as follows:
  • 42. A three-phase, 460 V, 60 Hz, six-pole wound-rotor induction motor drives a constant load of 100 N - m at a speed of 1140 rpm when the rotor terminals are short-circuited. It is required to reduce the speed of the motor to 1000 rpm by inserting resistances in the rotor circuit. Determine the value of the resistance if the rotor winding resistance per phase is 0.2 ohms. Neglect rotational losses. The stator-to-rotor turns ratio is unity.
  • 44. Example The following test results are obtained from three phase 100hp,460 V, eight pole star connected induction machine No-load test : 460 V, 60 Hz, 40 A, 4.2 kW. Blocked rotor test is 100V, 60Hz, 140A 8kW. Average DC resistor between two stator terminals is 0.152  (a)Determine the parameters of the equivalent circuit. (b)The motor is connected to 3 , 460 V, 60 Hz supply and runs at 873 rpm. Determine the input current, input power, air gap power, rotor cupper loss, mechanical power developed, output power and efficiency of the motor. (c) Determine the speed of the rotor field relative to stator structure and stator rotating field
  • 45. Solution: From no load test: (a ) Z NL= 460 /√3 40 =6 .64 Ω RNL= PNL 3∗I1 2 = 4200 3∗40 2 =0 . 875 Ω X NL =√6 . 642 − 0 . 8752 =6 .58 Ω X 1 + X m= 6 . 58 Ω From blocked rotor test : RBL= 8000 3∗1402 =0 .136 Ω R1= 0.152 2 =0.076Ω Z BL= 100/√3 140 =0 .412Ω
  • 46. X BL=√0 . 4122 − 0 .1362 =0 . 389 Ω X1=X2 ' = 0.389 2 =0.1945Ω X m=6 . 58−0 . 1945= 6 . 3855 R = R BL− R1 = 0 . 136 − 0 . 076 = 0 . 06 Ω R2 ' =(0.1945+6.3855 6 .3855 ) 2 ∗0.06=0.0637 0.076 j0.195 j6.386 j0.195 s 0637 . 0     X1 + X 2 ' =0 . 389
  • 47. (b) ns= 120 f P = 120∗60 8 =900rpm s= ns−n ns = 900−873 900 =0.03 R2 ' s = 0 .0637 0 .03 =2 .123 Input impedance Z1=0.076+ j0.195+ ( j6.386)(2.123+ j0 .195) 2.123+ j (6.386+0.195) =2.121∠27.16 o Ω I1= V1 Z1 = 460/√3 2.12∠27.16 =125.22∠−27.16o Input power : Pin=3∗ 460 √3 ∗125.22 cos (27.16o )=88.767 kW
  • 48. Stator CU losses : Pst=3∗125.22 2 ∗0.076=3.575 kW Air gap power Pag =88 . 767−3 . 575= 85 .192 kW Rotor CU losses P2= sP ag= 0. 03∗85 .192=2 .556 kW Mechanical power developed : Pmech =(1− s) Pag =(1− 0 . 03)∗85 . 192=82 . 636 kW Pout = P mech − Prot From no load test : Prot=PNL−3I1 2 ∗R1=4200−3∗40 2 ∗0 .076=3835.2 W Pout=82.636∗10 3 −3835.2=78.8 kW η= Pout Pin ∗100= 78.8 88.767 ∗100=88.77
  • 49. Example A three phase, 460 V 1450 rpm, 50 Hz, four pole wound rotor induction motor has the following parameters per phase ( 1 R =0.2, 2 R=0.18 , 2 1 X X   =0.2, m X =40). The rotational losses are 1500 W. Find, (a) Starting current when started direct on full load voltage. Also find starting torque. (b) (b) Slip, current, power factor, load torque and efficiency at full load conditions. (c) Maximum torque and slip at which maximum torque will be developed. (d) How much external resistance per phase should be connected in the rotor circuit so that maximum torque occurs at start?
  • 50. V 1= 460 √3 =265.6 V / phase Z1=0.2+ j0 .2+ j 40∗(0.18+0.2) 0.18+ j 40.2 =0.55∠46 .59 o Ω Ist = V1 I1 = 265.6 0.55∠46.59 o =482.91 ∠−46.3o Ω s= 1500−1450 1500 =0.0333 R2 ' s = 0.18 0 .0333 =5 .4 Z1=0.2+ j0 .2+ j 40∗(5.4+ j0.2) 5.4+ j 45.4 =4.959 ∠10.83o Ω
  • 51. I1∣FL= 265.6 4.959∠10.83o =53.56∠−10.83o A Then the power factor is: 9822 . 0 83 . 10 cos  o lag. . sec / 08 . 157 2 * 60 1500 rad sys         V j j V o th 285 . 0 275 . 264 2 . 40 2 . 0 40 * 6 . 265     Then,   2 . 0 198 . 0 285 . 45 281432 . 0 2 . 40 2 . 0 2 . 0 2 . 0 * 40 j j j j Z o th         ∴ T= 3∗(264.275)2 ∗5. 4 157.08∗(0.198+5.4)2 +(0.2+0.2)2 =228.68 Nm
  • 52. Then, W T P sys ag 1 . 35921 08 . 157 * 68 . 228 *     Then, W sP P ag 1197 1 . 35921 * 0333 . 0 2    And,   W P s P ag m 7 . 34723 1    Then, W P P P rot m out 7 . 33223 1500 7 . 34723      W Pin 41917 9822 . 0 * 56 . 53 * 6 . 265 * 3   Then, % 26 . 79 41914 7 . 33223    in out P P  ∴ Tm= 3∗(264 .275)2 2∗188.5 [0.198+(0.1982 +(0.2+0.2)2 )] 1 /2 =862.56 Nm sTmax = 0.18 [0.1982 +(0.2+0.2)2 ] 1/2 =0.4033
  • 53. (d)     2 / 1 2 2 2 2 . 0 2 . 0 198 . 0 1 max        ext T R R s Then, 446323 . 0 2     ext R R Then, 26632 . 0 18 . 0 446323 . 0     ext R 
  • 54. Example 5.6 The rotor current at start of a three-phase, 460 volt, 1710 rpm, 60 Hz, four pole, squirrel-cage induction motor is six times the rotor current at full load. (a) Determine the starting torque as percent of full load torque. (b) Determine the slip and speed at which the motor develops maximum torque. (c) Determine the maximum torque developed by the motor as percent of full load torque. Note that the equivalent circuit parameters are not given. Therefore equivalent circuit parameters cannot be used directly for computation.)a) The synchronous speed is T = I2 2 R2 sωsyn α I2 2 R2 s
  • 57. Example 4.9 A 4 pole 50 Hz 20 hp motor has, at rated voltage and frequency a starting torque of 150% and a maximum torque of 200 % of full load torque. Determine (i) full load speed (ii) speed at maximum torque. Solution: 5 . 1  FL st T T and 2 max  FL T T then, 75 . 0 2 5 . 1 max   T Tst 75 . 0 1 2 2 max max max    T T st s s T T Then, 0 75 . 0 2 75 . 0 max max 2    T T s s Then 21525 . 2 max  T s (unacceptable) Or 451416 . 0 max  T s
  • 58. 2 * 2 max max 2 2 max    FL T FL T FL s s s s T T But 451416 . 0 max  T s Then 2 * 451416 . 0 * 2 451416 . 0 2 2 max    FL FL FL s s T T 0 451416 . 0 451416 . 0 * 4 2 2    FL FL s s 0 203777 . 0 80566 . 1 2    FL FL s s 6847 . 1  FL s (unacceptable) or 120957 . 0  FL s
  • 59. rpm ns 1500 4 50 * 120   then (a)   s FL FL n s n * 1    rpm nFL 1319 1500 * 120957 . 0 1    (b)     rpm n s n s T T 823 1500 * 451416 . 0 1 * 1 max max     
  • 60. Example 4.10 A 3, 280 V, 60 Hz, 20 hp, four-pole induction motor has the following equivalent circuit parameters. 12 . 0 1  R , 1 . 0 2   R , 25 . 0 2 1   X X , and 10  m X  The rotational loss is 400 W. For 5% slip, determine (a) The motor speed in rpm and radians per sec. (b) The motor current. (c) The stator cu-loss. (d) The air gap power. (e) The rotor cu-loss. (f) The shaft power. (g) The developed torque and the shaft torque. (h) The efficiency. rpm ns 1800 4 60 * 120   , sec / 5 . 188 2 * 60 1800 rad s     Solution:
  • 61. 0.12 j0.25 j10 j0.25 2 05 . 0 1 . 0      e e X R j Z     25 . 0 12 . 0 1   o j j j j Z 55 . 23 1314 . 2 25 . 10 2 25 . 0 2 * 10 25 . 0 12 . 0 1         1 . 120 3 208 1   V V o o I 55 . 23 1314 . 2 55 . 23 1314 . 2 1 . 120 1      A (c) W P 031 . 1143 12 . 0 * 3479 . 56 * 3 2 1  
  • 62. (d)   W P o s 9794 . 18610 55 . 23 cos * 3479 . 56 * 1 . 120 * 3    W P P P s ag 9485 . 17467 1    (e) W sP P ag 3974 . 873 9785 . 17467 * 05 . 0 2    (f)   W P s P ag m 5511 . 16594 1    (g) m N P T ag . 6682 . 92 5 . 188 9485 . 17467 5 . 188    Nm P T shaft shaft 9127 . 85 5 . 188 5511 . 16194 5 . 188    (h) % 02 . 87 100 *   s shaft P P 
  • 63. Example 4.11 A 30, 100 WA, 460 V, 60 Hz, eight-pole induction machine has the following equivalent circuit parameters: 07 . 0 1  R , 05 . 0 2   R , 2 . 0 2 1   X X , and 5 . 6  m X  (a) Derive the Thevenin equivalent circuit for the induction machine. (b)If the machine is connected to a 30, 460 V, 60 Hz supply, determine the starting torque, the maximum torque the machine can develop, and the speed at which the maximum torque is developed. (c) If the maximum torque is to occur at start, determine the external resistance required in each rotor phase. Assume a turns ratio (stator to rotor) of 1.2.
  • 64. Solution : V V X X X V m m th 7 . 257 6 . 265 * 5 . 6 2 . 0 5 . 6 * 1 1          1947 . 0 06589 . 0 5 . 6 2 . 0 07 . 0 07 . 0 2 . 0 * 5 . 6 j j j j j jX R th th         0.06589 j0.1947 j0.2 s 05 . 0    257.7V (b)       Nm Tst 7 . 624 2 . 0 1947 . 0 05 . 0 06589 . 0 25 . 94 05 . 0 * 7 . 257 * 3 2 2 2          Nm T 8 . 2267 2 . 0 1947 . 0 06589 . 0 06589 . 0 25 . 94 * 2 7 . 257 * 3 2 2 2 max        1249 . 0 2 . 0 1947 . 0 06589 . 0 05 . 0 2 2 max     T s
  • 65. Speed in rpm for which max torque occurs =    rpm n s s T 5 . 787 900 * 1249 . 0 1 * 1 max     (c)   2 2 2 1 2 1 2 max R X X R R sT        or 4 . 0 05 . 0 * 1249 . 0 1 * 1 2 2 max       R s s R T start start  Then   243 . 0 2 . 1 / 05 . 0 4 . 0 2    ext R 