SlideShare a Scribd company logo
Instrument Engineers Handbook Volume 3 Process
Software And Digital Networks 3rd Bla G Liptk
download
https://ebookbell.com/product/instrument-engineers-handbook-
volume-3-process-software-and-digital-networks-3rd-bla-g-
liptk-2259558
Explore and download more ebooks at ebookbell.com
Here are some recommended products that we believe you will be
interested in. You can click the link to download.
Instrument Engineers Handbook Volume 3 Process Software And Digital
Networks Fourth Edition 4th Edition Bela G Liptak
https://ebookbell.com/product/instrument-engineers-handbook-
volume-3-process-software-and-digital-networks-fourth-edition-4th-
edition-bela-g-liptak-4397786
Instrument And Automation Engineers Handbook Volume Ii Analysis And
Analyzers 5th Edition Liptk
https://ebookbell.com/product/instrument-and-automation-engineers-
handbook-volume-ii-analysis-and-analyzers-5th-edition-liptk-9957970
Instrument Engineers Handbook Fourth Edition Volume One Process
Measurement And Analysis 4th Edition Liptak
https://ebookbell.com/product/instrument-engineers-handbook-fourth-
edition-volume-one-process-measurement-and-analysis-4th-edition-
liptak-4647730
Instrument And Automation Engineers Handbook Volume I Measurement And
Safety Fifth Edition Bla G Liptk
https://ebookbell.com/product/instrument-and-automation-engineers-
handbook-volume-i-measurement-and-safety-fifth-edition-bla-g-
liptk-5744214
Instrument Engineers Handbook Vol 2 Process Control And Optimization
4th Edition 4th Bela G Liptak
https://ebookbell.com/product/instrument-engineers-handbook-
vol-2-process-control-and-optimization-4th-edition-4th-bela-g-
liptak-4723050
Instrument Engineers Handbookprocess Software And Digital Networks 4th
Ed Eren
https://ebookbell.com/product/instrument-engineers-handbookprocess-
software-and-digital-networks-4th-ed-eren-5428038
Instrument And Automation Engineers Handbook 5th Edition Bela G Liptak
https://ebookbell.com/product/instrument-and-automation-engineers-
handbook-5th-edition-bela-g-liptak-44428488
Level User Guide For The Instrument And Project Engineer In The
Refining Industry Rosemount
https://ebookbell.com/product/level-user-guide-for-the-instrument-and-
project-engineer-in-the-refining-industry-rosemount-7177556
Analog Engineers Pocket Reference 5th Edition Art Kay Tim Green Eds
https://ebookbell.com/product/analog-engineers-pocket-reference-5th-
edition-art-kay-tim-green-eds-34807010
Instrument Engineers Handbook Volume 3 Process Software And Digital Networks 3rd Bla G Liptk
1082 half title pg 5/20/02 2:16 PM Page 1
Process
Software
and Digital
Networks
INSTRUMENT ENGINEERS’ HANDBOOK
Third Edition
© 2002 by Béla Lipták
1082 title pg 5/20/02 2:15 PM Page 1
Process
Software
and Digital
Networks
Béla G. Lipták
E D I T O R - I N - C H I E F
INSTRUMENT ENGINEERS’ HANDBOOK
Third Edition
CRC PRESS
Boca Raton London New York Washington, D.C.
© 2002 by Béla Lipták
This reference text is published in cooperation with ISA Press, the publishing division of ISA—Instrumentation, Systems, and Automation
Society. ISA is an international, nonprofit, technical organization that fosters advancement in the theory, design, manufacture, and use of
sensors, instruments, computers, and systems for measurement and control in a wide variety of applications. For more information, visit
www.isa.org or call (919) 549-8411.
This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and
sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information,
but the authors and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.
Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from
the publisher.
All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or internal use of specific clients, may be
granted by CRC Press LLC, provided that $1.50 per page photocopied is paid directly to Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923 USA. The fee code for users of the Transactional Reporting Service is ISBN 0-8493-1082-2 /02/$0.00+$1.50. The fee
is subject to change without notice. For organizations that have been granted a photocopy license by the CCC, a separate system of payment
has been arranged.
The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale.
Specific permission must be obtained in writing from CRC Press LLC for such copying.
Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and
explanation, without intent to infringe.
Visit the CRC Press Web site at www.crcpress.com
© 2002 by Béla G. Lipták
No claim to original U.S. Government works
International Standard Book Number 0-8493-1082-2
Library of Congress Card Number 2002017478
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0
Printed on acid-free paper
Library of Congress Cataloging-in-Publication Data
Instrument engineers’ handbook : process software and digital networks / Béla G. Lipták,
editor-in-chief.—3rd ed.
p. cm.
“The third edition of the IEH was initially planned for three volumes ... to cover the
subjects of process measurement, process control, and process software. Chilton
published the first two volumes in 1995. In October 2000, CRC Press obtained the
rights to publish the third volume.”—Pref.
Includes bibliographical references and index.
ISBN 0-8493-1082-2 (alk. paper)
1. Process control—Handbooks, manuals, etc. 2. Measuring instruments—Handbooks,
manuals, etc. I. Lipták, Béla G. II. Lipták, Béla G. Instrument engineers’ handbook.
Process measurement and analysis III. Lipták, Béla G. Instrument engineers’ handbook.
Process control.
TS156.8 .I56 2002
681′.2—dc21 2002017478
1082 disclaimer Page 1 Monday, May 20, 2002 1:43 PM
© 2002 by Béla Lipták
Dedicated to you, my colleagues, the instrument and control engineers, hoping
that by applying the knowledge found in these pages, you will make
the world a better, safer, and happier place and thereby will also advance
the recognition and the respectability of the I&C profession
1082_frame_FM Page v Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
vii
C O N T E N T S
Contributors ix
Preface xiii
Definitions xix
Abbreviations, Nomenclature, Acronyms, and Symbols xxi
Societies and Organizations xxxi
1 Overall Plant Design 1
1.1 Auditing Existing Plants for Upgrading 5
1.2 Project Management and Documentation 14
1.3 Operator Training, Commissioning, and Start-Up 29
1.4 Flowsheet Symbols and Functional Diagramming for Digitally Implemented Loops 42
1.5 Historical Data Storage and Evaluation 79
1.6 Integration of Process Data with Maintenance Systems 91
1.7 Applications, Standards, and Products for Grounding and Shielding 98
1.8 Concepts of Hierarchical Control 116
1.9 Analog or Discrete Input/Output, Costs and Signal Processing 123
1.10 Estimating the Costs of Control System Packages 142
2 Designing a Safe Plant 151
2.1 Hazardous Area Classification 156
2.2 Intrinsic Safety Rules for Fieldbus Installations 161
2.3 Purging and Inerting Systems 167
2.4 High-Integrity Pressure Protection Systems 173
2.5 Process Safety Management 182
2.6 Redundant or Voting Systems for Increased Reliability 192
2.7 Network Security 198
2.8 Safety Instrumented Systems: Design, Analysis, and Operation 209
2.9 Reliability Engineering Concepts 231
2.10 Intelligent Alarm Management 252
2.11 Safety Instrumentation and Justification of Its Cost 268
2.12 International Safety Standards and Certification
(ANSI/ISA-S84, IEC 61511/61508/62061, ISO 13849) 278
3 Control Center, Workstation, and Logic Design 285
3.1 Operator Interface Evolution 288
3.2 Virtual Reality Tools for Testing Control Room Concepts 299
3.3 Upgrading the Control Room 307
1082_frame_FM Page vii Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
viii Contents
3.4 Manufacturing Platforms and Workstations 323
3.5 Workstation Hosts: Design Concepts and Classification 327
3.6 Integration of DCS, PLC, HMI, and SCADA Systems 334
3.7 Integration with RTUs, Multiplexers, Fieldbuses, and Data Highways 341
3.8 Hybrid Systems with Discrete and Analog Capability 351
3.9 SCADA—Supervisory Control and Data Acquisition 357
3.10 PLC Programming 368
3.11 Fault-Tolerant Programming and Real-Time Operating Systems 387
3.12 Practical Logic Design 396
4 Buses and Networks 423
4.1 An Introduction to Networks in Process Automation 430
4.2 PLC Proprietary and Open Networks 442
4.3 Hardware Selection for Fieldbus Systems 465
4.4 Sorting Out the Protocols 478
4.5 Overall Fieldbus Trends 495
4.6 Fieldbus Advantages and Disadvantages 505
4.7 Fieldbus Design, Installation, Economics, and Documentation 513
4.8 Instrumentation Network Design and Upgrade 522
4.9 Global System Architectures 534
4.10 Advantages and Limitations of Open Networks 540
4.11 HART Networks 547
4.12 Foundation Fieldbus Network 564
4.13 PROFIBUS-PA 578
4.14 Designing PROFIBUS-PA and Foundation Fieldbus Segments 588
4.15 Ethernet and TCP/IP-Based Systems 601
4.16 Fieldbus Networks Catering to Specific Niches of Industry 612
4.17 Proprietary Networks 627
4.18 Fiber-Optic Networks 638
4.19 Satellite, Infrared, Radio, and Wireless LAN Networks 649
5 Software Packages 669
5.1 Control Loop Optimization 672
5.2 Data Reconciliation 687
5.3 Sequence of Event Recorders and Post-Trip Reviews 703
5.4 OPC Software Architecture 708
5.5 Batch Control State of the Art 714
5.6 Plantwide Control Loop Optimization 728
5.7 Plantwide Controller Performance Monitoring 749
5.8 The ‘‘Virtual Plant,’’ A Tool for Better Understanding 761
Appendix 773
A.1 International System of Units 774
A.2 Engineering Conversion Factors 784
A.3 Chemical Resistance of Materials 807
A.4 Composition of Metallic and Other Materials 813
A.5 Steam and Water Tables 816
A.6 Friction Loss in Pipes 824
A.7 Tank Volumes 828
A.8 Partial List of Suppliers 831
Index 855
1082_frame_FM Page viii Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
ix
C O N T R I B U T O R S
The name of the author is given at the beginning of each section. Here, all the contributors of this volume are listed in
alphabetical order, giving their academic degrees and affiliations they held at the time of publication.
MIGUEL J. BAGAJEWICZ PhD, AIChe, Professor, University of Oklahoma, Norman, Oklahoma, U.S.A.
CHET S. BARTON PE, BSEE, Senior Process Automation Engineer, Jacobs Engineering, Baton Rouge,
Louisiana, U.S.A.
JONAS BERGE Engineer, Smar, Singapore
PETER GRAHAM BERRIE BScE, PhD, AIChe, Marketing Communications, Endress+Hauser Process Solutions
AG, Reinach, Switzerland
VIPUL A. BHAVSAR BE (I&C), Diploma in Management, Consultant–Control Systems Engineer, Canada
STUART A. BOYER PE, BSc, EE, President, Iliad Engineering, Inc., Canada
GEORGE C. BUCKBEE PE, BSChE, MSChE, Control Engineer, Top Control, Clarks Summit, Pennsylvania,
U.S.A.
ERIC J. BYRES PE, Research Faculty, British Columbia Institute of Technology, Canada
DANIEL E. CAPANO President, Diversified Technical Services, Inc., Stamford, Connecticut, U.S.A.
RICHARD H. CARO BchE, MS, MBA, CMC Associates, Acton, Massachusetts, U.S.A.
HARRY L. CHEDDIE PE, BSc, Principal Engineer, Exida.com, Sarnia, Ontario, Canada
SCOTT C. CLARK BS, ChE, Project Engineer, Merck & Co., Inc., Elkton, Virginia, U.S.A.
ASGEIR DRØIVOLDSMO MS, Research Scientist, OECD Halden Reactor Project, Halden, Norway
SHIBI EMMANUEL MTech, BTech, Head of I&C, Dar Al Riyadh Consultants, Al Khobar, Saudi Arabia
HALIT EREN BSc, MEng, PhD, MBA, Senior Lecturer, Curtin University of Technology, Perth,
Australia
LUDGER FÜCHTLER Dipl. Eng., Marketing Manager, Endress+Hauser Process Solutions AG, Reinach,
Switzerland
1082_frame_FM Page ix Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
x Contributors
BRUCE J. GEDDES PE, BSME, Framatome ANP DE&S, Charlotte, North Carolina, U.S.A.
JOHN PETER GERRY PE, BSChE, MSChE, President, ExperTune, Inc., Hubertus, Wisconsin, U.S.A.
ASISH GHOSH CE, MIEE, Independent Consultant, Wrentham, Massachusetts, U.S.A.
IAN H. GIBSON BSc, Dipl. ChE, Dipl. Inst.Tech., Principal Technical Specialist-Process & Control
Systems, Fluor Australia Pty Ltd, Melbourne, Australia
HASHEM MEHRDAD HASHEMIAN MSNE, ISA Fellow, President, Analysis and Measurement Services Corp., Knoxville,
Tennessee, U.S.A.
HEROLD I. HERTANU PE, MSEE, President, HLP Associates, New York, U.S.A.
KARLENE A. HOO BS, MS, PhD,AIChe,Associate Professor, Texas Tech University, Lubbock, Texas, U.S.A.
MICHAEL FRANK HORDESKI PE, BSEE, MSEE, Consultant, Jablon Computer, Atascadero, California, U.S.A.
JAMES E. JAMISON PE, BScChE, Senior Lead Instrument and Process Control Engineer, Bantrel, Inc.,
Calgary, Canada
KLAUS H. KORSTEN Dipl. Eng., Marketing Manager, Endress+Hauser Process Solutions AG, Reinach,
Switzerland
KLAUS-PETER LINDNER Dipl. Info., New Technology Specialist, Endress+Hauser Process Solutions AG,
Reinach, Switzerland
BÉLA G. LIPTÁK PE, MME, Consultant, ISA Fellow and recipient of Process Automation Hall of Fame
award for 2001, Stamford, Connecticut, U.S.A.
MICHAEL N. LOUKA BS, Section Head, IFE Halden Virtual Reality Centre, Halden, Norway
M. SAM MANNAN PE, CSP, PhD, AIChe, Professor of Chemical Engineering, Texas A&M University,
College Station, Texas, U.S.A.
EDWARD M. MARSZAL PE, BSChE, Principal Engineer, Exida, Columbus, Ohio, U.S.A.
GREGORY K. McMILLAN BSEngPhy, MSEE,Adjunct Professor, Washington University, St. Louis, Missouri, U.S.A.
DANIEL MIKLOVIC BSEE, MSSM, CMFgE, Vice President and Research Director, Gartner, Sammamish,
Washington, U.S.A.
DOUG MORGAN BSChE, Project Engineer, Control Systems International, Irvine, California, U.S.A.
MICHAEL J. PIOVOSO PE, BSEE, MSEE, PhD, Associate Professor, Pennsylvania State University, Malvern,
Pennsylvania, U.S.A.
WALLACE A. PRATT, JR. BSEE, Chief Engineer, HART Communication Foundation, Austin, Texas, U.S.A.
ALBERTO ROHR EE, Dr. Ing., Consultant, Vedrano al Lambro (MI), Italy
DERRICK KEITH ROLLINS, SR. BS, MS, PhD, AIChe, Associate Professor, Iowa State University, Ames, Iowa, U.S.A.
MICHEL RUEL PE, BScA, President, TOP Control, Inc., Hubertus, Wisconsin, U.S.A.
1082_frame_FM Page x Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
Contributors xi
GURBINDER B. SINGH BE, MBA, MCSE, Consultant—Control Systems Engineer, Chicago, Illinois, U.S.A
ROBERT J. SMITH II BSEET, Electrical & Instrumentation Engineer/Information Technology Manager,
Associated Professional Engineering Consultants, Inc., Cincinnati, Ohio, U.S.A.
DAVID A. STROBHAR PE, BSHFE, President, Beville Engineering, Inc., Dayton, Ohio, U.S.A.
ANGELA ELAINE SUMMERS PE, PhD, AIChe, President, SIS-TECH Solutions, LLC, Houston, Texas, U.S.A.
G. KEVIN TOTHEROW BSEE, President, Sylution Consulting, Jesup, Georgia, U.S.A.
ANN TUCK BSME, Control Systems Assistant Chief Engineer, Bechtel Corporation, Frederick,
Maryland, U.S.A.
IAN VERHAPPEN PE, BScE, Engineering Associate, Syncrude Canada Ltd, Fort McMurray, Alberta,
Canada
STEFANO VITTURI Dr. Eng., Researcher, CNR-LADSEB, Padova, Italy
HARRY H. WEST PE, CSP, PhD, AIChe, Adjunct Professor of Chemical Engineering, Texas A&M
University, College Station, Texas, U.S.A.
1082_frame_FM Page xi Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
xiii
P R E F A C E
THE MATURING OF THE I&C PROFESSION
The first volume of the Instrument Engineers’ Handbook
(ΙΕΗ ) described the devices and methods used in performing
automatic industrial process measurement and analysis. The
second volume of the IEH dealt with automatic process con-
trol devices and systems used in our various industries. This
third volume of the IEH provides an in-depth, state-of-the-
art review of all the existing and evolving digital communi-
cation and control systems. Although the transportation of
digital information by buses and networks is a major topic
in this volume, the total coverage of the volume includes
much more. This volume also describes a variety of process
control software packages, which are used in plant optimi-
zation, maintenance, and safety-related applications. A full
chapter is assigned to plant design and updating, while safety
and operations-related logic systems and the design of inte-
grated workstations and control centers are also emphasized.
The volume concludes with a substantial appendix, providing
such practical information as bidders’ lists and addresses,
steam tables, materials selection for corrosive services, and
much more.
It is hoped that the publication of this third volume of the
IEH will contribute to increasing the safety and efficiency of
all control systems. Although in the previous editions of the
IEH we have advocated the use of intelligent self-monitoring
and self-diagnosing instrumentation, now it seems that the time
has come to take the next step and aim for unattended and self-
optimizing industrial control systems. It is time to proceed from
the level of self-monitoring and self-diagnosing packages to
self-healing systems requiring a minimum of maintenance.
Ours is a relatively young profession. I do hope that this
third volume of the IEH will also improve the respectability
and professional standing of the instrumentation and control
(I&C) profession, which is still evolving. Yet, if we compare
the professional standing and the self-image of instrumentation
and control engineers to those of, for example, mechanical
or chemical engineers, we find ourselves at a disadvantage.
The list of disadvantages starts at the universities, which
offer ME or ChE degrees, but not too many of them offer
degrees in I&C engineering. Some do not even have an I&C
department. Even those that do often tend to treat control as
if it were a subfield of mathematics.At such universities control
issues are often discussed in the “frequency domain,” and
control problems are analyzed by using partial differential
equations and Laplace transfer functions. Under such condi-
tions, the engineering students, when first exposed to the field
of process control, often receive the wrong impression of
what the I&C profession is all about.
Our engineering societies could also do a better job to
improve our professional image. The main goal of such engi-
neering societies as ASME or AIChE is to serve the profes-
sional development of their members. These societies focus on
preparing scientific publications, on generating high-quality
engineering standards, or on organizing courses aimed at assist-
ing the professional advancement of their members. In contrast
to that, the leadership of some I&C societies is dominated
not by the users, but by the manufacturers, and focuses not on
the professional advancement of their members, but on serv-
ing the commercial interests of the vendors.
The differences between the professional standings of
I&C and other engineering disciplines are also visible in most
operating plants, where one has no difficulty in finding a
resident ME or ChE, but when one asks for the resident I&C
engineer, the answer often is, “We have only instrument
maintenance technicians, the vendors take care of our instru-
ment engineering.” This shows an elementary lack of under-
standing of the most basic requirement of good control. It is
that in order to properly control a process, one must fully
understand its unique personality, and vendors can sel-
dom, if ever, do that.
Another observable difference is demonstrated by the
bookshelves of the members of the different engineering
disciplines. If one walks into the office of an ME, it is likely
that one will see one or more editions of Marks’ Handbook
on the bookshelf. The same holds true for the offices of ChEs,
except that there it will be Perry’s Handbook on the book-
shelves. In contrast, the bookshelves of most I&C engineers
are likely to be flooded by vendors’ catalogs but few profes-
sional handbooks are likely to be seen there.
1082_frame_FM Page xiii Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
xiv Preface
FRIDAY’S NOTES
Having painted this rather dark picture, I should bring the
topic of our professional standing into its proper perspective.
We all know that it takes time for an engineering profession
to mature, and we also know that I&C is a very young profes-
sion. I will try to demonstrate the youth of our profession by
using the example of my handbook.
In 1962, at the age of 26, I became the Chief Instrument
Engineer at Crawford & Russell, an engineering design firm
specializing in the building of plastics plants. C&R was grow-
ing and my department also had to grow. Yet, at the age of
26 I did not dare to hire experienced people, because I did
not think that I could lead and supervise older engineers. Yet
the department had to grow, so I hired fresh graduates from
the best engineering colleges in the country. I picked the
smartest graduates and, having done so, I obtained permis-
sion from the C&R president, Sam Russell, to spend every
Friday afternoon teaching them.
In a few years my department had not only some outstand-
ing process control engineers, but C&R also saved a lot on
their salaries. By the time I reached 30, I felt secure enough
to stop disguising my youth. I shaved off my beard and threw
away my thick-rimmed, phony eyeglasses. I no longer felt
that I had to look older, but all the same, my Friday’s notes
still occupied a 2-ft-tall pile on the corner of my desk.
In the mid-1960s an old-fashioned Dutch gentleman
named Nick Groonevelt visited my office and asked: “What
are all those notes?” When I told him, he asked: “Does your
profession have a handbook?” I answered with my own ques-
tion: “If it did, would I be teaching from these notes?” (Actu-
ally, I was wrong in giving that answer, because Behar’s
Handbook of Measurement and Control was already avail-
able, but I did not know about it.) “So, let me publish your
notes and then the instrument engineers will have a hand-
book,” Nick proposed, and in 1968 the first edition of the
Instrument Engineers’ Handbook was published.
In 1968, the Soviet tanks, which I fought in 1956, were
besieging Prague, so I decided to dedicate the three volumes
of the IEH to the Hungarian and Czech freedom-fighters. A
fellow Hungarian–American, Edward Teller, wrote the pref-
ace to the first edition, and Frank Ryan, the editor of ISA
Journal, wrote the introduction. My co-authors included such
names as Hans Baumann, Stu Jackson, Orval Lovett, Charles
Mamzic, Howard Roberts, Greg Shinskey, and Ted Williams.
It was an honor to work with such a team. In 1973, because
of the great success of the IEH, I was elected to become the
youngest ISA fellow ever. But the fact still remains that ours
is a very young profession: when the IEH came out, Marks’
and Perry’s handbooks were in their fifth or sixth editions!
PROGRESS
The third edition of the IEH was initially planned for three
volumes. They were to cover the subjects of process meas-
urement, process control, and process software. Chilton pub-
lished the first two volumes in 1995. The publishing process
was then interrupted when Walt Disney acquired Chilton in
1996. I could do nothing but wait for work on the series to
resume. In October 2000, CRC Press obtained the rights to
publish the third volume.
This delay, though unfortunate, also had some positive
consequences. First, CRC agreed with ISA to market the IEH
jointly. Second, the onset of the age of digital communica-
tions made it possible for me to find the best experts in the
world for every key topic in this volume. This was an impor-
tant consideration because the three volumes of the IEH
explore nearly 1000 diverse topics from anenometers to weirs
and from controlling airhandlers to controlling wastewater
treatment processes. Finding the best authors possible in an
efficient manner would have been next to impossible before
the Internet.
Now, as I start to invite co-authors for the fourth edition
of this handbook, the Internet continues to be an invaluable
research and communication tool. By the click of a button
(liptakbela@aol.com) experts residing anywhere in the world
can also contact me and offer to contribute to the IEH, thus
sharing their knowledge, accumulated over a lifetime, with
the international community of I&C professionals.
THE FUTURE
When Yale University invited me to teach I&C, I did not like
it that my course was being offered by its chemical engineer-
ing department, because Yale did not have an independent
I&C department. On the other hand, I was pleased that I was
allowed to discuss control theory in the “time domain.”
Therefore, I used no mathematical abstractions, partial dif-
ferential equations, or Laplace transfer functions. Instead, I
talked about easily understandable terms like transportation
lags and capacities, dead times, and time constants. In short,
the course I gave was down to earth and practical. It was
based on my old “Friday’s notes.” So, while teaching I&C
in a ChE department was unfortunate, teaching I&C in the
time domain, and not in the frequency domain, was a step
forward.
In working with the publishers of the IEH over the past
decades, I was also reminded of the unrecognized nature of
the I&C profession. Between the various editions, I have seen
the IEH promoted in the categories of chemical engineering,
electrical engineering, and computer engineering books, but
seldom in its own category. This, too, has bothered me. It
just seems to be taking too long to recognize that I&C is a
separate and distinct profession. When CRC agreed to a joint
publication with ISA, this was a small but significant step
toward gaining full recognition for our slowly maturing I&C
profession.
In general, it is high time for our universities and publish-
ers to recognize the existence of instrument engineering as a
distinct and respectable profession. It is time for industrial
management to understand that the availability of in-house
1082_frame_FM Page xiv Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
Preface xv
instrument engineering know-how is essential. It is time for
instrument societies to focus less on the advertising dollars
from the vendors and more on helping the users by providing
education and standardization. It is hoped that in the long
run these steps will help in gaining the deserved respect for
our slowly maturing I&C profession.
DIGITAL SYSTEMS
In the past, we first standardized on the pneumatic signal
range of 3 to 15 PSIG and later on the electronic transmission
and control signal range of 4–20 mA DC. As we move from
the analog to the digital age, we also need a uniform world-
wide standard for digital signals, which is universal. We need
a fully open network, one that is not based on any particular
vendor’s standard. Yet today, there exist some 30 digital pro-
tocols, which all call themselves fieldbuses. What the Inter-
national Electrotechnical Commission (IEC) did was not to
issue a single standard, but simply to take the conglomeration
of eight of these disparate, proprietary, non-interoperable
vendors’standards and combine them into a single document
(IEC 61158). This is intolerable! This is like expecting to run
a plant from a control center in which eight operators might
speak eight different languages.
While some progress has been made in providing an Open
System Interconnect (OSI) model and while most vendors
support Ethernet-TCP/IP (transmission control protocol/
Internet protocol) connectivity at the business interface level,
much remains to be done. With the passage of time, interop-
erability among the field device network front runners (Foun-
dation Fieldbus, HART, and PROFIBUS-PA/DP) has also
improved, but (because of the war for the dominance at the
field level of the application layer) interoperability still
remains a marketing term of blurred meaning. This is more
than undesirable! This is unsafe! The responsibility of the
I&C engineering societies and of this handbook of mine
is nothing less, but to work for a truly open and universal
digital network standard.
Greg Shinsky was right when he warned that smart con-
trollers alone cannot solve the problem of dumb users. No,
the problem of dumb users can only be solved by education
and by placing the interests of the profession ahead of those
of individual manufacturers. To achieve that goal, both the
various I&C engineering societies (including ISA) and our
publications, such as my handbook, have important roles to
play. If we all pitch in, we can improve not only the next
edition of the IEH and the professional atmosphere at ISA,
but we can also increase the respectability and maturity of
the instrument engineering profession as a whole.
CONTROL OF NON-INDUSTRIAL PROCESSES
A few years ago a group of social scientists invited me to
Harvard University to talk about the control of non-industrial
processes. I started the lecture by listing the information that
we need about any process, before we can start designing a
system to control it. Among the information needed, I men-
tioned the set point and the manipulated variable (the control
valve), which we must have to build a control loop. As an
example, I mentioned that, if we wanted to build a control
loop, which would control the population of our planet, we
would have to agree on both a “set point” and a “manipulated
variable” for it. I am not saying that it is necessarily up to
us humans to control the population of the world. What I am
saying is that we have not even agreed on the desired set
point or on the manipulated variable for such a loop!
Someone from the audience interrupted me at this point
and asked about the control modes for such a population con-
troller. “Should the controller be proportional and integral (as
in the case of level control) or proportional and derivative (as
in the case of batch neutralization)?” he asked. “One should
only start thinking about control modes when the loop itself
exists, not before,’’ I responded. Therefore, humankind will
first have to decide if there is a maximum limit to the total
population of our planet (set point). Once there is general agree-
ment on that, we will have to agree on the manipulated vari-
ables (on the means to be utilized to keep the population below
that limit). Reaching such agreements will not be easy because
the derivative settings of our political institutions (anticipation
into the future) are very short (usually only 4 years) and because
there is no past precedent in our culture for making decisions
of such magnitude.
Controlling Evolution
It is difficult for us to be concerned about events that are
likely to occur after we are dead. It is difficult, because human
evolution in the past has been under the control of nature
and it is hard for us to accept that we too are responsible for
the future of the planet. I do not mean to suggest that we
have “conquered nature” or that we are controlling our own
evolution. No, that is not the case! The Creator has placed
nature in the driver’s seat of all evolutionary processes on
this planet. Yet, He has permitted humans to change some of
nature’s conditions. For example, He allowed humans to min-
imize the discomforts caused by the weather and also allowed
us to reduce the time it takes to travel, by using up some of
the exhaustible resources of the planet.
Therefore, if humankind fails to come up with a set point
and a manipulated variable for the population control loop,
nature is likely to select and implement it for us. One can
only hope that there is enough derivative (enough anticipation
of future events) in our combined wisdom to prevent that
from happening, because if we wait for nature to close the
population control loop, the “throttling” will neither be
smooth nor gradual. “So, in order to control population, we
need to modify human attitudes, human culture?” asks a
balding gentleman. “Yes, we can view the relationship
between culture and population control as a cascade loop, where
culture is the master controller which is herding a number of
slave loops, one of them being population,” I responded.
1082_frame_FM Page xv Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
xvi Preface
Controlling Cultural and Social Processes
Culture is a mostly dead-time process. It takes 10 to 20 years
for a child to form his or her opinions and values. At the
beginning of our individual lives, every child’s mind is a
blank page. Our moral and ethical standards are inscribed by
our churches, our schools, by the media, and by the examples
of our role models, most importantly by our parents. To
understand culture as a controllable process, we must also
realize that culture is the sum total of all the beliefs and
convictions of all members of our society.
For a society to function smoothly, at least three genera-
tions should share the same moral and ethical values. When
the prevailing culture changes faster, this can result in a
difference between the moral standards of the generations.
As a consequence of cultural conflicts between societies of
different nations or among the generations of the same nation,
“their manipulated variables will interact.” These interactions
can be desirable (elimination of prejudices, clarifying envi-
ronmental interrelationships) or undesirable (materialism,
selfishness, amoral or cynical attitudes). Whatever the nature
of the changes, “de-coupling of the loops” is necessary, if
society is to function smoothly and effectively. Therefore, the
methods used in de-coupling the interacting control loops
can also be used in controlling social or cultural processes.
Economic and Political Processes
De-coupling is also needed when the interests of various
segments of society collide. As long as the de-coupling (con-
flict resolution) can be subordinated to the shared ethical and
moral standards of society (“one nation under God,” “all men
are created equal,” etc.), a hierarchical control system (multi-
layered cascade) will function properly. On the other hand,
problems will arise if the set point (the moral standards of
this shared cascade master) becomes fuzzy. Such fuzziness
is occurring right now, because business is already “global-
ized” while the political, legal, educational, or other institu-
tions are not. It is the fuzziness of this cascade master that
allows perfectly moral and ethical individuals to purchase
goods made by child labor in environmentally polluting
plants. Such fuzziness could be eliminated by inserting a
slave control loop (implemented by, say, a color-coded label
on all imported goods).
I also talked about the importance of the degrees of free-
dom of the controlled process. The number of these degrees
identifies the number of process variables that can be inde-
pendently controlled (in case of a train—one, ship—two, etc.).
If we try to control more variables than the number of degrees
of freedom that the process has, the control loops will fight
each other and the controlled process will become unstable.
This discussion of degrees of freedom led to questions related
to controlling such complex processes as the economy and
the political system.
HERDING AND ENVELOPE CONTROLS
In multivariable processes one cannot use a single set point,
but must implement either a “herding” or an “envelope”
control configuration. When implementing herding control,
all controlled variables are observed simultaneously and con-
tinuously, but correction is applied to only one variable at a
time. The selected control variable is the one that is farthest
away from where it should be. A herding loop does the same
thing that a herding dog does when it is herding 1000 sheep
by going after one sheep at a time (by manipulating only one
variable at a time), the one that is farthest away from the
desired overall goal or aim of the control system.
Envelope control is different. Here, an allowable gap
(upper and lower limits) is assigned to each controlled vari-
able. From the totality of these gaps, a multidimensional
control envelope results. If all the controlled variables are
inside this envelope, no corrective action is taken. If a con-
trolled variable drifts to one of the boundaries of the enve-
lope, a correction is initiated.
Envelope control is best suited for controlling the econ-
omy, because our overall economic well-being is a function
of several variables of similar importance (unemployment,
inflation, corporate profits, interest rates, budget deficits, etc.).
In contrast, the herding control model is more suitable for
political process, because in that process, one consideration is
more important that all the others. This critical consideration
is to guarantee that all votes have the same weight.
In controlling the political process all other variables
should be subordinated to this one goal, and all variables
should be herded in the direction of guaranteeing equal influ-
ence to all well-informed voters. In this sense, the one-party
systems completely eliminate all degrees of freedom, while
the two-party systems are superior, but still restrictive. This
control analysis suggests that maximizing the degrees of free-
dom of the political process would also optimize it. If that
conclusion is correct, then the public financing of the campaigns
of all acceptable political candidates and the elimination of
private contributions could be a step in the right direction.
NATIONALISM AND GLOBALIZATION
It was already noted that the “dead-time” of forming cultural
attitudes and cultural loyalties can take decades. It is worth
noting that our loyalty to “our culture” and to the traditions
of our extended family (our nation) harms no one. It is a form
of healthy loyalty, which should never be given up or
exchanged. Yet, this loyalty should not stand in the way of
developing other loyalties. A person with multiple loyalties
is a richer and happier person.
If one can maintain one’s 100% loyalty to one’s own
culture while simultaneously developing an understanding
and respect for another, that person has become a richer
individual, a 200% person. Understanding and accepting this
1082_frame_FM Page xvi Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
Preface xvii
will be the great test of the “globalization process.” Global-
ization can aim for a multicultural and hence richer global
society, but it can also result in a uniformly commercialized
and hence poorer culture for all people. The choice is ours,
but to control the globalization process, we must also under-
stand its time constants, which in case of electronic com-
merce can be seconds, while in the cases of culture or ethical
and moral standards can be decades or even centuries.
MATCHING OF TIME CONSTANTS
Similarly to the control of culture, the time constants of
global biology and its relationship with the preservation of
the species must also be understood. For example, it takes
thousands of years to displace the waters in all the oceans
only once. Therefore, the irreversible consequences of the
pollutants that we are discharging into our receiving waters
today might not fully evolve for a couple of millennia. The
time constants of the processes involving atmospheric
pollution and global warming are similarly long and just as
poorly understood.
The time requirements of switching to nonpolluting and
inexhaustible energy sources are also critical. We do not know
which of the proposed inexhaustible processes will ultimately
replace the fossil fuels as our new, long-term energy supply.
We do not know which of a dozen proposals will eventually
work. We do not know if solar energy, collected by artificial
islands around the equator will fuel a hydrogen-based econ-
omy or we will “burn” the carbon dioxide in the air, use solar
cells, wind turbines, or what. What we do know is that fossil
fuels are exhaustible, that the disposal problems associated
with nuclear waste are unsolved and that the time needed to
develop an economy based on nonpolluting and inexhaustible
energy sources is long. So the wisdom of process control
would suggest that we had better get started!
We will only be able to adjust our actions to protect and
serve the future generations when we fully understand the
time constants of the cultural and physical processes of our
planet. To do that, it is not only necessary to understand the
basic principles of process control but it is also necessary to
help the process control profession gain the kind of respect
and maturity that it deserves.
The goal of the three volumes of the Instrument Engi-
neers’ Handbook is nothing less than that. I do hope that
your verdict will be that the co-authors of these volumes have
made an important contribution to increasing the respectabil-
ity of the I&C profession.
Béla G. Lipták
(E-mail: Liptakbela@aol.com)
1082_frame_FM Page xvii Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
xix
D E F I N I T I O N S
AMPACITY The current (amperes) a conducting
system can support without exceeding
the temperature rating assigned to its
configuration and application.
ATTENUATION Loss of communication signal strength.
BACKPLANE Physical connection between individ-
ual components and the data and power
distribution buses inside a chassis.
BALUN Balanced/unbalanced. A device used
for matching characteristics between a
balanced and an unbalanced medium.
BANDWIDTH Data-carrying capacity, the range of fre-
quencies available for signals. The term
is also used to describe the rated through-
put capacity of a given network medium
or protocol.
BASEBAND A communication technique where only
one carrier frequency is used to send one
signal at a time. Ethernet is an example
of a baseband network. Also called nar-
rowband. Contrast to broadband.
BONDING The practice of creating safe, high-
capacity, reliable electrical connec-
tivity between associated metallic
parts, machines, and other conductive
equipment.
BROADBAND A communication technique that mul-
tiplexes multiple independent signals
simultaneously, using several distinct
carriers. A common term in the tele-
communications industry to describe
any channel with a bandwidth greater
than a voice-grade channel (4 kHz).
Also called wideband. Contrast to
baseband.
CAPACITANCE The amount of charge, in coulombs,
stored in a system necessary to raise
the potential difference across it 1 V;
represented by the SI unit farad.
DATA SERVERS A standard interface to provide data
exchange between field devices and
data clients.
DEMULTIPLEXING Separating of multiple input streams
that were multiplexed into a common
physical signal back into multiple out-
put streams.
DEVICE DESCRIPTION A clear and unambiguous, structured
text description that allows full utiliza-
tion/operation of a field device by a
host/master without any prior knowl-
edge of the field device.
ETHERNET A baseband local area network specifi-
cation developed by Xerox Corporation,
Intel, and Digital Equipment Corpora-
tion to interconnect computer equipment
using coaxial cable and transceivers.
FIELDBUS An all-digital, two-way, multidrop com-
munications system for instruments and
other plant automation equipment.
FIREWALL Router or access server, designated as
a buffer between any public networks
and a private network.
GROUND A conducting connection, whether
intentional or accidental, between an
electrical circuit or equipment and the
earth, or to some conducting body that
serves in place of earth. (See NFPA 70-
100.)
GROUND FAULT
PROTECTOR
Device used to open ungrounded con-
ductors when high currents, especially
those due to line-to-ground fault cur-
rents, are encountered.
HOME RUN WIRING Wire between the cabinet where the
fieldbus host or centralized control
system resides and the first field junc-
tion box or device.
HUB (SHARED) Multiport repeater joining segments
into a network.
1082_frame_FM Page xix Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
xx Definitions
IMPEDANCE Maximum voltage divided by maxi-
mum current in an alternating current
circuit. Impedance is composed of
resistive, inductive, and capacitive
components. Like direct current cir-
cuits, the quantity of voltage divided by
current is expressed in ohms.
INTERFACE (1) Shared boundary. For example, the
physical connection between two sys-
tems or two devices. (2) Generally, the
point of interconnection of two compo-
nents, and the means by which they
must exchange signals according to
some hardware or software protocol.
INTEROPERABILITY A marketing term with a blurred mean-
ing. One possible definition is the abil-
ity for like devices from different man-
ufacturers to work together in a system
and be substituted one for another with-
out loss of functionality at the host
level (HART).
LAMBDA The desired closed-loop time constant,
often set to equal the loop lag time (λ).
LATENCY Latency measures the worst-case max-
imum time between the start of a trans-
action and the completion of that trans-
action.
LINE DRIVER Inexpensive amplifier and signal con-
verter that conditions digital signals to
ensure reliable transmissions over
extended distances without the use of
modems.
MANCHESTER A digital signaling technique that con-
tains a signal transition at the center of
every bit cell.
MODEM Modulator-demodulator. Device that
converts digital and analog signals. At
the source, a modem converts digital
signals to a form suitable for transmis-
sion over analog communication facil-
ities. At the destination, the analog sig-
nals are returned to their digital form.
Modems allow data to be transmitted
over voice-grade telephone lines.
MULTIPLEXING Scheme that allows multiple logical
signals to be transmitted simulta-
neously across a single physical chan-
nel. Compare with demultiplexing.
NETWORK All media, connectors, and associated
communication elements by which a
given set of communicating devices are
interconnected. A network may consist
of several segments joined by repeat-
ers. Networks may be joined using
bridges.
PLENUM Air distribution ducting, chamber, or
compartment.
PROTOCOL Formal description of a set of rules and
conventions that govern how devices
on a network exchange information.
RACEWAY A general term for enclosed channels,
conduit, and tubing designed for hold-
ing wires, cables, or busbars.
SEGMENT The section of a network that is termi-
nated in its characteristic impedance.
Segments are linked by repeaters to
form a complete network.
SERVICE Term used by NFPA-70 (NEC) to
demarcate the point at which utility
electrical codes published by IEEE
(NESC) take over. Includes conductors
and equipment that deliver electricity
from utilities.
SMART FIELD DEVICE A microprocessor-based process trans-
mitter or actuator that supports two-
way communications with a host; dig-
itizes the transducer signals; and digi-
tally corrects its process variable values
to improve system performance. The
value of a smart field device lies in the
quality of data it provides.
STICTION Combination of sticking and slipping
when stroking a control valve.
SUBCHANNEL In broadband terminology, a fre-
quency-based subdivision creating a
separate communications channel.
SWITCHED HUB Multiport bridge joining networks into
a larger network.
THROUGHPUT Throughput is the maximum number of
transactions per second that can be
communicated by the system.
TIMEOUT Event that occurs when one network
device expects to hear from another net-
work device within a specified period
of time, but does not. The resulting tim-
eout usually results in a retransmission
of information or the dissolving of the
session between the two devices.
TOPOLOGY Physical arrangement of network nodes
and media within an enterprise net-
working structure.
1082_frame_FM Page xx Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
xxi
A B B R E V I A T I O N S , N O M E N C L A T U R E ,
A C R O N Y M S , A N D S Y M B O L S
2D two dimensional
3D three dimensional
A
a acceleration
A (1) area; (2) ampere, symbol for basic SI
unit of electric current; also amp
Å Ångstrom (=10–10 m)
abs absolute (e.g., value)
AC, ac, or a-c alternating current
ACFM volumetric flow at actual conditions in cubic
feet per minute (=28.32 alpm)
ACL asynchronous connection-less
ACMH actual cubic meter per hour
ACMM actual cubic meter per minute
ACS analyzer control system
ACSL advanced continuous simulation language
A/D analog to digital
ADIS approved for draft international standard
circulation
A&E alarm and event
AF or a-f audio frequency
AGA3 American Gas Association Report 3
AI analog input
a(k) white noise
ALARP as low as reasonably practicable
alt altitude
amp ampere; also A, q.v.
AMPS advanced mobile phone system or service
AMS asset management solutions
AO analog output
AP access point
APC automatic process control
APDU application (layer) protocol data unit
API application programming interface or abso-
lute performance index
°API API degrees of liquid density
APM alternating pulse modulation
ARA alarm response analysis
ARIMA autoregressive integrated moving average
ARP address resolution protocol
ASCII American Standard Code for Information
Interchange
AS-i actuator sensor interface
ASIC application specific integrated chips
ASK amplitude shift keying
asym asymmetrical; not symmetrical
atm atmosphere (=14.7 psi)
AUI attachment unit interface
aux auxiliary
AWG American wire gauge
B
b dead time
°Ba Balling degrees of liquid density
bar (1) barometer; (2) unit of atmospheric pres-
sure measurement (=100 kPa)
barg bar gauge
bbl barrels (=0.1589 m3)
BCD binary coded decimal
BCS batch control system
°Bé Baumé degrees of liquid density
BFW boiler feed water
bhp or b.h.p. braking horsepower (=746 W)
°Bk Barkometer degrees of liquid density
blk black (wiring code color for AC “hot” con-
ductor)
bp or b.p. boiling point
BPCS basic process control system
bps bits per second
BPSK binary phase shift keying
Bq becquerel, symbol for derived SI unit of
radioactivity, joules per kilogram, J/kg
°Br Brix degrees of liquid density
B2B business to business
BTU British thermal unit (=1054 J)
BWG Birmingham wire gauge
C
c (1) velocity of light in vacuum (3 × 108
m/s); (2) centi, prefix meaning 0.01
1082_frame_FM Page xxi Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
xxii Abbreviations, Nomenclature, Acronyms, and Symbols
C coulombs
°C Celsius degrees of temperature
ca. circa: about, approximately
CAC channel access code
CAD computer-aided design
cal calorie (gram, =4.184 J); also g-cal
CAN control area network or control and auto-
mation network
CATV community antenna television (cable)
CBM condition-based maintenance
cc cubic centimeter (=10–6 m3)
CCF common cause failure
ccm cubic centimeter per minute
CCR central control room
ccs constant current source
CCS computer control system
cd candela, symbol for basic SI unit of lumi-
nous intensity
CD compact disk, compel data, or collision
detector
CD dangerous coverage factor
CDF cumulative distribution function
CDMA code division multiple access
CDPD cellular digital packet data
CEMS continuous emissions monitoring system
CENP combustion engineering nuclear power
CFM or cfm cubic foot per minute (28.32 lpm)
CF/yr cubic foot per year
Ci curie (=3.7 × 1010 Bq)
CI cast iron
CIM computer-integrated manufacturing
CIP computer-aided production or control and
information protocol (an application layer
protocol supported by DeviceNet, Control-
Net, and Ethernet/IP)
CLP closed-loop potential factor
cm centimeter (=0.01 m)
CM condition monitoring
CMMS computerized maintenance management
system
CMPC constrained multivariable predictive control
CMOS complementary metal oxide semiconductor
cmph cubic meter per hour
CNC computerized numerical control
CNI ControlNet International
CO controller output
COM component object model
COTS commercial off-the-shelf
cos cosine, trigonometric function
cp or c.p. (1) candle power; (2) circular pitch; (3)
center of pressure (cp and ctp may also be
used for centipoises)
cpm cycles per minute; counts per minute
cps (1) cycles per second (=Hz); (2) counts per
second; (3) centipoises (=0.001 Pa.s)
CPS computerized procedure system
CPU central processing unit
CRC cyclical redundancy check or cyclic redun-
dancy code (an error detection coding
technique based upon modulo-2 division.
Sometimes misused to refer to a block check
sequence type of error detection coding)
CRLF carriage return-line feed
CRT cathode ray tube
CS carbon steel
CSMA/CD carrier sense, multiple access with collision
detection
CSS central supervisory station
cSt centistoke
CSTR continuous-stirred tank reactor
CTDMA concurrent time domain multiple access
cvs comma-separated variables
D
d (1) derivative; (2) differential as in dx/dt;
(3) deci, prefix meaning 0.1; (4) depth; (5)
day
D diameter; also dia and φ or derivative time
of a controller
DA data access
D/A digital to analog
DAC device access code; digital-to-analog con-
verter
DAE differential algebraic equation
DAMPS digital advanced mobile phone system or
service
dB decibels
DBPSK differential binary phase shift keying
DC diagnostic coverage
DC or dc direct current
DCE data communications equipment
DCOM distributed COM
DCS distributed control system
DD data definition or dangerous component
failure is detected in a leg, or a device
description written in using DDL
DDC direct digital control
DDE dynamic data exchange
DDL device description language (an object-
oriented data modeling language currently
supported by PROFIBUS, FF, and HART)
deg degree; also °(π/180 rad)
DEMUX demultiplexer
DES data encryption standard
DFIR diffused infrared
DG directed graph
DH data highway
DI discrete (digital) input
dia diameter; also D and φ
DIAC dedicated inquiry access code
DIR diffused infrared
DIS draft international standard
1082_frame_FM Page xxii Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
Abbreviations, Nomenclature, Acronyms, and Symbols xxiii
DIX Digital-Intel-Xerox (DIX is original spec-
ification that created the de facto Ethernet
standard; IEEE 802.3 came later after
Ethernet was well established)
d(k) unmeasured disturbance
D(k) measured disturbance
DLE data link escape
DLL dynamic link library
DMM digital multimeter
DO dissolved oxygen or discrete (digital) output
DP decentralized periphery
d/p cell differential pressure transmitter (a Foxboro
trademark)
DPDT double pole double throw (switch)
DQPSK differential quadrature phase shift keying
DSL digital subscriber line
DSR direct screen reference
DSSS direct sequence spread spectrum
DT dead time (seconds or minutes)
DTE data terminal equipment
DTM device type manager (an active-X compo-
nent for configuring an industrial network
component; a DTM “plugs into” an FDT)
DU dangerous component failure occurred in
leg but is undetected
DVM digital voltmeter
E
e (1) error; (2) base of natural (Naperian)
logarithm; (3) exponential function; also
exp (–x) as in e–x
E (1) electric potential in volts; (2) scientific
notation as in 1.5E–03 = 1.5 × 10–3
E{.} expected value operator
EAI enterprise application integration
EAM enterprise asset management
EBCDIC extended binary code for information inter-
change
EBR electronic batch records
EDS electronic data sheet (DeviceNet)
E/E/PE electrical/electronic/programmable electronic
E/E/PES electrical/electronic/programmable electronic
system
EFD engineering flow diagram
e.g. exempli gratia: for example
EHC electrohydraulic control
EHM equipment health management
E&I electrical and instrumentation
e(k) feedback error
E.L. elastic limit
emf (1) electromotive force (volts); (2) electro-
motive potential (volts)
EMI electromagnetic interference
EMI/RFI electromagnetic and radio-frequency inter-
ference
em(k) process/model error
EN European standard
EPA enhanced performance architecture
EPC engineering-procurement-construction
(firm)
EPCM engineering, procurement, and construc-
tion management (companies)
EQ or eq equation
ERM enterprise resource manufacturing
ERP enterprise resource planning or effective
radiated power
ESD emergency shutdown (system)
ESN electronic serial number
exp exponential function as in exp (−at) = e–at;
also e
F
f frequency; also freq
F farad, symbol for derived SI unit of capac-
itance, ampere⋅second per volt, A⋅s/V
°F Fahrenheit degrees [t°C = (t°F − 32)/1.8]
FAT factory acceptance testing
FBAP function block application process (FF)
FBD function block diagram
FCC fluidized catalytic cracker
FCOR filtering and correlation (method)
FCS frame check sequence
FDE fault disconnection electronics
FDL fieldbus data link
FDMA frequency division multiple access
FDT field device tool (an MS-Windows-based
framework for engineering and configura-
tion tools)
FE final elements
FEED front end engineering and design
FES fixed end system
FF or F.F. Foundation Fieldbus
FF-HSE Foundation Fieldbus, high-speed Ethernet
FH frequency hopping
fhp fractional horsepower (e.g., 1/4 HP motor)
FHSS frequency hopped spread spectrum
FIFO first-in, first-out
Fig. figure
FISCO Fieldbus Intrinsic Safety COncept
fl. fluid
fl.oz. fluid ounces (=29.57 cc)
FMEA failure mode and effects analysis
FMS fieldbus message specification or fieldbus
messaging services/system
FNC function byte
FO fiber optic
FOP fiber-optic probe
fp or f.p. freezing point
FPM or fpm feet per minute (=0.3048 m/min)
fps or ft/s feet per second (=0.3048 m/s)
FRM frequency response method
FS or fs full scale
1082_frame_FM Page xxiii Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
xxiv Abbreviations, Nomenclature, Acronyms, and Symbols
FSC fail safe controller
FSK frequency shift keying
FTA fault tree analysis
FTP file transfer protocol
FTS fault tolerant system
G
g acceleration due to gravity (=9.806 m/s2)
G giga, prefix meaning 109 or process gain
gal gallon(s) (=3.785 liters)
GB giga-byte, 1,000,000,000 bytes
GbE gigabit Ethernet
gbps gigabits per second
Gc feedback controller transfer function
g-cal gramcalorie; also cal, q.v.
Gd unmeasured disturbance transfer function
GD measured disturbance transfer function
GD approximate feedforward transfer function
model
GEOS geosynchronous Earth orbit satellites
Gff feedforward controller transfer function
GHz giga-hertz
GIAC general inquiry access code
GLR generalized likelihood ratio
G-M Geiger-Mueller tube, for radiation moni-
toring
Gm model transfer function
Gp process transfer function
gph gallons per hour (=3.785 lph)
GPM or gpm gallons per minute (=3.785 lpm)
GPS global positioning satellite or system
gr gram
grn green (wiring code color for grounded
conductor)
GSD Profibus version of an electronic data sheet
GUI graphical user interface
Gy gray, symbol for derived SI unit of
absorbed dose, joules per kilogram, J/kg
H
h (1) height; (2) hour
H (1) humidity expressed as pounds of mois-
ture per pound of dry air; (2) henry, symbol
of derived SI unit of inductance, volt⋅ second
per ampere, V⋅s/A
HAZOP HAZard and OPerability studies
HC horizontal cross-connect
HAD historical data access
HART highway accessible remote transducer
HEC header error check
HFE human factors engineering
HFT hardware fault tolerance
hhv higher heating value
HIPPS high-integrity pressure protection system
HIPS high-integrity protection systems
HIST host interoperability support test
HMI human–machine interface
H1 field-level fieldbus; also refers to the 31.25
kbps instrinsically safe SP-50, IEC61158-
2 physical layer
hor. horizontal
HP or hp horsepower (U.S. equivalent is 746 W)
H&RA hazard and risk analysis
HSE high-speed Ethernet (host-level fieldbus)
HSI human–system interface
HTML hypertext markup language
HTTP hypertext transfer protocol
HVAC heating, ventilation, and air conditioning
H/W hardware
Hz hertz, symbol for derived SI unit of fre-
quency, one per second (1/s)
I
I integral time of a controller in units of
time/repeat
IA instrument air
IAC inquiry access code
IAE integral of absolute error
ibidem in the same place
IC intermediate cross-connect
I&C instrumentation and control or information
and control
ICA independent computing architecture
ICCMS inadequate core cooling monitoring system
ICMP Internet control message protocol
ID inside diameter
i.e. id est: that is
I&E instrument and electrical
IEH Instrument Engineers’ Handbook
IETF Internet engineering task force
IIS Internet information server
IL instruction list
ILD instrument loop diagrams
IMC internal model control
in. inch (=25.4 mm)
in-lb inch-pound (=0.113 N × m)
I/O input/output
IP Internet protocol
I-P current to pressure conversion
IPL independent protection layer
IR infrared
IRQ interrupt request queue
IS intermediate system
ISE integral of squared error
ISM industrial, scientific, medical
ISP Internet service provider or interoperable
system project
IT information technology (as in IT manager
or IT department)
ITAE integral of absolute error multiplied by time
ITSE integral of squared error multiplied by time
1082_frame_FM Page xxiv Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
Abbreviations, Nomenclature, Acronyms, and Symbols xxv
ITT intelligent temperature transmitters
IXC interexchange carrier
J
J joule, symbol for derived SI unit of energy,
heat, or work, newton-meter, N⋅m
JIT just-in-time manufacturing
K
k kilo, prefix meaning 1000
K kelvin, symbol for SI unit of temperature
or process gain (dimensionless)
Kbs, Kbps kilo bits per second
KBs kilo bytes per second
k-cal kilogram-calories (=4184 J)
kg kilogram symbol for basic SI unit of mass
kg-m kilogram-meter (torque, =7.233 foot-pounds)
kip thousand pounds (=453.6 kg)
km kilometers
Kp proportional gain of a PID controller, q.v.
kPa kilo-pascals
kVA kilovolt-amperes
kW kilowatts
kWh kilowatt-hours (=3.6 × 106 J)
L
l liter (=0.001 m3 = 0.2642 gallon)
L (1) length; (2) inductance, expressed in
henrys
LAN local area network
LAS link active scheduler (FF)
lat latitude
lb pound (=0.4535 kg)
LCD liquid crystal display
LCM life cycle management
LCSR loop current step response
LD ladder diaphragm
LDP large display panel
LEC local exchange carrier
LED light-emitting diode
LEL lower explosive limit
LEOS low Earth orbit satellites
lim. or lim limit
lin. linear
liq. liquid
LLC logical link control
lm lumen, symbol for derived SI unit of lumi-
nous flux, candela⋅steradian, cd⋅sr
ln Naperian (natural) logarithm to base e
LNG liquefied natural gas
LOC limiting oxygen concentration
log or log10 logarithm to base 10; common logarithm
long. longitude
LOPA layers of protection analysis
LP liquefied petroleum or propane gas
lph liters per hour (0.2642 gph)
lpm liters per minute (0.2642 gpm)
LQG linear quadratic Gaussian
LRC longitudinal redundancy check
LSB least significant bit
LTI linear time-invariant
LVDT linear variable differential transformer
lx lux, symbol for derived SI unit of illumi-
nance, lumen per square meter, lm/m2
M
m (1) meter, symbol for basic SI unit of
length; (2) mulli, prefix meaning 10−3; (3)
minute (temporal), also min
M (1) thousand (in commerce only); Mach
number; (2) molecular weight; mole; (3)
mega, prefix meaning 106
mA or ma milliamperes (=0.001 A)
MAC medium access control
MACID medium access control identifier
MAP manufacturing automation (access) protocol
MAU media access unit
MAWP maximum allowable working pressure
max maximum
MB mega-byte, 1,000,000 bytes
Mbs, mbps megabits per second
MBs mega bytes per second
MC main cross-connect
mCi or mC millicuries (=0.001 Ci)
m.c.p. mean candle power
MCP main control panel
MDBS mobile database station
MDIS mobile data intermediate system
med. medium or median
MEDS medium Earth orbit satellites
m.e.p. mean effective pressure
MES manufacturing execution system or man-
agement executive system or mobile end
station
MFD mechanical flow diagram
mfg manufacturer or manufacturing
mg milligrams (=0.001 g)
MHz megahertz
mho unit of conductance, replaced by siemens,
S, q.v.
mi miles (=1.609 km)
MI melt index
MIB management information base
micro prefix = 109; also µ (mu) or µm and some-
times u, as in ug or µg, both meaning
microgram (=10−9 kg)
micron micrometer (=10−6 m)
MIMO multiple-input multiple-output
MIMOSA machinery information management open
system alliance
1082_frame_FM Page xxv Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
xxvi Abbreviations, Nomenclature, Acronyms, and Symbols
min (1) minutes (temporal), also m; (2) mini-
mum; (3) mobile identification number
MIS management information system
ml milliliters (=0.001 l = l cc)
mm millimeters or millimicrons (=0.001 m)
mmf magnetomotive force in amperes
MMI man–machine interface
MMS machine monitoring system or manufactur-
ing message specification
MOC management of change
MODBUS a control network
MODEM modulator/demodulator
mol mole, symbol for basic SI unit for amount
of substance
mol. molecules
MOON M out of N voting system
MOSFET metallic oxide semiconductor field-effect
transistor
mp or m.p. melting point
MPa megapascal (106 Pa)
MPC model predictive control
mph miles per hour (1.609 km/h)
mps or m/s meters per second
MPS manufacturing periodic/aperiodic services
mR or mr milliroentgens (=0.001 R)
mrd millirads (=0.001 rd)
mrem milliroentgen-equivalent-man
MRP material requirement planning or manufac-
turing resource planning
ms milliseconds (=0.001 s)
MS Microsoft
MSA metropolitan statistical areas
MSB most significant bit
MSD most significant digit
MSDS material safety data sheet
MT measurement test
MTBF mean time between failures
MTSO mobil telephone switching offices
MTTF mean time to failure
MTTFD mean time to fail dangerously
MTTFS mean time to spurious failure
MTTR mean time to repair
MTU master terminal unit
MUX multiplexer
MVC minimum variance controller
MW megawatts (=106 W)
N
n (1) nano, prefix meaning 10−9; (2) refractive
index
N newton, symbol for derived SI unit of
force, kilogram-meter per second squared,
kg⋅m/s2
N0 Avogadro’s number (=6.023 × 1023 mol)
NAP network access port/point
NAT network address translation
NC numeric controller
NDIR nondispersive infrared
NDM normal disconnect mode
NDT nondestructive testing
NEC National Electrical Code
NESC National Electrical Safety Code
NEXT near end cross talk
nF nanofarad
NIC network interface card
nm nanometer (10−9 meter)
NRM normal response mode
NRZ nonreturn to zero (NZR refers to a digital
signaling technique)
NTP network time protocol
NUT network update time
O
OD outside diameter
ODBC open database connectivity or communica-
tion
oft optical fiber thermometry
ohm unit of electrical resistance; also Ω (omega)
OJT on-the-job training
OLE object linking and embedding
OLE_DB object linking and embedding database
OPC object link embedding (OLE) for process
control
or orange (typical wiring code color)
OS operator station or operating system
OSEK German for “open system interfaces for in-
car electronics”
OSFP open shortest path first
OSI open system interconnect (model) or open
system integration
OSI/RM open system interconnect / reference model
OT operator terminal
OTDR optical time domain reflectometers
oz ounce (=0.0283 kg)
P
p (1) pressure; (2) pico, prefix meaning 10−12
Pa pascal, symbol for derived SI unit of stress
and pressure, newtons per square meter,
N/m2
PA plant air
PAN personal area network
Pas pascal-second, a viscosity unit
PAS process automation system (successor to
DCS)
PB proportional band of a controller in %
(100%/controller gain)
PC personal computer (MS-Windows based)
PCA principal component analysis
PCCS personal computer control system
1082_frame_FM Page xxvi Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
Abbreviations, Nomenclature, Acronyms, and Symbols xxvii
PCL peer communication link
PCS process control system or personal commu-
nication services
pct percent; also %
PD positive displacement or proportional and
derivative
PDA personal digital assistant
PDF probability density function
PdM predictive maintenance
PDU protocol data unit
PE polyethylene
PES programmable electronic system
pf picofarad (=10−12 F)
PF or p.f. power factor
PFC procedure functional chart
PFD (1) process flow diagram; (2) probability
of failure on demand
PFDavg average probability of failure on demand
pH acidity index (logarithm of hydrogen ion
concentration)
PHA process hazards analysis
pi or pl Pouiseville, a viscosity unit
PI proportional and integral
PID proportional, integral, and derivative (con-
trol modes in a classic controller)
P&ID piping (process) and instrumentation dia-
gram (drawing)
PIMS process information management system
PLC programmable logic controller
PLS physical layer signaling or projection to
latent structures
PMA physical medium attachment
PMBC process model-based control
PMF probability mass function
ppb parts per billion
ppm parts per million
PPM pulse position modulation
PPP point-to-point protocol
ppt parts per trillion
precip precipitate or precipitated
PSAT pre-start-up acceptance test
psi or PSI pounds per square inch (=6.894 kPa)
PSI pre-start-up inspection
PSIA or psia absolute pressure in pounds per square inch
PSID or psid differential pressure in pounds per square
inch
PSIG or psig above atmospheric (gauge) pressure in
pounds per square inch
PSK phase shift keying
PSM process safety management
PSSR pre-start-up safety review
PSTN public switched telephone network
PSU post-start-up
pt (1) point; (2) part; (3) pint (=0.4732 liter)
PT pass token
PTB Physikalisch-Technische Bundesanstalt
PV process variable (measurement) or the
HART primary variable
PVC polyvinyl chloride
PVDF polyvinylidene fluoride
PVLO process variable low (reading or measure-
ment)
PVHI process variable high (reading or measure-
ment)
Q
q (1) rate of flow; (2) electric charge in
coulombs, C
q−1 backward shift operator
Q quantity of heat in joules, J, or electric charge
°Q Quevenne degrees of liquid density
QA quality assurance
QAM quadrature amplitude modulation
QoS quality of service
QPSK quadrature phase shift keying
qt quart (0.9463 liter)
q.v. quod vide: which see
QV quaternary variable
R
r radius; also rad
r2 multiple regression coefficient
R (1) resistance, electrical, ohms; (2) resistance,
thermal, meter-kelvin per watt, m⋅K/W;
(3) gas constant (=8.317 × 107 erg⋅mol–1,
°C−1); (4) roentgen, symbol for accepted
unit of exposure to x and gamma radiation
(=2.58 × 10−4 C/kg)
rad (1) radius; also r; (2) radian, symbol for SI
unit of plane angle measurement or symbol
for accepted SI unit of absorbed radiation
dose (=0.01 Gy)
RAID redundant array of inexpensive disks
RAM random access memory
RASCI responsible for, approves, supports, consults,
informed
RCU remote control unit
R&D research and development
RDP remote desktop protocol
Re Reynolds number
rem measure of absorbed radiation dose by living
tissue (roentgen equivalent man)
rev revolution, cycle
RF or rf radio-frequency
RFC request for comment (an Internet protocol
specification)
RFI radio-frequency interference
RFQ request for quotes
RH relative humidity
RI refractive index
RIP routing information protocol
1082_frame_FM Page xxvii Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
xxviii Abbreviations, Nomenclature, Acronyms, and Symbols
r(k) set point
RMS or rms square root of the mean of the square
RNG rung number
ROI return on investment
ROM read-only memory
RPC remote procedure call (RFC1831)
RPG remote password generator
RPM or rpm revolutions per minute
rps revolutions per second
RRF risk reduction factor
RRT relative response time (the time required to
remove 90% of the disturbance)
RS recommended standard
RSA rural service areas
RTD resistance temperature detector
RTO real-time optimization or operation
RTOS real-time operating system
RTR remote transmission request
RTS ready (or request) to send
RTS/CTS request to send/clear to send
RTU remote terminal unit
RWS remote work station
S
s second, symbol for basic SI unit of time,
also sec; or Laplace variable
S siemens, symbol for derived SI unit of con-
ductance, amperes per volt, A/V
SAP service access point
sat. saturated
SAT site acceptance test or supervisory audio
tone
SC system codes
SCADA supervisory control and data acquisition
SCCM standard cubic centimeter per minute
SCFH standard cubic feet per hour
SCFM standard cubic feet per minute (airflow at
1.0 atm and 70°F)
SCM station class mark
SCMM standard cubic meter per minute
SCO synchronous connection oriented
SCR silicon controlled rectifier
SD component in leg has failed safe and failure
has been detected
SDN send data with no acknowledge
SDS smart distributed system
SEA spokesman election algorithm
sec seconds; also s
SER sequence of event recorder
SFC sequential function chart
SFD system flow diagram or start of frame
delimiter
SFF safe failure fraction
SFR spurious failure rate
SG or SpG specific gravity; also sp.gr.
SID system identification digit (number)
SIF safety instrumented function
SIG special interest group
SIL safety integrity level
sin sine, trigonometric function
SIS safety instrumented system
SISO single-input single output
SKU stock keeping units
SLC safety life cycle
slph standard liters per hour
slpm standard liters per minute
SMR specialized mobile radio
SMTP simple mail transfer (management)
protocol
SNMP simple network management protocol
SNR signal-to-noise ratio
SOAP simple object access protocol (an Internet
protocol that provides a reliable stream-
oriented connection for data transfer)
SOE sequence of events
SOP standard operating procedure
SP set point
SPC statistical process control
SPDT single-pole double-pole throw (switch)
sp.gr. specific gravity; also SG
SPRT standard platinum resistance thermometer
sq square; also 
SQC statistical quality control
SQL standard query language
sr steradian, symbol for SI unit of solid angle
measurement
SRD send and request data with reply
SRS safety requirements specification
SS stainless steel
SSL secure socket layers
SSU Saybolt universal seconds
ST structual text, also a fiber optic connector
type
std. standard
STEP standard for the exchange of product model
data
STP shielded twisted pair
STR spurious trip rates
SU component in leg has failed safe and failure
has not been detected
SV secondary variable
S/W software
sample variance of output y
T
t (1) ton (metric, = 1000 kg); (2) time;
(3) thickness
T (1) temperature; (2) tera, prefix meaning
1012; (3) period (=1/Hz, in seconds); (4)
tesla, symbol for derived SI unit of mag-
netic flux density, webers per square meter,
Wb/m2
sy
2
1082_frame_FM Page xxviii Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
Abbreviations, Nomenclature, Acronyms, and Symbols xxix
T half life
tan tangent, trigonometric function
Tau process time constant (seconds)
TCP transmission (or transport) control protocol
TCP/IP transmission control protocol/Internet
protocol
td process dead time (seconds)
Td derivative time (in seconds) of a PID
controller
TDM time division multiplexing
TDMA time division multiple access
TDR time domain reflectometry
TFT thin film transistor
Ti integral time (in seconds) of a PID
controller
TI time interval between proof tests (test
interval)
TMR triple modular redundancy
TOP technical office protocol
TQM total quality management
T.S. tensile strength
TSR terminate and stay resident
TV tertiary variable
°Tw Twadell degrees of liquid density
U
u prefix = 10–6 when the Greek letter µ is not
available
UART universal asynchronous receiver transmitter
UBET unbiased estimation
UCMM unconnected message manager
UDP user/universal data protocol (an Internet
protocol with low overhead but no guaran-
tee that communication was successful)
UEL upper explosive limit
uf b(k) feedback controller output
UFD utility flow diagram
uff(k) feedforward controller output
UHF ultrahigh frequency
UHSDS ultrahigh-speed deluge system
u(k) controller output
UML universal modeling language
UPS uninterruptible power supply
UPV unfired pressure vessel
USB universal serial bus
UTP unshielded twisted pair
UUP unshielded untwisted pair
UV ultraviolet
V
v velocity
v or V volt, symbol for derived SI units of voltage,
electric potential difference and electromo-
tive force, watts per ampere, W/A
VBA visual basic for applications
VCR virtual communication relationship
VDU video display unit
vert. vertical
VFD variable frequency drive
VFIR very fast infrared
VHF very high frequency
VMS vibration monitoring system
VPN virtual private network
VR virtual reality
VRML virtual reality modeling language
vs. versus
VV verification and validation
W
w (1) width; (2) mass flow rate
W (1) watt, symbol for derived SI unit of
power, joules per second, J/s; (2) weight;
also wt
w. water
WAN wide area network
Wb weber, symbol for derived SI unit of mag-
netic flux, volt⋅second, V⋅s
WG standard (British) wire gauge
wh white (wiring code color for AC neutral
conductor)
WI wobble index
WLAN wireless local area network
WPAN wireless personal area network
WS workstation
wt weight; also W
X
X reactance in ohms
XML extensible markup language
x ray electromagnetic radiation
Y
y(k) process output
yd yard (=0.914 m)
yr year
Z
Z (1) atomic number (proton number); (2)
electrical impedance (complex) expressed
in ohms
zeb zero energy band
GREEK CHARACTERS
η(b) normalized performance index
η(b+h) extended horizon performance index
λ desired closed-loop time constant
1
2
--
-
1082_frame_FM Page xxix Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
xxx Abbreviations, Nomenclature, Acronyms, and Symbols
λDU = 1/MTTFDU failure rate for dangerous undetected faults
λS = 1/MTTFS spurious trip rate
µm microns
θ process dead time (seconds or minutes)
σ2 population variance
population variance in output y
theoretical minimum variance
τ process time constant (seconds or minutes)
τF PV filter time constant
ψ impulse weights
NOTES
1. Whenever the abbreviated form of a unit might lead
to confusion, the abbreviation should not be used and
the name should be written out in full.
2. The values of SI equivalents were rounded to three
decimal places.
3. The words meter and liter are used in their accepted
spelling forms instead of those in the standards,
namely, metre and litre, respectively.
σy
2
σmv
2
1082_frame_FM Page xxx Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
xxxi
S O C I E T I E S A N D O R G A N I Z A T I O N S
ACC American Chemistry Council
ACS American Chemical Society
AGA American Gas Association
ANSI American National Standards Institute
APHA American Public Health Association
API American Petroleum Institute
ARI Air Conditioning and Refrigeration
Institute
ASA American Standards Association
ASCE American Society of Civil Engineers
ASME American Society of Mechanical
Engineers
ASRE American Society of Refrigeration
Engineers
ASTM American Society for Testing and
Materials
BSI British Standards Institution
CCITT Consultative Committee for International
Telegraphy and Telephony
CENELEC European Committee for Electrotechnical
Standardization
CII Construction Industry Institute
CIL Canadian Industries Limited
CNI ControlNet International
CSA Canadian Standards Association
DARPA Defense Advanced Research
Projects Agency
DIN Deutsche Institut fuer Normung
DOD Department of Defense (United States)
DOE Department of Energy (United States)
EIA Electronic Industries Association
EIA/TIA Electrical Industries Alliance/Telecommu-
nications Industries Association
EPA Environmental Protection Agency (United
States)
EPRI Electric Power Research Institute
FCI Fluid Control Institute
FDA Food and Drug Administration
(United States)
FF Fieldbus Foundation
FIA Fire Insurance Association
FM Factory Mutual
FPA Fire Protection Association
HCF HART Communication Foundation
IAEI International Association of
Electrical Inspectors
ICE Institute of Civil Engineers
ICEA Insulated Cable Engineer’s Association
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronic
Engineers
IETF Internet Engineering Task Force
IPTS International Practical Temperature Scale
IrDA or IRDA Infrared Data Association
ISA Instrumentation, Systems, and Automation
Society (formerly Instrument Society of
America)
ISO International Standards Organization
ISTM International Society for Testing Materials
JBF Japan Batch Forum
KEPRI Korean Electric Power Research Institute
LPGA National LP-Gas Association
MCA Manufacturing Chemists’ Association
NAMUR German standardization association for
process control (Normenarbeitsgemein-
schaft für Meß- und Regelungstechnik in
der chemischen Industrie)
NASA National Aeronautics and Space
Administration
1082_frame_FM Page xxxi Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
xxxii Societies and Organizations
NBFU National Board of Fire Underwriters
NBS National Bureau of Standards
NEMA National Electrical Equipment Manufac-
turers Association
NFPA National Fire Protection Association
NIST National Institute of Standards and
Technology
NSC National Safety Council
NRC Nuclear Regulatory Commission
NSPE National Society of Professional Engineers
ODVA Open DeviceNet Vendors Association
OSHA Occupational Safety and Health Adminis-
tration (United States)
OTS Office of Technical Services
PNO Profibus User Organization
SAMA Scientific Apparatus Manufacturers
Association
TIA Telecommunications Industries Alliance
USNRC U.S. Nuclear Regulatory Commission
WBF World Batch Forum
1082_frame_FM Page xxxii Saturday, May 18, 2002 8:35 AM
© 2002 by Béla Lipták
1
Overall Plant Design
1
1.1
AUDITING EXISTING PLANTS FOR UPGRADING 5
Prerequisites to Auditing 5
Goals 5
Functionality 6
Plant Standards 6
Identify Key Areas for Special Attention 7
Who Audits the Plant? 7
The Audit 8
Upgrading Existing Systems 9
Evolution 9
Audit the Installation and Process 10
Process Information and System Integration 11
System Diagnostics and Redundancy 12
References 13
Bibliography 13
1.2
PROJECT MANAGEMENT AND DOCUMENTATION 14
Good Documentation Practices 14
Project Criteria Document 15
The Preferred Vendors/Technology List 15
IC Documentation System 15
Documents—Purpose, Contents, and Standard
Formats 18
Process/Mechanical Flow Diagrams 18
Piping and Instrumentation Diagrams 18
The Instrument Schedule 18
Instrument Data Sheets (Specification
Forms) 18
System Architecture/Network Diagram 19
Control System Documentation 19
Instrument and Junction Box Layout
Drawings 20
Cable Block Diagrams 20
Control Room Layout Drawings 20
Panel Layouts and General Arrangement 20
Interconnection or Wiring Diagrams 20
Cable Routing, Cableway Sections, and
Details 20
Grounding System Drawings 20
Instrument Loop Diagrams 21
Logic Diagrams 21
Instrument Installation Checkout and
Calibration/Configuration Procedure 21
Decommissioning Documents 21
Documentation—An Information Management
Perspective 21
Commercial Instrumentation Documentation
Tools 23
Project Management—An IC Perspective 23
Project Integration Management 25
Project Scope Management 25
Time Management 26
Cost Management 26
Quality Management 26
Human Resources Management 26
Project Communications 27
Risk Management 27
Procurement 27
Conclusions 27
References 27
Bibliography 28
1082_frame_Section1 Page 1 Tuesday, May 21, 2002 10:45 PM
© 2002 by Béla Lipták
2 Overall Plant Design
1.3
OPERATOR TRAINING, COMMISSIONING,
AND START-UP 29
Commissioning 29
Clear Goals and Objectives 29
Staffing 29
Schedule 32
Communications 32
Pre-Start-Up Inspection 32
Partial Operation and Water Runs 33
Documentation 35
Operator Training 35
Operating Procedures 35
Approach to Training 38
Simulation 38
On-the-Job Training 39
Start-Up 40
Field Changes 40
Turnover 40
Post-Start-Up 40
Conclusions 41
Bibliography 41
1.4
FLOWSHEET SYMBOLS AND FUNCTIONAL
DIAGRAMMING FOR DIGITALLY IMPLEMENTED
LOOPS 42
Scope 42
General 42
Application to Industries 42
Application to Work Activities 43
Application to Classes of Instrumentation and to
Instrument Functions 43
Extent of Loop and Functional Identification 43
Extent of Symbolization 43
Inclusion of the New S5.1 Standard (now
ANSI/ISA-5.01.01) in User/Owner
Documents 43
Definitions Related to Flowsheet Diagram
Symbology 44
General 44
Definitions 44
Identification System Guidelines 47
General 47
Instrument Index 48
Guideline Modifications 48
Multipoint, Multifunction, and Multivariable
Devices 48
Systems Identification 48
Loop Identification Number 49
Typical Instrument Identification/Tag
Number 49
Identification Letter Tables 49
General 50
Graphic Symbol System Guidelines 51
General 51
Guideline Modifications 51
Instrument Line Symbols 51
Measurement and Control Devices and/or
Function Symbols 51
Multipoint, Multifunction, and Multivariable
Devices and Loops 59
Fieldbus Devices, Loops, and Networks 61
Comments and Exceptions (Including
Non-ISA Industrial Practice) 61
Fieldbus PID Examples: DeviceNet 63
Functional Diagramming for Digital Systems
(ex-SAMA) 63
Instrument and Control Systems Functional
Diagramming 63
Equivalent Loop, Functional Instrument, and
Electrical Diagrams 64
Functional Diagramming Symbol Tables 64
1.5
HISTORICAL DATA STORAGE AND EVALUATION 79
Clarifying the Purpose of the Data System 79
Interactions and Integration with Other
Systems 80
Integration with Maintenance 80
Integration with Management 80
Data Collection 81
Event Data 81
Data Loggers 82
Data Collection Frequencies 82
Architecture of a Data Historian System 83
Data Storage 84
Where to Store Data 85
Data Compression 86
Meta-Data 86
The Cost of Data Storage 86
Hardware Selection 87
Backup Media 87
Analysis and Evaluation 88
Data Filtering and Editing 89
System Testing 89
Support of the Data Historian System 89
Security 90
Backup, Archive, and Retrieval 90
Bibliography 90
1.6
INTEGRATION OF PROCESS DATA WITH
MAINTENANCE SYSTEMS 91
Plant Floor Systems 91
Maintenance 92
Computerized Maintenance Management
System 92
Condition Monitoring and Predictive
Maintenance 93
Operation and Maintenance Needs 93
1082_frame_Section1 Page 2 Tuesday, May 21, 2002 10:45 PM
© 2002 by Béla Lipták
Contents of Chapter 1 3
CMMS Integration 95
Integration Techniques and Business Alliances 96
Summary 97
References 97
1.7
APPLICATIONS, STANDARDS, AND PRODUCTS
FOR GROUNDING AND SHIELDING 98
Grounding- and Shielding-Related Standards 98
Power Grounding Basics 99
Grounding, Bonding, and Overload Protection 102
Grounding Electrode Resistance 102
Power Grounding Definitions 102
NEC Article 250 103
Grounding Examples 104
Service Entrance 104
Separately Derived Instrumentation Power
System 105
Single-Point Grounding of Power Supplies 105
The Ungrounded System 106
Resistance Grounding 106
Shielding Theory 106
Lightning 109
Electrostatic Instrument Shielding 110
Differential Amplifiers and Isolators 111
Instrument Power Transformer Shielding 111
Floating vs. Grounded Instruments 111
Isolation Transformers 112
Power Supply Shielding 112
Digital Communications Shielding 112
Magnetic Field Influences 112
EMI and RF Shielding 112
Shielded Cable 113
Intrinsic Safety Grounding and Shielding 113
The Static Electricity Problem 114
Products 114
Conclusion 114
References 115
Bibliography 115
1.8
CONCEPTS OF HIERARCHICAL CONTROL 116
Functionality 116
Measurements and Basic Controls (Functional
Section 1) 116
Advanced/Supervisory Controls (Functional
Section 2) 116
Management (Functional Section 3) 117
Hardware Architecture 117
Input/Output Systems 117
Controllers 117
Workstations 118
Communications 118
Architectural Concepts 119
Structural Configuration 119
Hardware/Software Interplay 119
Hardware 119
Operating Systems 119
Communication Protocols 120
Application Software 120
System Hierarchy Interplay 121
System Specification, Selection, Design, and
Implementation 121
Conclusions 122
Bibliography 122
1.9
ANALOG AND DISCRETE INPUT/OUTPUT, COSTS
AND SIGNAL PROCESSING 123
A/D and D/A Signal Conversions 127
D/A Converters 127
Weighted Current D/A Converter 127
A/D Converters 128
Counter Ramp ADCs 128
Successive Approximation ADC
(Serial) 129
Flash ADCs (Parallel) 129
Data-Acquisition Systems 130
Single-Channel Systems 130
Analog Signal Conditioning 130
Sample-and-Hold Circuits 131
Multichannel Systems 131
Analog Multiplexing 131
Digital Multiplexing 132
Data-Acquisition Boards 132
Digital to Digital I/O 133
Distributed Systems and Networks 133
RS-232-C 133
The GPIB (IEEE 488) 135
VXIbus 136
The Fieldbuses 136
Virtual Instruments 136
Software for Virtual Instrumentation 137
Theory of Signal Acquisition 137
The Sampling Process 137
Quantization 138
Coding 139
Unipolar Codes 139
Bipolar Codes 140
Conclusions and Comments 140
Bibliography 140
1.10
ESTIMATING THE COST OF CONTROL SYSTEM
PACKAGES 142
Suppliers 142
Desired Accuracy of the Estimate 142
Clarify Scope and Objectives of This Control
System 143
Estimating Techniques 143
1082_frame_Section1 Page 3 Tuesday, May 21, 2002 10:45 PM
© 2002 by Béla Lipták
4 Overall Plant Design
Software Tools 144
Controller Costs 144
Operator Station Costs 145
Instrumentation 145
Control Valves 145
Motors and Drives 146
Software Costs 146
Maintenance Costs 148
Engineering Costs 148
Training and Start-Up Costs 148
Installation Costs 149
Control Room Incidental Costs 149
Taxes 149
Working with Vendors 149
Contingency Costs 149
Estimating vs. Bidding 150
Submitting the Budget 150
Bibliography 150
1082_frame_Section1 Page 4 Tuesday, May 21, 2002 10:45 PM
© 2002 by Béla Lipták
5
1.1 Auditing Existing Plants for Upgrading
G. K. TOTHEROW
Manufacturing is only one part of a business. The needs of the
business can change rapidly from forces outside manufacturing
and the control and information systems must follow and sup-
port the short-term and long-term business goals and needs of
the business. The process of auditing and upgrading control
systems is primarily one of determining engineering solutions
for business problems. Many companies embrace the concept
of continual improvement. These companies constantly review
and evolve plant systems to support their continued improve-
ment in manufacturing.
1
However, most companies only review
their automation systems in connection with a major project.
There is a good reason for this behavior. It is expensive and
disruptive to the plant operation to upgrade control systems.
Some people recommend auditing existing plant sys-
tems compared with “world-class” or best-practices stan-
dards. These audits have their place, but the value realized
by upgrading existing systems is in achieving business
needs and goals. The time to stop upgrading plant automa-
tion and information systems is when it is not a good finan-
cial decision as a way to meet the business needs. The only
way to determine if the upgrade to the existing systems is
a good financial decision is to audit the existing systems
against the functionality needed to achieve company and
plant goals. The purpose of this chapter is to provide a
methodology to audit a plant for upgrading systems. A side
benefit to the methodology given is that the justification for
the upgrade project is written from the audit information.
There are two types of plant upgrades. First, there is
what could be described as the maintenance audit to avoid
obsolete components, eliminate worn-out components, or
conform to new regulatory requirements to keep the plant
operating. Then, there is the upgrade for process improve-
ment or manufacturing cost savings that will show a return-
on-investment from the upgrade. Both share the common
theme of keeping the plant achieving business goals. The
goals and the project funding are different but the prerequisites
to the audit, the methodology of the audit, the integration
of old and new components, and the recommendation report
are the same when reviewing a plant system for upgrade.
There are five prerequisites to a meaningful consistent
automation system audit:
1. Understand the company and plant goals.
2. Determine the functionality that is needed from plant-
systems to achieve or contribute to those goals.
3. Establish or communicate the plant standard compo-
nents and systems that can be maintained effectively
with the available support personnel and spare parts.
4. Identify key processes, machinery, or areas of the plant
for special attention.
5. Choose the best person to perform the audit.
This section first discusses the five prerequisites to the audits,
the methodology for conducting the audits, and particular
issues of integrating new technology into existing plants.
PREREQUISITES TO AUDITING
Every plant and every industry has different equipment, raw
materials, and personnel. It stands to reason that every plant
and industry will have a different recipe to optimize profits.
State-of-the-art controls that reduce variation will not provide
the same return on the investment in one process, one line,
one plant, or one company, as they will in another. The same
is true with respect to head count reduction, reducing main-
tenance costs, and increasing reliability. All these factors are
very important to every manufacturer, but the degree to which
they are important varies between plants, industries, company
financial standing, and the general economy. For this reason
it is of foremost importance to fully understand plant and
company goals and audit systems against those goals.
Plant personnel, corporate experts, or outside consultants
may conduct system audits and make recommendations. The
degree to which they understand the plant will certainly be
different so the purpose of the five prerequisites to an audit is
to ensure that pertinent background information and goals of
the audit are clearly understood. Specific prerequisites to an
audit will need to be contracted or expanded based on the
industry and the scope of the project. The prerequisites here will
give the outside expert a good idea of how to meet the needs
of the company and will help the plant technical person con-
vince others to share the direction and success of the upgrade.
Goals
If this entire section were devoted to the importance of under-
standing company and plant goals, it would still not be enough.
The importance of focusing on project goals and the comple-
menting company goals and initiatives cannot be overstated.
1082_frame_C1.1 Page 5 Tuesday, May 21, 2002 9:52 PM
© 2002 by Béla Lipták
6 Overall Plant Design
Manufacturing is only one facet of a business, and it seldom
drives the company; it swings to the demands of marketing,
sales, design, and other business factors. Manufacturing may
be asked to produce greater quantities, increase quality,
decrease delivery, shave costs, reduce downtime, add grades,
change packaging, or any number of other things to meet
business demands. Understanding the current business goals
is highly important prior to modifying manufacturing systems.
There was a time when only the highest-level people in
the company knew the corporate goals. And under them only
a few people knew the business and manufacturing goals of
the plants. And lower still only a few clearly understood the
department goals. Today, most companies have a mission
statement and a policy of passing down written goals so that
those below can establish supporting goals. Whether easy or
difficult to attain, the company, plant, and area goals are
important to auditing an existing plant because these goals
and company initiatives will be the basis for justifying the
audit recommendations.
It is good to be given company, plant, and specific goal
information, but it must be understood that many business
decisions and business information will only be disclosed on
a “need to know” basis. It is also a fact of some businesses
that goals change rapidly and they may not be communicated
effectively. So, the first work that we do is to write a specific
goal for the audit in terms of the company or plant goal to
communicate effectively the basis for the audit. The audit of
an existing plant for upgrading should always have a specific,
stated goal. The following are some likely goals for the audit:
• Reduce variation of product
• Increase throughput
• Increase reliability
• Avoid obsolescence
• Adhere to safety or environmental regulations
• Reduce maintenance costs
• Decrease manufacturing changeover or process mod-
ification time
Functionality
The world of plant and process automation is changing very
rapidly. Whereas 25 years ago an operator interface device
might be a panel with a gauge and push buttons, today the
operator interface device might be a wireless hand-held com-
puter. It is far too easy and common to jump from the project
goal or problem statement to looking for equipment or sys-
tems that a vendor says will solve the problem. An important
intermediate step is to obtain a layperson’s description writ-
ten in simple language that tells what the “ideal” systems
must do for the operators, maintenance mechanics, and man-
agers to allow them to accomplish the stated goal or solve
the problem. Most of the functional description should come
from the users and area process managers along with an
estimate of the financial payback for solving the problem or
achieving the goal. The functional description and the esti-
mated return on that functionality are often acquired by inter-
viewing the appropriate operating and maintenance personnel.
One purpose of the written functionality description is that
it breaks the components of the existing plant into digestible
pieces and describes the “ideal” as established from the goals.
It does so in terms of the functionality rather than component
descriptions. This is necessary because the physical component
often provides several functionalities. A control system may
provide the controls, operator interface device, alarming, and
other functionality. The system may perform near the level of
the ideal functionality in one or two areas and may perform
far below the ideal functionality in others. The audit recom-
mendations could advocate replacement of the system or it
might recommend add-on components to enhance the system
capability in the poorly performing functional areas.
A second reason for the “ideal” functionality and the
estimated financial payback for the functionality is that it will
provide an estimate for the preliminary return on investment
for the upgrade project. Better yet, the return for providing
the functionality comes from the plant personnel who must
support the project.
The functional description should address:
• Process measurement
• Final control element
• Input/output system wiring
• Control needs
• Redundancy
• Operator interface needs
• Alarm handling needs
• Historical process data needs
• Management information needs
• Production/cost/scheduling needs
• Maintenance needs
• Customer information needs
Plant Standards
Manufacturing and process facilities should establish and main-
tain a list of preferred components and vendors that have the
functionality needed to achieve plant and project goals. Plant
standards are useful to set a general direction in the components
and ways a facility will try to meet company and plant goals
and avoid obsolete components. Other common uses of a stan-
dard is to establish better vendor relationships, minimize spare
parts, minimize decision making, minimize training costs, and
ensure consistent and predictable results. That standards help
in all the ways listed above needs no explanation; however,
using standards to establish general direction and the period of
review of standards needs further clarification.
Few plants can justify the capital financing or the pro-
duction downtime to replace components across the facility
when new devices are proved better to meet the needed func-
tionality or when new industry trends and standards are estab-
lished. Innovation must be integrated into the facility. The
plant standard should lead in setting the direction to keep the
1082_frame_C1.1 Page 6 Tuesday, May 21, 2002 9:52 PM
© 2002 by Béla Lipták
1.1 Auditing Existing Plants for Upgrading 7
components from becoming obsolete and promoting devices
that will better satisfy the functionality desired. When should
the existing standards be reviewed and modified? The answer
is more often than is done for most plants. Any of the fol-
lowing events signal a time to review plant standards:
• The manufacturer announces a discontinuation of the
product.
• An organizational or industry standards committee
selects another standard.
• The plant is planning a major expansion or revision.
• A problem of service develops with established ven-
dors or manufacturers.
Consider the example below, which shows a company that sets
and changes its plant standards to establish a strategic direction.
A chemical plant built in 1961 installed Foxboro transmit-
ters using 10–50 mA DC current signals. Once installed, the
transmitters and wiring worked well and met the functionality
criteria for field instrumentation and field wiring. Some time
after the ISA standards committee adopted 4–20 mA DC as
the standard for field signal wiring (ISA S50.1-1972) the plant
decided to adopt the 4–20 mA transmitters as their new stan-
dard. The next major opportunity to install transmitters was
during a major expansion and renovation project in 1975. The
plant replaced 100 of the old transmitters in the area of the
renovation and put them in the storeroom for spares for the
rest of the plant that kept the old 10–50 mA DC transmitters.
In 1999, the plant had another major renovation project.
This time the project convinced the plant to use Foundation
Fieldbus for the signal wiring. The plant adopted Foundation
Fieldbus as its new standard field wiring. By 2000, 30% of the
plant was using new smart transmitters and Foundation Field-
bus, 65% of the plant was using transmitters with 4–20 mA DC
signal wiring, and 5% of the transmitters were the old 10–50
mA DC Foxboro transmitters. The company will continue to
install the Foundation Fieldbus standard with each project.
The hypothetical plant used the “plant standard” to set an
appropriate direction to avoid obsolescence and integrated the
new standard along with the old where both met the required
functionality. The 4–20 mA DC only transmitters and signal
cable will not meet necessary functionality requirements when
the plant demands smart transmitters with online diagnostics.
A final word concerning standards is to guard against
using the “standard” to thwart innovation that meets the func-
tionality of its intended use and achieves company or project
goals better, faster, or cheaper.
Identify Key Areas for Special Attention
There are key areas, processes, and control loops in every
plant that are crucial to quality, production, or profitability.
They will be referred to as key success areas. These key
success areas and their impact on the operation should be
noted and understood by the auditors prior to reviewing the
systems for upgrading.
The purpose of this prerequisite item is to ensure that
audit recommendations address any issues that might affect
the process or operations at these points. These key areas
may be ISO (International Standards Organization) tagged
control loops, OSHA (Occupational Safety and Health
Administration) regulated areas, FDA (Food and Drug
Administration) certified processes, or just important areas
of the plant. The audit to upgrade existing systems in the
plant should specifically address the potential impact to these
regulated areas. The importance of the key success areas of
the plant will be well understood by the operations and man-
agement people that will be curious about how any changes
may affect their operations. There may be some merit in
specifically addressing these areas in the upgrade recommen-
dations even to note that there is no effect on the process or
operation at that point.
The important point to remember is that the information
about these key success areas of plant operation should be
communicated to those responsible for the audit. It is certain
that if the potential impact on these areas is not addressed
up-front, the issue will be questioned later.
Who Audits the Plant?
The last prerequisite before performing the audit is to deter-
mine who should perform the audit. There are several persons
or groups that can be made responsible for the auditing so
the recommendations of this section may be a little difficult
to understand as we have not yet defined all of the steps and
expectations of the audit. This subsection should be reread
after the audit steps are reviewed if the reader disagrees with
the author’s opinion.
Webster’s NewWorld Dictionary
2
defines audit as follows:
5. any thorough examination and evaluation of a
problem.
The person, or group, conducting the plant review and
making upgrade recommendations should have the time to
dedicate to doing a thorough examination of the existing
systems, experience in evaluating and making appropriate
recommendations to resolve problems, and ability to write a
report that will show the value of implementing the recom-
mendations. Choosing the best person to perform the job
among the several who regularly perform such tasks is as
important as successful accomplishment of the goals.
Figure 1.1a is a subjective chart showing a rating of the
qualifications of the persons who regularly conduct such
work. The chart shows the ranking of the various people on
a scale of 1 to 5, with 5 the best.
The categories on the chart are explained below.
Plant engineer—A technical person at the plant with
3 to 7 years’ automation experience
Corporate engineer—A senior-level engineer who
travels between various plants providing technical
troubleshooting and project support
1082_frame_C1.1 Page 7 Tuesday, May 21, 2002 9:52 PM
© 2002 by Béla Lipták
8 Overall Plant Design
Vendor—A technical salesperson who might be called
to assess the existing systems and make recommen-
dations
Engineering firm—An outside engineer from a firm
that does detail engineering and project management
Consultant—An individual with extensive technical
background and experience who is a specialist in
that process industry or is an expert in the technical
area of the upgrade project
Process knowledge—Knowledge of the plant process
in the area of the audit
Plant knowledge—Understanding of the plant, goals,
systems, and personnel
Industry knowledge—Understanding of the business,
regulations, projects, and trends for that process
industry
Problem resolution—Capability of determining equip-
ment and system changes that will resolve the tech-
nical problems and add the functionality that the
audit reveals
Time—The dedicated time to study the problem, deter-
mine resolution, and write reports
Experience—Generic estimate of the experience each
has in this type of audit and problem resolution
Influence—Assessment of the capabilities of the per-
son or group to have the recommendations imple-
mented at the plant
Cost—The cost of the audit
Project cost—The degree to which the auditor will work
without bias on the company’s behalf to gain return-
on-investment and save capital money on the project
Four of the audit prerequisites are listed to give the out-
side experts the detail plant knowledge that they need to do
a very thorough audit. Unfortunately, there is no efficient
way to transfer the knowledge and experience of the outside
expert to plant personnel. Even if the plant had a technical
person with the time and experience to adequately examine
and evaluate systems for upgrading, that plant person may
not have the political influence to be the catalyst for change
that is needed to convince the plant to implement the recom-
mendations.
THE AUDIT
The introduction to this chapter mentioned that there are two
types of projects: the maintenance upgrades to avoid obsolete
components, eliminate problem components, or conform to
new regulatory requirements to keep the plant operating; and
the capital project for process improvement or manufacturing
cost savings that will show a return on investment from the
upgrade. The primary differences between these types of
audits are perhaps the scale of the job and the internal funding
differences. Otherwise, both audits are essentially the same
and share the same characteristics and steps. Either type of
project will require finding the best place to replace the
functionality of the old components with new. Both projects
will require the new components to integrate with old com-
ponents. The maintenance project to replace individual com-
ponents relies more on the plant standards that set strategic
directions to ensure the solutions are synchronized with the
plant long-term goals.
Plant Engineer Corporate Engineer Vendor Engineering Firm Consultant
Process
Knowledge
5 5 3 4 4
Plant
Knowledge
5 5 3 4 4
Industry
Knowledge
4 5 3 3 5
Problem
Resolution
2 3 4 4 5
Time 2 3 2 5 5
Experience 3 4 3 3 5
Influence 2 3 2 5 5
Cost 4 3 5 2 1
Project
Cost
3 4 2 2 5
FIG. 1.1a
Chart showing a subjective ranking of the relative strengths of persons who might perform a plant audit: 5 is best, 1 is worst.
1082_frame_C1.1 Page 8 Tuesday, May 21, 2002 9:52 PM
© 2002 by Béla Lipták
1.1 Auditing Existing Plants for Upgrading 9
Now, we understand the company, plant, process area,
and upgrade project goals. We interviewed operations and
management personnel and we know the functional specifi-
cations for an ideal system that would allow operations
achieve the project goals. We have estimates from operators,
managers, and maintenance personnel of the time, product,
rework, quality, and other tangible savings that they can
achieve with functionality discussed. We understand the plant
standards for various components in the audited systems. We
identified the key success areas of the plant and noted their
impact on profitability. We selected an auditor and gave him
or her all our background material. So, now what methodol-
ogy should our expert follow?
1. The first step of the audit is to review the prerequisites
with the auditor. Remember that the purpose of the
prerequisites is to share plant-specific knowledge and
establish a functionality that would enable the plant
to accomplish the goals.
2. Perform a physical audit of the systems (Figure 1.1b).
Thoroughly examine the existing systems auditing
functionality, models of components, and operating
procedures. Take special notice of communication
ports and communication capability of electronic
devices. Look carefully at the physical condition of
signal wiring and input/output (I/O) systems as well
as the installation of the existing equipment. Note
again that the systems should be audited in functional
groups rather than physical components. The operator
interface device includes at least three functional
groups: interface to process data and control, alarm
management, and historical data.
3. Define the gap that exists between the functionality
needed and the functionality in the present systems.
Consider submitting this gap analysis for review and
approval by operations and management as an inter-
mediate step.
4. Evaluate the upgrades needed to close or eliminate the
functional gap using plant standard equipment where
applicable.
5. Evaluate the modifications to the operation and main-
tenance practices needed with the system upgrades to
achieve and sustain the project goals.
6. Make a formal recommendation of the most effective
upgrade that will evolve the present systems and sup-
ply the functionality needed to achieve the goals of
the project. Recommend the changes needed to oper-
ation and maintenance practices that are necessary to
achieve and sustain improvements. Provide a cost esti-
mate of the upgrade and a rough return on investment
from the information gathered in the ideal functional
specification. Define the operating performance goals
that can be achieved by following the recommenda-
tions, and determine the measurable results that will
be the success criteria for the project. The recommen-
dation should also state the estimated length of time
that the system will remain viable.
7. Audit the system performance as compared to the
project goals and the agreed-upon project success cri-
teria approximately 6 months after the upgrade project
is complete.
These seven steps constitute an outline for auditing a
plant for automation system upgrades. The procedure does
not address what to look for or how to evaluate the selection
of various components. Other sections of the Instrument
Engineers’ Handbook adequately address the selection and
installation of control elements and transmitters, networking,
control systems, operator interface devices, and other tech-
nical information. The last part of this section focuses on a
few of the fundamental issues of the integration of new and
old components in upgrading existing systems.
UPGRADING EXISTING SYSTEMS
The person performing the audit should have knowledge
beyond that of the typical plant personnel of the trends,
alliances, and evolving technologies that will provide a great
return on investment for manufacturing and process industries.
These items may not be in the functional specification. The
auditor has an obligation to make the plant aware of trends,
evolving technologies, and integration issues so that the plant
can determine the value of an immediate investment. The rest
of this section on auditing an existing plant for upgrades
addresses some of the issues of integration of old and new
and other items that the auditor should include in the upgrade
recommendation report.
Evolution
Systems should evolve, not become extinct.
Evolution should be the plan while auditing existing sys-
tems and should definitely be a primary consideration in the
evaluation phase of the system upgrade. In the 1980s and
1990s a distributed control system (DCS) meant proprietary
I/O systems, controllers, data highways, operator interface
devices, and process historians from a single vendor. Initial
investment to purchase these systems was high, and the cost
FIG. 1.1b
List of some of the items that should be noted by observation or
discussions with operators during a control system audit.
Check Sheet for Control System Audits
• Model numbers of components
• Instrument installation
• Communication capability of electronic devices
• Physical condition of instruments, valves, controllers, and wiring
• Valve position, cycling at typical conditions
• Operating procedures, problems, suggestions
• Documentation
• Problems with regulatory control
• Multiple operator interface devices to various systems
1082_frame_C1.1 Page 9 Tuesday, May 21, 2002 9:52 PM
© 2002 by Béla Lipták
10 Overall Plant Design
of outages and disturbance to operations installing them were
even greater. Suppliers replaced components and had major
new releases often because the “systems” encompassed both
the hardware and software in many areas of functionality and
because competition and development were very active. A
result is that it is common for customers to have two “sys-
tems” from the same vendor with new operator interface
devices that cannot communicate with old controllers, or new
controllers that will not communicate with old operator
devices. Today, many companies operate with independent
“systems” from various suppliers on the same plant site.
Like others, Fisher Controls, now part of Emerson Process
Management, began assisting customers with life-cycle plan-
ning for the DCS in the early 1990s. These life-cycle programs
provide migration paths to keep systems current and provide
notification of new products and manufacturing changes and
supply of older products.
3
(Honeywell offers several options
of LifeCycle Management (LCM) to help its customers inte-
grate new technology with predictable costs.
4
) These pro-
grams help successfully avoid component obsolescence and
assure that the components interface through several vintages,
but they do not always lessen the cost and disruption to plant
operations. There is another option to supply the evolution
needed.
In the late 1990s open standards, increased functionality,
and reliability of personal computers and the need for process
information combined to enable, and force, vendors to create
access to their systems. Today, a plant system can be defined
as an arrangement of independent components connected to
form a unity for the achievement of specified functionality.
The components do not need to be from one vendor. Archi-
tecture of the system is very important. Hardware and phys-
ical connectivity to the proper data highway systems enable
very highly flexible and upgradable functionality through
upgrading software. The components can be selected because
they are the best of breed, or selected on the basis of lowest
cost to fill the functional requirement. With the proper archi-
tecture, the hardware and software components that comprise
the process control and information system can evolve at
different speeds over many years with minimal impact on
operations and minimum cost.
The audit should identify existing components supporting
interfaces to open systems as well as existing components from
suppliers that refuse to provide open interfaces. Figure 1.1c
shows a typical 1990-vintage DCS with a good, high-speed
interface to other systems. Figure 1.1d shows PCs as new
operator interface devices connected with redundant links to
the DCS and PLCs (programmable logic controllers). Addi-
tional functionality is added to the operator interface device
through software to allow retrieval of grade specifications
from the specification management system and downloading
of grade set points and tuning parameters to the existing
control systems.
Audit the Installation and Process
Few situations are more frustrating or more futile than trying
to correct process design problems with process control. Sim-
ilarly, changing manufacturers or styles of instruments will
hardly improve the control problems caused by instrument
installation errors. Every control and system upgrade project
should strive to correct the physical process and instrument
installation problem of past projects. Physical problems
involve piping and mechanical work that is usually expensive,
and controls engineers are always under pressure to make the
existing system work without modification. However, the best
FIG. 1.1c
Typical DCS architecture circa 1990.
1082_frame_C1.1 Page 10 Tuesday, May 21, 2002 9:52 PM
© 2002 by Béla Lipták
1.1 Auditing Existing Plants for Upgrading 11
approach is to address the problems directly. Allowing oper-
ations and management to think that a new controller or new
instrumentation will resolve a physical problem is as great a
disservice as failing to recognize the physical problem. The
audit is the time to recognize and note process and instrument
installation problems.
Sometimes it is not feasible to conduct an audit to scru-
tinize every process and every instrument and control valve
installation looking for installation problems. The process
design problems are particularly difficult to see without ana-
lyzing Process and Instrument Diagrams (PID) and yet with
existing systems this is not something that is typically part
of the control system upgrade project. Scrutiny of the process
and control system designs must be focused on certain areas
prior to the field audit.
One way to identify process areas for extra scrutiny is
through recognizing indicators of process problems from
other parts of the audit. Figure 1.1e lists some of the key
indicators that a control problem is more involved than just
needing a new controller or upgraded system.
Process Information and System Integration
Great process control is not enough. Process information is
more valuable than control in many industries today. This is
not totally without reason or justification since the information
is needed for product tracking, product genealogy, offline
statistical analysis, regulatory compliance, and marketing and
customer relations. Process information increasingly interfaces
to enterprise resource planning (ERP) systems, enterprise
asset management (EAM) systems, manufacturing execution
systems (MES), and data historians. Every system audit and
recommendation should address these issues.
The functional specification in the prerequisites to the
audit should contain a statement about the desired interfaces
to other systems. Today, any audit should address this issue
whether it is in the functional specification or not. The trend
is clear that more process information and process system
health information are desired by higher-level systems. It is
also true that the process control system and the operator, or
process manager as the position is often called, increasingly
need access to many more systems than just a process con-
troller. The integration between the management systems will
be bidirectional where quality control persons may need to
see the key information about the current product and the
FIG. 1.1d
Illustration of the same DCS as Figure 1.1c with a new DCS controller, PLC, new operator interfaces, and supervisory controls added.
FIG. 1.1e
Do not try to correct problems and disturbances introduced by poor
process design and nonfunctional process equipment when the best
solution is to recognize and correct the process.
Indications of Physical Process Problems
• Control of process was always poor.
• Periodic or seasonal fluctuations in controllability of the process.
• Instruments and valves that work in other places are not working.
• Fast oscillations in process characteristic properties after mixing.
• Fast process transients and oscillations while in manual mode.
• Control valves that operate at extremes of their range.
• Excessive process equipment and control component failures.
1082_frame_C1.1 Page 11 Tuesday, May 21, 2002 9:52 PM
© 2002 by Béla Lipták
12 Overall Plant Design
operator may need to see, approve, and download the spec-
ification for the next run in the plant. Operators, or their
systems, need access to the maintenance system, e-mail,
upstream and downstream processes information, historical
data, time and attendance systems, possibly accounting to
show real-time cost of production, and various other systems
in the future. Figure 1.1f shows the connectivity for the
operator interface devices to integrate to the other plant infor-
mation systems.
System Diagnostics and Redundancy
System diagnostics and redundancy, like process information
and system integration, is an area that the auditor may under-
stand better than the plant personnel. So too, the auditor
making recommendations for upgrading systems should
include recommendations on the system diagnostics and
redundancy even when the functional specification does not
address the issues.
System diagnostics begins with the transmitters and final
control elements in the field. Smart transmitters, valves, and
a device network are the basis for a system to alert folks of
process and instrument problems and provide the diagnostics
to isolate the problem.
The 4–20 mA DC has been the standard for signal wiring
since the 1960s but it now looks extravagant to run a pair of
copper wires in a plant to every instrument for just one piece of
information. Fieldbus technologies are discussed in Section 4.7.
The plant may need direction and recommendations on the
diagnostic and quality information available.
Regulatory control is as important as ever, but supervi-
sory controls and coordinating plant controls are needed in
most plants to make a step change in quality and productivity.
Changing one regulatory controller for another is not a recipe
for success. Section 1.8 of this chapter discusses hierarchical
control. The auditor must consider that recommendations
address virtual sensors, automatic loop tuning, statistical pro-
cess control, and model-based control. Also, the control sys-
tems recommendations should make the plant aware of
redundancy options, diagnostic capabilities, and automatic
telephone dialing system alarms.
Redundancy of control systems, where it is required, is
often considered a dreaded but necessary expense. Where
applicable, the control system upgrade recommendation
should address the advantages of redundancy for purely eco-
nomic reasons. Systems that continue to function through a
component failure avoid forced downtime, lost product, the
cost of emergency maintenance support, interruptions to pro-
duction scheduling, and other problems. As systems are inte-
grated, redundancy may be needed in communication net-
works, interface devices, and software to ensure that the
systems continue to function through a failure. The technical
FIG. 1.1f
Illustration of the same DCS as in the previous figures with direct operator interface communication to the PLC, and the addition of
interfaces to other plant information systems that need process data.
1082_frame_C1.1 Page 12 Tuesday, May 21, 2002 9:52 PM
© 2002 by Béla Lipták
1.1 Auditing Existing Plants for Upgrading 13
expert must make the plant aware of opportunities. Section 2.9
discusses system architecture for increased reliability.
References
1. Walton, M., The Deming Management Method, NewYork: Dodd, Mead
 Company, 1986.
2. Webster’s New World Dictionary, 2nd college ed., New York: World
Publishing Company, 1970.
3. Proceedings 1992 PROVOX Users Group Meeting Report, Austin, TX:
Fisher Controls Company, 1992.
4. Honeywell Web Site, 2001, http://www.iac.honeywell.com/
pulp_paper/Services/InternetServiceLifeCycleMgtContent.htm.
Bibliography
McMillan, G. K., Process Industrial Instruments and Controls Handbook,
5th ed., New York: McGraw-Hill, 1999.
1082_frame_C1.1 Page 13 Tuesday, May 21, 2002 9:52 PM
© 2002 by Béla Lipták
14
1.2 Project Management and Documentation
S. EMMANUEL
The dynamic fiery engine of a well-run project advances
inexorably to its objectives on tracks laid of good documen-
tation. And documentation had better be good, when it refers
to the details of the central nervous system of a process plant.
Faulty connections in the brain of the plant could result in
the worst nightmares or if the project is lucky a dysfunctional
plant. Good documentation is only one of the prerequisites
for successful instrumentation and control (IC) projects.
The multifaceted nature of IC projects means that the
project has implications for almost every department of a
plant owner’s organization. Satisfying each of these stake-
holders will require the best of project management skills.
This section describes the structure and underlying relation-
ships of traditional IC documentation and its effective
exploitation in conjunction with project management tech-
niques for successfully managing an IC project.
For the purposes of this section, the following definitions
apply:
Project: A temporary endeavor undertaken to create a
unique product or service
Owner: The entity with final responsibility for the com-
plete operation of the facility
Contractor: The owner’s hired representative, provid-
ing any combination of engineering, procurement
and construction services
The descriptions and terminology used here are common
practice in the process industry. The documentation and
project management practices would be applicable as is in
related industrial sectors with some changes in names of
drawings and terminology.
GOOD DOCUMENTATION PRACTICES
Good documentation practices have to be enforced from the
preliminary engineering phase of the project. As the project
progresses, the stewardship of the engineering documents
changes hands from design contractors to construction con-
tractors or vendors to eventually reside with the owner. Thus,
it is the owner’s commitment to good documentation practice
during each project phase that will ensure that documents
always change hands in a state appropriate to that phase.
Owners ensure this by enforcing review and approval cycles
and maintaining a system of documentation.
An independent reviewer, representing the owner’s inter-
est, is valuable for the project. Design reviews take place
during the design phases of the project when most of the
documents are produced. Thoroughness of review and
approval can be ensured by the use of standard checklists for
each type of document and each phase of the project. These
checklists are developed applying the three “C”s criteria for
good documentation:
• Completeness
• Correctness
• Consistency
Completeness criteria ensure coverage of scope of the
project and adequacy of the level of detail on the drawings
with respect to the phase of the project. However, a project
sometimes has to proceed with incomplete information and
in such cases the portion of a document containing such
information must be clearly marked out (shading or clouds
are frequently used) with a appropriate clarification in the form
of remarks or notes. The correctness criteria ensure the integ-
rity of data on the documents with respect to IC engineering
principles, requirements of other engineering disciplines,
existing plant or site conditions, and applicable standards.
Consistency criteria refer to maintaining correct cross refer-
ences within the project and plant documents, using specified
file, border, and title block formats, using the correct drawing
naming and numbering schemes, using consistent terminology
and units, using drawing templates, seed files, etc. Consistency
is also improved if repetition of the data is minimized, which
ensures that, when the data change, only a minimum number
of documents are affected.
Maintaining a system of documentation requires that the
owner define and administer, as a minimum, a system of
naming and revising documents and a system of tagging
plant, area, equipment, and instruments. An administered
system of tagging and document numbering serves to anchor
the documentation system of the plant, allowing these
attributes to be used as key attributes or to index into lists of
equipment and documents. Although document and revision
numbering conventions vary in practice, instrument tagging
conventions follow ISA S5.1.
8
1082_frame_C1.2 Page 14 Tuesday, May 21, 2002 9:53 PM
© 2002 by Béla Lipták
1.2 Project Management and Documentation 15
In addition, particularly in large plants involving various
construction and engineering agencies, it is common for
owner organizations to:
• Maintain written procedures for all activities related
to official documentation
• Maintain and enforce the use of standard libraries of
cell or block reference files for standard equipment
• Retain control of drawing seed or template files for
each type of document and database structure
• Require the use of standard installation details, mate-
rials, and use of standard coding and classification
schemes
These kinds of standardization affect all phases of the project,
saving time and cost and improving the quality of the con-
struction.
PROJECT CRITERIA DOCUMENT
Capturing the requirements of a project with all its com-
plexity is a difficult task. The traditionally quoted project
objectives, that is, cost, schedule, quality, and safety, are
always paramount. However, every project needs to satisfy
unique requirements, which the whole project team should
be aware of from the beginning so that the project ends in
success. Hence, irrespective of the project phase, a project
summary or criteria document helps focus efforts on the
requirements of the system, indicating physical, economic,
or logistical constraints that are applicable and the standards
to which the system needs to comply. This could take the
form of a checklist or a preformatted document with blanks
to be filled in at the time of project start or estimation. Table
1.2a is a sample design criteria format for the IC portion
of a design project. On this form, design criteria typically
refer to scope documents and functional specification doc-
uments to extract the system requirements. Typically, a
preliminary site visit will reveal a host of constraints and
new requirements, which could well be consolidated into
this design criteria report. The accepted standards and prac-
tices should be listed. Standard symbols for computer-aided
drafting (CAD) drawings as defined by owner and/or con-
tractor should be documented. If the owner provides a list
of preferred manufacturers and any additional practices or
schematics that further clarify owner design requirements,
they must also be cited here. Finally, the sizing of a project
provides a measure of the complexity and uses preliminary
input/output (I/O) and field instrument counts as the basis.
When the design is nearing completion, this document
becomes a tool to ensure that the design will meet all the
functional requirements, constraints, and standards. Table
1.2a is also an indication of the many ways IC projects
can differ from one another and emphasizes the uniqueness
of each project.
THE PREFERRED VENDORS/TECHNOLOGY LIST
Owners do not always have a published list; however, the
owner organizations are often precommitted to a certain brand
or flavor of technology for various valid reasons, such as:
• The plant is already using the brand or technology,
which means spares are available, operators need not
be retrained, components have site-proven reliability.
• To avoid obsolescence by buying products based on
standard protocols (e.g., HART or Fieldbus) and by
buying the most recent hardware and software.
• Certain vendor architectures are a better fit for certain
kinds of process (e.g., batch control vs. continuous
control).
Identifying the preferred vendors at the beginning of the
project has several advantages:
• The vendor can be a part of the project team from the
beginning, bringing in experts on the specific system
who are then able to provide optimal architectures
based on vendor’s products to meet the plant’s present
and future needs.
• Design can proceed with fewer uncertainties, leading
to more consistent and complete designs.
• Overall project duration is shortened because of con-
sistent and complete designs and also because the
vendor can start production earlier on the project cycle.
Disadvantages are the possibility of higher costs due to the
lack of competition and the danger of excluding consider-
ation of better and newer technologies.
IC DOCUMENTATION SYSTEM
The system of IC documentation has evolved over the years
with each document having an inherent structure of informa-
tion that is useful during specific phases of the project. For
example, loop diagrams are most useful as an aid for main-
tenance and troubleshooting, whereas interconnection draw-
ings are used predominantly during the construction phase.
The system of documentation has also evolved to minimize
repetition of data between documents and to minimize the
refinements required by each iterative phase of the project.
Thus, the cable block diagram aids the optimal allocation of
junction boxes and cables during a FEED or basic engineering
phase, the details of which would be required to be worked
out only during detailed engineering in the form of layouts
of cable routing and interconnection drawings. This structure
of the documentation is presented as a dependency map in
Figure 1.2b. Given the uniqueness of each project, this is only
a suggested sequence for creation of new documents. Some
of the documents may not be formal deliverables but are used
as intermediate design documents only. The dependency map
is useful in determining the impact of changes to a project,
which is described in one of the following sections.
1082_frame_C1.2 Page 15 Tuesday, May 21, 2002 9:53 PM
© 2002 by Béla Lipták
16 Overall Plant Design
TABLE 1.2a
A Project Criteria Form for Instrumentation and Control Design Projects
1082_frame_C1.2 Page 16 Tuesday, May 21, 2002 9:53 PM
© 2002 by Béla Lipták
1.2 Project Management and Documentation 17
FIG. 1.2b
A document dependency map of instrumentation and control system design project.
1082_frame_C1.2 Page 17 Tuesday, May 21, 2002 9:53 PM
© 2002 by Béla Lipták
18 Overall Plant Design
DOCUMENTS—PURPOSE, CONTENTS,
AND STANDARD FORMATS
Various standards organizations specify content and format
of data in these documents. ISA S5.1 to S5.4,
8–11
ISA S20,
12
ISA RP60.4,
21
and PIP practice PIP PCEDO001
7
are valuable
references. ISA S51.1
14
and IEH, Volume 1, Chapter 1 is a
reference for terminology to be used in all IC documents.
Many owners also maintain their own documentation stan-
dards. Because project requirements vary considerably, the
following description is given only to emphasize the content
for the various documents with respect to purpose and sig-
nificance to the project.
Process/Mechanical Flow Diagrams
These drawings depict the flow of material through a plant,
the major equipment, and their capacities. The process flow
diagrams (PFDs) are useful for quickly grasping an overview
of the process because it depicts the process in a compact
fashion without a clutter of information. The process condi-
tions required to be maintained to achieve the process objec-
tives are shown on these diagrams at various points along the
flow and this becomes very handy for the IC engineer.
The process licensee or the process engineer in the orga-
nization generally provides these drawings. Typically, at the
preliminary stage of a project the control or instrument engi-
neer’s involvement is restricted to review of the major control
loops in the system. A small subset of the symbols is used for
the creation of the piping and instrument diagrams (PIDs)
to depict the instrumentation and control loops.
Piping and Instrumentation Diagrams
In the process industry the IC design begins with the PID,
which is also the starting point for some of the other disci-
plines such as piping and mechanical engineering. The process
engineer in the organization typically leads the development
of this document with inputs as appropriate from the piping
and IC departments. PIDs are derived from the PFDs.
PIDs enjoy a special place in the plant documentation
system. They are among the most utilized of documents in
all phases of the plant life cycle and by several disciplines.
To maximize the utility of this key document, it is imperative
that the following aspects are closely followed:
• Standard symbols are used throughout.
• Sufficient details of instrument and piping are always
provided.
• Presentation provides for clarity of the process flow.
The facility owner typically prescribes standard symbols
to be used in the PIDs. The owner’s instrumentation sym-
bols and tagging conventions typically adhere to ISA S5.1
8
and IEH, Volume 1, Chapter 1. However, other systems of
symbols are also used.
Depending on the type of instrument, additional infor-
mation is very useful outside of each instrument circle on the
PID. Below are listed some common types of instruments
followed by examples of the desired information.
• Orifices—The orifice flange size in inches and ANSI
class rating (e.g., 8″-600#).
• Control Valves—The valve size in inches, ANSI rating
class, air action, and air failure action (e.g., 8″-900#
AO/AFC).
• Safety Relief Valves—The inlet and outlet size in
inches, orifice letter and set pressure in PSIG (e.g.,
6Q8, set at 150 PSIG).
• Gauge Glasses—The visible glass length in inches.
• Electric or Pneumatic Switches—Switch point in unit
of the process variable and actuation with respect to
the measured variable (e.g., “H” for high, “LL” for
low-low).
• Recorders or Indicators (Direct Process Connected)—
Chart or scale range.
• Nonstandard Air/Power Supply—Requirements for
supply pressure of instrument air other than standard
pressure or control voltage not generally available
(e.g., for use with shutdown systems or similar special
requirements).
• Other information, which will assist in reading and
checking the design, calibration, and operation of the
instrumentation, may be added.
The Instrument Schedule
Design information generated during the course of an instru-
mentation and control project is most effectively stored and
retrieved from properly structured relational database tables.
One of the primary tables in such a database is the main
instrument index, which is created as soon as working PIDs
are made available and which contains information on all the
instruments in the project. Such an index thereafter becomes
an effective tool for determining current work completion
status and for ascertaining that required work has been per-
formed and documents have been issued. Some of the com-
mon fields in an instrumentation schedule are shown in Fig-
ure 1.2c. Other useful fields can be added per project-specific
requirements.
Instrument Data Sheets (Specification Forms)
Most field instruments are not commercial, off-the-shelf items;
they must be manufactured, calibrated, and tested against
each specification. This is so because the process fluid, mea-
surement, and operation range and other requirements dictate
the use of one of many possible combinations of metallurgy,
size, and sensor technology that may be available. Instru-
ments are precision-made, high-value items that are not eco-
nomical to be maintained on the shelf. The instrument data
sheets are prepared to present the basic information for the
instrument requisition. When completed, they provide a
1082_frame_C1.2 Page 18 Tuesday, May 21, 2002 9:53 PM
© 2002 by Béla Lipták
1.2 Project Management and Documentation 19
readily accessible, concise summary of information with suf-
ficient detail to allow a vendor to select the appropriate instru-
ment. ISA S20 or the equivalent should be used. A database
is a very effective tool for maintaining large numbers of
specification sheets.
System Architecture/Network Diagram
This drawing will show in block diagram format all major
control system components, including routers, switches,
gateways, servers, subsystems, etc. The drawing shall iden-
tify where all components are physically located (e.g., Cen-
tral Control Room, Substation, Utilities Control Building,
etc.). The system cable connection philosophy shall be
shown. The cable/wiring details shall specify the media (i.e.,
fiber, coax, twisted pair, etc.), speed of communication link,
protocol, and whether the link is redundant.
Control System Documentation
Control system design is a very intense phase of the project
during which the owner departments, engineering contrac-
tors, and vendors have to exchange a large volume of infor-
mation back and forth. Properly done, the documentation can
be useful in many ways:
• Approval by the players having jurisdiction
• Check for code compliance, quality assurance, and
control
• Basis for cost estimate, budget, and schedule
• Support of field installation, test, calibration, and
maintenance
• Manufacturer’s test records, basis for shipping-damage
claims
• Basis for planning for future expansion, modification,
and duplication
• Record of configuration and reference for operations
in the future
• Historical records
The vendor or systems integrator produces the bulk of
the documentation for a large control system following a
functional specification document generated during the detail
design phase of the project. The functional specification
should provide sufficient details for a vendor to price the
system and provide details of how each function is realized
in the system. Before bid award the vendor’s final offer doc-
ument should detail the material and services provided.Along
with the technical specification, the vendor’s project delivery
schedule, spare parts prices, support availability, and instal-
lation schedule are also included in a bid evaluation. On award,
the vendor produces detailed documents, which shall typi-
cally comprise:
• Detailed system description, system planning infor-
mation
• Vendor standard documentation for configuration,
management, maintenance, and operation
FIG. 1.2c
A database view of the object model of IC system and documentation.
1082_frame_C1.2 Page 19 Tuesday, May 21, 2002 9:53 PM
© 2002 by Béla Lipták
20 Overall Plant Design
• I/O, panel, and cable schedules
• Detailed panel/console drawings showing layouts and
interconnections
• System configuration database
• Software documentation including source code, lad-
der, or logic diagrams
• Factory acceptance procedure
• Site acceptance procedure
The project should monitor and advance the status of
each document from “preliminary” to “approved” and then
to “as-built” with a well-specified plan agreed to by all the
players. This plan is frequently represented with a responsi-
bility matrix that indicates which specific people need or
produce each type of document at each phase, the purpose,
and the date for completion.
Instrument and Junction Box Layout Drawings
When locations of instruments are imposed on a facility plot
plan or piping plan, the resultant cluster patterns allow for
determination of optimal placement of junction boxes and
identification of routing of conduits based on availability of
supports, clearance and access requirements, etc. These draw-
ings are directly derived from piping or facility plans.
Cable Block Diagrams
Cable block diagrams are created to show all the cables and
the panels or instruments on which the ends terminate. These
drawings are particularly useful in large projects where it is
worthwhile standardizing on a small set of cable sizes and
junction boxes. In an iterative manner, the process merges
and splits home run cables and junction boxes until an opti-
mal set of cables and junction boxes is reached. These draw-
ings are also useful intermediates to the production of cable
routing drawings, interconnection drawings, and cable and
conduit schedules.
Control Room Layout Drawings
Control room/interface building/analyzer house layout draw-
ings shall show in plan view the location of consoles, panels,
control racks, computer racks and peripherals, logic racks,
termination racks, and the position of each item of major
equipment. The spacing and arrangement of cabinets should
adhere to requirements for easy access for maintenance, heat
dissipation, and electrical interference. Also shown are seg-
regated pathways for cables carrying analog signals, emer-
gency shutdown (ESD) signals, discrete signals, and power.
ISA RP- 60.4 provides the detailed information for the design
of control centers.
Panel Layouts and General Arrangement
In the preliminary design phase only the overall dimensions,
location of instrument items, shape, graphic layout, and general
layout are provided. The detailed layout shall be provided by
the vendor and shall be approved by the owner before fabri-
cation of the console or panel and shall include:
• The cutout dimensions and mounting details for all
instrument items
• Exact locations where signal cabling, data highway
cabling, and electrical power wiring enter the console
or panel-board; instrument air supply and pneumatic
tubing must also be shown as applicable to each instal-
lation
• Panel illumination
• Location and designation number of terminal strips or
electrical junction boxes
• Schematic layout of pneumatic tubing runs, when
applicable
• Dimensions, equipment location, wiring raceway,
cable entries, and terminal strips
Careful consideration to the size, color, and layout of these
panels contributes to good aesthetic appeal of the control
rooms.
Interconnection or Wiring Diagrams
These documents should show the terminal strips with ter-
minal numbers for junction boxes, field control panels, mar-
shaling cabinets, and instrument cabinets and racks, with the
appropriate identification. They should also show the con-
nections of instrument multicore cables to the terminals, with
identification by cable number and core/pair number. A table
can represent the wiring for most junction boxes and mar-
shaling panels just as well as by a conventional drawing. The
advantage of a table is that it is more easily modified and
maintained. However, a drawing shall be used if the wiring
is complex as when multiple jumpers, resistor elements, and
other devices are to be shown on the same document.
Cable Routing, Cableway Sections, and Details
The conduit/tray layout and cable routing (drawing or list)
should show the general conduit/tray layout and the following
cable/conduit data: identification number, approximate
length, type, and routing. The routing drawing is generally
imposed on a piping or facility plot plan. If the routing is
underground, this drawing must accurately show all under-
ground facilities and must be consulted and updated in the
event of any change to these facilities. In addition to speci-
fying routing of the cable, this drawing helps to estimate the
wiring and cabling requirements for the plant.
Grounding System Drawings
The grounding system drawings should show grounding con-
nections to the appropriate power supply systems as well as
earth grounding locations for all instrument power systems,
1082_frame_C1.2 Page 20 Tuesday, May 21, 2002 9:53 PM
© 2002 by Béla Lipták
1.2 Project Management and Documentation 21
wiring system shield grounding, distributed control system
grounding, and grounding for other appropriate instrumenta-
tion and control systems.
Instrument Loop Diagrams
Instrument loop diagrams (ILDs) are the culmination of the
IC design work as they contain the complete design infor-
mation on a loop-by-loop basis. The objective is to depict
the complete signal flow path from the originating device to
the operator’s desk accompanied by all associated informa-
tion such as range, size, control, alarm settings, etc. See ISA
S5.4
10
for formats and content. ILDs are extremely useful
at the time of commissioning, start-up, and troubleshooting.
However, ILDs repeat information that is already present in
other documents. Maintenance departments in operating
plants depend on ILDs and generally keep them updated.
Problems arise when these changes are not always reflected
in the other drawings. One solution is instrumentation doc-
umentation tools, which generate ILDs from a central data-
base and other documents, as described in the following
sections.
Logic Diagrams
Some plants maintain their process logic separate from the
system-generated documentation of the logic. This serves to
provide a common format of drawings irrespective of the
vendor’s format and the hardware used. ISA S 5.2
9
and IEH,
Volume 1, Chapter 1 provide guidelines on format and con-
tent of binary logic. A consolidated view of the logic is also
highly desirable for emergency shutdown portion of the logic,
sometimes represented in the form of a cause-and-effect
matrix. Logic diagrams are ideally generated from written
process narratives and PIDs and form the basis for vendors’
programming of the system.
INSTRUMENT INSTALLATION CHECKOUT AND
CALIBRATION/CONFIGURATION PROCEDURE
A detailed procedure should be prepared to define the respon-
sibility for instrument installation, including complete cali-
bration (or configuration for smart transmitters, etc.) and
operational checks of all instrument loops, sequencing and
interlock systems, annunciators, and shutdown systems. A
checkout form should be used to record calibration and loop
check sign-off/approval.
DECOMMISSIONING DOCUMENTS
Decommissioning documents are often required to show the
portion to be decommissioned on a revamp job. Procedures
for proper disposal or refurbishment of instruments must be
provided.
DOCUMENTATION—AN INFORMATION MANAGEMENT
PERSPECTIVE
The level of information technology employed on projects
varies considerably; however, studies
1,2
established its effec-
tiveness and identified the use of electronic data management
as one of the prime techniques most likely to shorten project
duration with no increase in total cost. The instrumentation
and control portion of a project is particularly amenable to
the effective utilization of information technology. Simple
use of office software enables the creation and maintenance
of specification sheets, schedules, and list documents. Widely
available computer-aided drafting and design tools have long
been part of the repertoire used by engineering companies to
create drawings. However, to benefit fully from this technol-
ogy it is essential to be able to link together the data resident
in various traditional document formats so that data can be
viewed, maintained, correlated, and shared.
Traditional documentation tools are essentially document-
centric, which means information is stored with each docu-
ment or file as the final atomic unit, whereas in the engineer-
ing world the atomic unit is the individual component that
makes up the overall system. The components can typically
be classified into various types (instruments, cables, junction
boxes, I/O) with each type having a set of attributes common
to that type (e.g., every instrument has a tag no., service,
PID no., etc). Components of different types in a system
are associated with each other in terms of relationships that
relate some of their attributes in one type to that of another.
For example, an “I/O” allocation to a particular field “instru-
ment” is an associative type of relationship between the “I/O”
and “instrument” components in the system. Other types of
relationships between components are possible. For example,
a cable made of several conductors represents a “whole-part”
type of relationship. Similarly, the “instrument” component
is a generalization of the specific type, for example, the
pressure gauge. This is an example of a “general-specific”
type of relationship. The components or objects also have to
satisfy certain constraints and conditions with respect to the
value of each of its attributes and in its relationships with
other components (e.g., each conductor end can have only
one termination point). Object technology refers to data struc-
tures, which enable storage of data associated with real-world
components along with their relationships and rules of inter-
action with other components. Clearly, the object technology
is better suited for storage of engineering data, which obvi-
ates the translation process from an object-centric world to a
document-centric space required for the document-centric
approach. See Reference 3 for a description of solutions
addressing this issue.
Engineering information needs to be exchanged between
the various disparate players in a project. Any data storage
format needs to be sharable and usable by the whole project
community. Various consortiums of companies
3
and standard
bodies
4,5
have been established to achieve standardization of
various aspects of this process. These standards provide the
1082_frame_C1.2 Page 21 Tuesday, May 21, 2002 9:53 PM
© 2002 by Béla Lipták
22 Overall Plant Design
bedrock for building the next generation of software tools,
which will allow information sharing across disciplines and
spanning entire plant life cycles.
Underlying relationships and data structures of the com-
ponents of a system are always constant irrespective of the
approach a project may take to create the documents. Figure 1.2c
depicts a part of the structure of the engineering data of
components used in a typical IC project. When using a
database, the blocks would be implemented as database
tables, whereas in the traditional documentation these would
be called schedules or list documents. On a database table or
list, each of the items in each of the blocks would appear as
a field name or column title. Each row in the table or list
represents one real-world object or entity such as an instru-
ment, cable, junction box, or I/O channel. Ensuring that each
row represents an actual object helps to keep the database
structure intuitive and easily understood. Using a relational
database, the relationships between these objects can be mod-
eled easily. For example, allocating I/O to a specific field
instrument would be simply implemented by providing a link
field, in this case the instrument tag number in the I/O table.
More intricate relationships would require to be modeled using
a table itself, such as, for example, the wiring/termination table
represents a relationship between the instrument, cable, and
panel tables, as depicted in Figure 1.2c. This table actually
represents the wiring of the cables to a termination box and
hence is the database equivalent of the more traditional inter-
connection or wiring diagram.
The advantages of using electronic databases over paper
documentation stem from the underlying advantages of data-
base systems. That is, the ability to find, search, sort, arrange
and link data in various ways allows easier maintenance,
retrieval, and storage of data. Moreover, databases allow
multiple access to the data, at the same time allowing con-
current engineering in large projects. The relational data-
base systems allow data to be stored in a meaningful and
intuitive manner. Also, relational databases can minimize the
storage of the same data in multiple tables and thereby ensure
that, if a piece of data needs to change, that change needs to
be performed in just one place and is reflected in all the other
views and documents generated from the same database.
Advanced users of the database would also incorporate data
integrity checks to ensure that the data as entered satisfy
various engineering, technocommercial, and physical con-
straints. For example, integrity checks could ensure that a
wiring database does not have electrical shorts or disconti-
nuities, instrument ranges cover the process operating ranges,
material used are compatible with the process fluid, approved
vendors are used, etc. Accruing full benefits from using the
database approach requires its use starting from the initial
design phase of the project. The CII study
1
provides addi-
tional benefits in terms of schedule and cost reduction to a
project on use of electronic media in general.
The data structure represented in Figure 1.2d also
extends the previous structure to include data for individ-
ual instrument types, process engineering information,
FIG. 1.2d
Extension of object model to include project organization and estimation.
1082_frame_C1.2 Page 22 Tuesday, May 21, 2002 9:53 PM
© 2002 by Béla Lipták
Exploring the Variety of Random
Documents with Different Content
Instrument Engineers Handbook Volume 3 Process Software And Digital Networks 3rd Bla G Liptk
Instrument Engineers Handbook Volume 3 Process Software And Digital Networks 3rd Bla G Liptk
Instrument Engineers Handbook Volume 3 Process Software And Digital Networks 3rd Bla G Liptk
The Project Gutenberg eBook of Cours familier
de Littérature - Volume 19
This ebook is for the use of anyone anywhere in the United States
and most other parts of the world at no cost and with almost no
restrictions whatsoever. You may copy it, give it away or re-use it
under the terms of the Project Gutenberg License included with this
ebook or online at www.gutenberg.org. If you are not located in the
United States, you will have to check the laws of the country where
you are located before using this eBook.
Title: Cours familier de Littérature - Volume 19
Author: Alphonse de Lamartine
Release date: October 14, 2012 [eBook #41056]
Most recently updated: October 23, 2024
Language: French
Credits: Produced by Mireille Harmelin, Keith J Adams, Christine
P. Travers and the Online Distributed Proofreading Team
at http://www.pgdp.net (This file was produced from
images
generously made available by the Bibliothèque nationale
de France (BnF/Gallica) at http://gallica.bnf.fr)
*** START OF THE PROJECT GUTENBERG EBOOK COURS FAMILIER
DE LITTÉRATURE - VOLUME 19 ***
COURS FAMILIER
DE
LITTÉRATURE
UN ENTRETIEN PAR MOIS
PAR
M. A. DE LAMARTINE
TOME DIX-NEUVIÈME
PARIS
ON S'ABONNE CHEZ L'AUTEUR,
RUE DE LA VILLE-L'ÉVÊQUE, 43.
1865
L'auteur se réserve le droit de traduction et de reproduction à l'étranger.
COURS FAMILIER
DE
LITTÉRATURE
REVUE MENSUELLE.
XIX
Paris.—Typographie de Firmin Didot frères, imprimeurs de l'Institut et de la Marine, 56, rue
Jacob.
CIXe ENTRETIEN.
MÉMOIRES DU CARDINAL CONSALVI,
MINISTRE DU PAPE PIE VII,
PAR M. CRÉTINEAU-JOLY.
(PREMIÈRE PARTIE.)
I
Quelle que soit l'opinion qu'on se fasse du principe divin ou
humain de l'autorité spirituelle ou temporelle de la papauté en
Europe, il est impossible de nier que les papes soient des souverains,
soit en vertu d'un mandat de Dieu, soit en vertu d'une antique
tradition humaine; qu'en vertu du titre surhumain, leur autorité, sous
le rapport spirituel, soit sacrée; et qu'en vertu du titre de possession
humaine et traditionnelle, leur gouvernement soit respectable. Les
gouvernements, monarchies ou républiques, traitent avec eux, leur
envoient des ambassades ou en reçoivent d'eux, concluent des
concordats ou des conventions avec eux, et sont tenus de les
exécuter par le simple respect de leur parole, jusqu'à ce qu'ils soient
périmés ou modifiés d'un consentement commun; en un mot ils
gouvernent légitimement la portion d'empire qui leur a été dévolue
sur ce globe.
Détrôné pour cause de papauté, est un axiome de droit public qui
n'a pas encore été admis sur la terre.
Qu'on n'admette pas le mélange sacrilége du spirituel et du
temporel, c'est libre à chacun; mais qu'on ne reconnaisse pas le
gouvernement temporel de la papauté parce que le pape exerce
comme pape des fonctions ecclésiastiques à Rome ou ailleurs, c'est
confondre les deux puissances et passer soi-même d'un ordre
d'idées dans un autre. Les papes ont donc comme souverains un
gouvernement.
Or, du moment où les papes ont un gouvernement, ils ont des
ministres; et si au nombre de ces ministres ils ont le bonheur de
trouver un homme supérieur, modéré, dévoué jusqu'à l'exil et
jusqu'à la mort, comme Sully était censé l'être à Henri IV; si ce rare
phénix, né dans la prospérité, éprouvé par les vicissitudes du
pouvoir et du temps, continue pendant vingt-cinq ans, au milieu des
fortunes les plus diverses, en butte aux persécutions les plus acerbes
et les plus odieuses, à partager dans le ministre, sans cause, les
adversités de son maître; si le souverain sensible et reconnaissant a
payé de son amitié constante l'affection, sublime de son ministre, et
si ce gouvernement de l'amitié a donné au monde le touchant
exemple du sentiment dans les affaires, et montré aux peuples que
la vertu privée complète la vertu publique dans le maître comme
dans le serviteur; pourquoi des écrivains honnêtes ne rendraient-ils
pas justice et hommage à ce phénomène si rare dans l'histoire des
gouvernements, et ne proclameraient-ils pas dans Pie VII et dans
Consalvi le gouvernement de l'amitié?
C'est le véritable nom de ce gouvernement à deux têtes ou plutôt
à deux cœurs, qui a traversé tant d'années de calamités sans se
diviser, après quoi le ministre est mort de douleur de la mort du
souverain, laissant pour toute fortune une tombe sacrée à celui qu'il
a tant aimé.
Voilà l'histoire exacte du règne pontifical de Pie VII et du ministre
Consalvi.
II
J'ai beaucoup connu et familièrement fréquenté le cardinal-
ministre, à Rome, à différentes époques, sous les auspices de la
duchesse de Devonshire, son amie la plus intime, et j'oserai dire la
mienne aussi; elle m'en a légué une preuve touchante en me
léguant une de ses munificences par son testament. Cette
munificence acquit à mes yeux un triple prix parce qu'elle me fut
transmise par madame Récamier, femme digne de cette société avec
les illustrations de Londres, de Paris et de Rome, et qui m'a légué
elle-même un souvenir immortel, le beau portrait de notre ami
commun le duc Matthieu de Montmorency. J'ai été le témoin
confidentiel, dans des circonstances difficiles, de la mesure, de la
sagesse, de l'équilibre de son gouvernement et de l'impassibilité de
son courage. Ce n'était pas seulement un grand ministre, c'était un
grand cœur; j'ai passé avec lui en 1821 les semaines glissantes où
l'armée napolitaine de Pépé et l'armée autrichienne de Frimont
allaient s'aborder à Introdocco et se disputer les États romains
envahis des deux côtés, et où Rome attendait des hasards d'une
bataille son sort et sa révolution; il était aussi calme que s'il avait eu
le secret du destin: «Experti invicem sumus ego et fortuna,» nous
disait-il. «Quant au pape, il a touché le fond de l'adversité à Savone
et à Fontainebleau; il ne craint pas de descendre plus bas, laissant à
Dieu sa providence.» N'est-on pas trop heureux, dans ces agitations
des peuples et dans ces oscillations du monde, d'avoir son devoir
marqué par sa place, et ne pouvoir tomber qu'avec son maître et
son ami?
III
J'attendais, je l'avoue, avec impatience le moment où un hasard
quelconque, mais un hasard certain, quoique tardif, ramènerait le
nom du cardinal Consalvi dans la discussion des grands noms de
mon époque pour lui rendre témoignage. Ce jour est arrivé; un
homme que je ne connais pas personnellement, et dont les opinions
ne sont, dit-on, pas les miennes sur beaucoup de choses, M.
Crétineau-Joly, vient de publier un livre intitulé: Mémoires du
cardinal Consalvi.
Il ne faut pas qu'on s'y trompe, le titre ne donne pas une idée
précise du livre; bien qu'il soit d'un grand et vif intérêt, il n'a que
très-peu d'analogie avec ce que nous appelons ordinairement
Mémoires. Ce sont les mémoires diplomatiques plus que les
mémoires intimes et personnels du cardinal. Cet homme de bien,
très-détaché de lui-même, ne se jugeait pas assez important pour
s'occuper exclusivement de lui et pour en occuper les autres; il se
passe habituellement sous silence; mais, quand il rencontre sur le
chemin de ses souvenirs et de sa plume quelqu'une de ces questions
historiques qui ont agité et l'Église et le monde, telles que le
concordat, le rétablissement du culte en France, le conclave d'où
sortit Pie VII, le voyage du pape à Paris pour y couronner Napoléon,
l'emprisonnement de ce pontife à Savone, sa dure captivité, sa
résidence forcée à Fontainebleau, les désastres de Russie et de
Leipsick qui forcèrent l'empereur à tenter sa réconciliation avec Pie
VII et à renoncer à l'empire des âmes pour recouvrer à demi
l'empire des soldats; le retour du pape à Rome, l'enthousiasme de
l'Italie à sa vue, qui le fait triompher seul à Rome de l'omnipotence
indécise de Murat en 1813; enfin sa restauration spontanée sur son
trône: alors Consalvi, directement ou indirectement mêlé à toutes
ces transactions, prend des notes, les rédige et les confie aux
archives du saint-siége pour éclairer le gouvernement pontifical et
traditionnel sur ses intérêts. Ce sont ces notes authentiques dont le
gouvernement romain d'aujourd'hui a donné communication à M.
Crétineau-Joly, et celui-ci nous les livre à son tour sous le titre de
Mémoires du cardinal Consalvi. Elles seraient plus convenablement
nommées Mémoires de l'Église de Rome pendant la persécution de
Pie VII, rédigées par son premier ministre et son ami. Mais elles sont
cependant et effectivement des fragments très-réels et très-
véridiques des Mémoires du cardinal-ministre; il n'y a aucune
supercherie, il y a seulement lacune; ce ne sont pas tous les
Mémoires, ce sont les documents originaux, préparés par le ministre
lui-même, pour la rédaction de ses Mémoires.
Nous allons suppléer, à l'aide des documents fournis par M.
Crétineau-Joly et par nos notions personnelles, aux commencements
de la vie du cardinal, omis ou trop légèrement relatés dans ce livre,
dont l'objet était plus vaste.
IV
Le cardinal Consalvi naquit à Rome, le 8 juin 1755, et fut baptisé
sous le nom d'Hercule; il était l'aîné de quatre frères et d'une sœur;
son père était le marquis Consalvi, de Rome, et la marquise
Carandini, de Modène, sa mère. Il aurait dû réclamer légalement le
nom de Brunacci, famille plus illustre de Sienne que la famille
Consalvi à Rome; il n'en fit rien par respect pour son père, et
persuadé, dit-il, que la plus précieuse noblesse est celle du cœur et
des actions. Il n'avait que six ans quand il perdit son père; sa mère
alla demander asile à la maison du cardinal Carandini, son frère de
prédilection; il resta, ainsi que ses petits frères, sous la tutelle du
marquis Gregorio Consalvi. Gregorio, avant de mourir, en 1766, les
confia à la tutelle du cardinal Negroni, homme distingué du sacré
collége. Ce cardinal, qui avait été élevé à Urbino par les frères des
écoles pies, envoya ces enfants à Urbino pour y recevoir la même
éducation que lui.
«Une circonstance douloureuse m'éloigna d'Urbino quatre ans
après, avant d'y avoir fini mes études,» dit-il. «Mon second frère,
Jacques-Dominique, y contracta une horrible maladie. On l'attribua,
—je ne veux pas affirmer avec certitude que telle en fut la cause,—à
la brutale férocité d'un religieux, surveillant de la division (prefetto
della camerata) où nous nous trouvions. Ce surveillant frappait avec
un gros nerf de bœuf, et pour chaque peccadille commise dans la
journée, les faibles enfants revêtus seulement de leurs chemises au
moment où ils allaient se mettre au lit. Or moi, qui n'avais que dix
ans, j'étais l'un des plus âgés. Mon pauvre frère se plaignit bientôt
d'une douleur très-intense à l'un de ses genoux, sans aucun signe
extérieur tout d'abord; mais peu à peu le genou se dressa presque
jusqu'au menton, et demeura ainsi durant le reste de sa vie.
«Ma mère et notre tuteur le firent revenir à Rome pour le soigner.
Il fallut envoyer de Rome à Urbino la litière du Palais pontifical,—on
n'en trouva pas d'autre,—car il était impossible que mon infortuné
frère pût faire ce long trajet sans être porté sur un lit. Arrivé à la
maison maternelle, après avoir langui dans la souffrance et subi une
opération chirurgicale, il mourut vers l'âge de dix ou douze ans et fut
enterré à Saint-Marcel. Le grand amour que je lui avais voué me fit
amèrement ressentir sa perte, bien que je ne fusse que petit enfant.
Mais ce n'était pas le coup le plus douloureux que me préparait mon
triste sort.
«Le cardinal tuteur, voyant que, par suite de ce trépas, notre mère
en voulait toujours au collége d'Urbino, nous rappela, mon frère
André et moi, pour nous placer dans le collége Nazaréen à Rome,
tenu, lui aussi, par les Scolopii. Mais une circonstance accidentelle ne
lui permit pas de réaliser son projet. Le cardinal Negroni, étant
prélat, avait été auditeur du cardinal duc d'York, alors évêque de
Frascati. Or, ce royal cardinal, fils de Jacques III, roi d'Angleterre,
rouvrait justement alors son séminaire et son collége, qu'il venait de
retirer des mains de la Société de Jésus. Comme il recrutait de
jeunes clercs pour peupler cet établissement, il demanda au cardinal
Negroni de nous y envoyer, lui promettant de nous accorder à tous
deux sa protection spéciale.
«Le cardinal Negroni ne put pas refuser; il vit même qu'il
commençait notre fortune en nous plaçant sous la protection d'un
aussi puissant personnage.
«Nous fûmes installés dans le collége de Frascati au mois de juillet
1771 pour y terminer nos études. J'acquis de la sorte les faveurs et
l'amour infini dont, à dater de ce moment, le cardinal duc d'York
m'honora jusqu'à la dernière heure de sa vie. Je restai à Frascati
environ cinq ans et demi; j'y terminai la rhétorique, la philosophie,
les mathématiques et la théologie. J'eus le bonheur d'avoir en
rhétorique, en philosophie et en mathématiques deux excellents
professeurs, et j'appellerai même le second très-excellent. Je puis
bien dire que c'est à lui que je dois presque entièrement ce
discernement, cette critique, ce jugement sûr,—si toutefois j'en ai un
peu,—que l'indulgence des autres, bien plus que la vérité, a fait
quelquefois remarquer en moi. Je prie ceux qui par hasard
parcourront ces lignes de regarder ce que je dis à ce sujet comme
un effet de ma reconnaissance pour le maître auquel je rapporte le
peu que je sais, et non comme une louange de ma propre personne.
C'était un homme d'un rare mérite: il connaissait la philosophie, les
mathématiques, la théologie et les belles-lettres, et j'ai rarement vu
quelqu'un digne de lui être comparé.
«Je contractai au collége de Frascati une maladie très-sérieuse qui
interrompit mes études pendant quelques mois, et non sans me
causer un véritable préjudice. Je fus appelé à Rome et placé par
mon tuteur dans la maison maternelle, afin de m'y rétablir. Je
retournai ensuite au collége. Je fis cette maladie au printemps de
1774, et je me trouvais en convalescence à l'époque de la mort de
Clément XIV, ainsi qu'au commencement du conclave dans lequel Pie
VI fut élu. Ayant achevé ma théologie au séminaire de Frascati, je le
quittai définitivement au mois de septembre 1776. Mon tuteur me
plaça, et plus tard il y plaça aussi mon frère André, qui était resté au
collége pour achever ses études, dans l'Académie ecclésiastique
ouverte de nouveau à Rome par le nouveau pontife Pie VI, qui
l'entourait d'une spéciale protection. J'y demeurai six ans et mon
frère quatre, et j'y étudiai les lois et l'histoire ecclésiastique
professée par le célèbre abbé Zaccaria, autrefois jésuite. En sortant
de cette académie, je reçus une pension de cinquante écus, ainsi
que mon frère. Nous penchions l'un et l'autre vers l'état
ecclésiastique, moi plus que lui cependant; c'est pourquoi
j'embrassai cette carrière, quoique je fusse l'aîné de la famille. Quant
à André, il renonça au sacerdoce, non pour se marier—ce qu'il ne fit
jamais,—mais parce que sa santé ne lui permettait pas de consacrer
toutes ses heures, et spécialement celles du matin, aux occupations
et aux études imposées par les devoirs de cet état et les emplois
qu'il aurait pu remplir.
«Par délicatesse de conscience, il ne se crut pas autorisé de
demander dispense pour conserver un bénéfice ecclésiastique de
cent écus, qu'il tenait de la générosité du Pape. Il le remit
loyalement entre les mains du donateur. Sans que je l'eusse sollicité,
le Pape déclara au cardinal dataire que ce bénéfice étant déjà entré,
comme on dit, dans ma maison, il ne voulait point l'en retirer, et
qu'en conséquence on devait m'en attribuer la collation. Ce fut la
seule rente ecclésiastique que je touchai jusqu'au cardinalat. La
pension dont j'ai parlé plus haut cessa de m'être payée à l'époque
de l'invasion de Ferrare par les Français.
«Nous sortîmes, mon frère et moi, de l'Académie au mois
d'octobre 1782, avec la pensée d'entrer dans la prélature. Il nous
était impossible de vivre sous le même toit que notre mère, qui,
demeurant avec son frère, ne pouvait pas se réunir à nous. Nous
choisîmes donc une habitation près d'elle, dans le casino Colonna,
aux Tre Canelle, nous réservant d'en prendre une plus fixe et plus
convenable quand je serais devenu prélat. Le 20 avril 1783, tandis
que je demeurais dans cet appartement provisoire, je fus nommé
camérier secret de Sa Sainteté, et par conséquent prélat de
mantellone. À la fin du mois d'août de cette même année, je fus
éprouvé par une perte qui me causa une très-vive douleur. J'avais
jusqu'alors fréquenté plus que toute autre la maison Justiniani:
j'étais l'ami du prince et de la princesse Justiniani, ainsi que de leurs
deux filles, mariées, l'une dans la maison des princes Odescalchi,
l'autre dans la maison des princes Ruspoli. Cette dernière fut
attaquée par la petite vérole, alors qu'elle était enceinte, et il lui
fallut dire adieu à la vie à l'âge si tendre de dix-huit ans. C'était un
miroir de toutes les vertus, elle apparaissait aussi aimable que sage.
Vingt-neuf années se sont écoulées, et aujourd'hui je ressens aussi
profondément ce malheur que le jour où il arriva. Je puis dire
qu'après le trépas de mon frère,—alors que j'étais presque enfant,—
la mort de la princesse Ruspoli fut pour ma jeunesse et pour mon
âge mûr la première de toutes les pertes si cruelles que j'eus à
déplorer par la suite. Il paraît que le Seigneur voulut éprouver ainsi
la sensibilité peut-être trop ardente de mon cœur, ou plutôt je crois
que, dans sa clémence, il chercha à punir mes nombreux péchés par
ces deuils que mon caractère me rendait plus pénibles.
«Pendant un an et plus, je fus camérier secret du Pape. Au mois
de juin 1784,—si je ne me trompe, car je ne me rappelle pas très-
bien,—ou dans le mois d'août au plus tard, je devins prélat
domestique. J'habitais déjà le petit palais au bas de la daterie; je ne
le quittai qu'à ma promotion au cardinalat et quand je fus nommé
ministre.
«Aux vacances d'automne, j'allai à Naples avec mon frère, afin de
rétablir ma santé compromise par une maladie assez sérieuse que je
fis au mois de septembre. Nous revînmes à Rome dans les premiers
jours de novembre. Autant que je puis m'en souvenir, il se passa
encore quatorze ou quinze jours sans que j'eusse aucune charge.
J'étais cependant référendaire de la signature. La Curie se disait
contente de mes services, et personne plus que moi n'était
rapporteur d'autant de causes. Des quarante qui sont le non plus
ultra des séances de ce tribunal, moi seul j'en avais vingt-cinq et
même trente.
«Je fus enfin nommé ponente del buon governo dans une
promotion nombreuse que fit le Pape à peu près au mois de janvier
1786,—si j'ai bon souvenir. Mon premier pas ne fut ni trop prompt ni
trop inespéré, comme celui de plusieurs autres dans cette
promotion, et j'aurais pu, si j'avais songé à en prendre la peine,
avancer bien plus vite. Il m'eût été facile de marcher à pas de géant,
ainsi que plus d'un de mes compagnons de l'Académie ecclésiastique
et d'autres prélats mes confrères, si, à l'indulgence que me
témoignait le Pape et à la réputation que me créait le grand
concours de la Curie, j'avais cherché à joindre quelques-uns des
bons offices de ceux qui s'offraient de me servir auprès du Souverain
Pontife. Mais, outre que mon caractère était très-éloigné de
demander, et plus encore de faire la cour au premier venu pour mon
avancement, j'avais eu sur cette matière un trop bel exemple dans la
personne de mon tuteur, le cardinal Negroni.
«Cet homme sans ambition, que sa probité, ses mœurs, l'élévation
de son esprit, l'affabilité de ses manières et son désintéressement
rendaient incomparable, ne fut pas heureux dans sa carrière. Durant
sa prélature il n'avait rien obtenu malgré sa capacité et ses mérites,
uniquement parce qu'il ne fit la cour à personne et qu'il ne sollicita
rien. En fin de compte cependant, la vérité perça d'elle-même, et,
sous le pontificat de Clément XIII, il devint auditeur du Pape, et Pie
VI le nomma dataire. Or jamais il ne demanda rien, et, chose rare et
même unique, il fut constamment estimé et aimé par trois papes
successifs, Clément XIII, Clément XIV et Pie VI, qui tous, comme on
sait, différaient d'habitudes et de caractère. Il professait donc une
maxime, maxime mise par lui en pratique dès le principe et qu'il
m'inculquait sans cesse avec beaucoup d'autres excellentes,—je
veux payer ce tribut de reconnaissance à sa mémoire.—Le cardinal
me disait: «Il ne faut rien demander, ne jamais faire la cour pour
avancer, mais s'arranger de manière à franchir tous les obstacles par
l'accomplissement le plus ponctuel de ses devoirs et par une bonne
réputation.»
«Je suivis toujours ce conseil, et quand j'étais à l'Académie
ecclésiastique, je ne flattai jamais le célèbre abbé Zaccaria,—que
cependant j'estimais beaucoup.
«C'était un homme que le Pape aimait et qui, par ses rapports
favorables sur les talents et les études de plusieurs de mes
compagnons, avait commencé leur fortune. Je ne fréquentais pas
davantage les cardinaux, ou ceux qui approchaient le plus près du
Saint-Père. Poussant même les choses au-delà des justes bornes, je
ne visitai jamais, ainsi que mes confrères, les neveux du Pape, et je
n'assistai jamais à leurs réunions, car j'avais peur qu'on ne crût que
l'intérêt me guidait.
«Ce n'est pas ici le lieu de parler de l'importance, de l'étendue, de
la direction et de l'administration qu'entraîne cette œuvre
gigantesque. Deux des cardinaux de la Congrégation étant morts,
comme le Pape avait toujours eu la pensée d'abolir cette
Congrégation et de faire de Saint-Michel une charge prélatice, il ne
les remplaça pas. Le cardinal Negroni, survivant, demeura seul à la
tête de l'hospice. La Congrégation avait pour secrétaire monsignor
Vai. Quand il mourut, le cardinal Negroni, sans me consulter, me
proposa au Pape pour le remplacer, et c'est ainsi que je devins
secrétaire de la Congrégation. Je m'efforçai de mériter de mon
mieux la confiance que le cardinal me témoignait; et, comme l'état
de sa santé ne lui permettait plus de faire de la direction de ce grand
établissement l'objet de ses occupations assidues, ce soin retomba
sur moi seul. J'eus à traiter toutes sortes d'affaires.
«L'année 1789 arriva. Ce fut une époque de grands désastres
généralement pour tous, à cause de la révolution sans pareille qui
éclata en France vers la moitié de cette année, et qui se répandit
comme un vaste incendie dans l'Europe entière et même au delà. Ce
fut aussi pour moi, en particulier, une époque de véritables disgrâces
qui surgirent alors, ou dont les conséquences se firent sentir plus
tard.»
V
Le cardinal Negroni, son président, lui fut enlevé par la mort en
1789.
«Peu après, mon cœur reçut encore un coup très-sensible du
même genre. J'avais à mon service un jeune homme de vingt ans,
de mœurs angéliques, d'une prudence, d'une intelligence et d'une
capacité très au-dessus de sa condition, d'une rare intégrité et d'une
fidélité sans exemple, d'une propreté en tout et d'une amabilité peu
communes. Un dimanche,—c'était le 1er
mars,—comme il revenait
avec sa femme de Saint-Michel à Ripa, quatre soldats, échauffés par
le vin et par la luxure, se mirent à les suivre. D'abord à l'aide de
paroles, ensuite par des actes indécents, ils tourmentèrent la pauvre
femme et cherchèrent à la faire accéder à leurs désirs. Le
malheureux jeune homme, avec beaucoup de patience, hâta sa
course sans oser se retourner vers eux. Mais voyant que, malgré
cela, ils voulaient exécuter leur projet et qu'ils touchaient les
vêtements de sa femme, il fit volte-face et leur dit avec douceur que
c'était son épouse, et qu'il les priait de cesser leurs poursuites et
leurs obsessions. Il n'en fallut pas davantage pour enflammer leur
colère. Les soldats le saisirent avec violence, ils l'arrachèrent
d'auprès de sa femme. À quelques pas de distance, l'un d'eux,
malgré ses prières,—il n'avait point d'autre défense,—lui enfonça sa
baïonnette dans une côte. Le coup, ayant traversé l'artère, le tua en
peu de minutes, noyé dans une mare de sang. Ce genre de mort et
la perte de cet excellent jeune homme, qui m'était très-attaché, me
furent plus pénibles qu'on ne saurait se l'imaginer. Cette même
année, j'eus la douleur de perdre la duchesse d'Albany, nièce du
cardinal duc d'York, qui m'avait toujours comblé de bontés et de
gracieusetés. Elle mourut très-jeune à Bologne, où elle était allée
prendre les bains d'après l'avis de la Faculté. Elle cherchait à se
guérir de deux maladies, restes d'une petite vérole mal soignée, ou
qui n'avait pas rendu suffisamment.
«Enfin la mort d'un autre de mes domestiques, ayant tous les
droits à mon estime à cause de la fidélité et de l'attachement avec
lesquels il me servait, mit le comble aux afflictions de cette espèce,
afflictions, je l'ai dit, par lesquelles mon âme a toujours été très-
éprouvée.»
VI
Consalvi ressentit quelque amertume du refus du pape de le
choisir pour successeur du cardinal Negroni dans un emploi inférieur
auquel il avait droit. Le pape, sans s'expliquer, le consola de cette
disgrâce, en montrant à ses amis l'intention secrète de le réserver
pour d'autres fonctions plus élevées et plus intimes. Il attendit
patiemment, n'ayant alors pour tout emploi salarié que sa pension
de deux cents écus romains (1,200 fr.).
«Je ne restai toutefois que fort peu de temps dans cette
incertitude. La mort imprévue d'un des votanti di segnatura fit
vaquer une place à ce tribunal. Tous mes amis m'engagèrent à ne
pas perdre un moment et à la demander. Je n'accédai point à leurs
instances, et le pape ne m'en aurait point laissé le loisir si j'eusse
voulu le faire. C'est le jeudi saint que cette mort arriva. Le matin
suivant, bien que ce fût le vendredi saint, bien que les augustes
cérémonies de ce jour dussent avoir lieu, et que, selon l'usage, la
secrétairerie d'État fût comme fermée, le pape envoya au secrétaire
d'État l'ordre de m'expédier tout de suite votante di segnatura,
charge de magistrature élevée. Dès que ma nomination me fut
parvenue, je courus, comme c'était mon devoir, remercier Sa
Sainteté. Elle n'avait pas pour habitude de recevoir quand on lui
venait offrir des actions de grâces. Beaucoup moins imaginais-je être
reçu ce jour-là, et au moment où le pape, rentré dans ses
appartements après la fonction du vendredi saint, et devant
retourner quelques heures après à la chapelle pour les matines que
l'on nomme Ténèbres, récitait complies et allait, quand il les aurait
achevées, se mettre à table pour dîner.
«Ayant appris alors que j'étais dans l'antichambre, où il avait
donné l'ordre qu'on ne me renvoyât pas, selon l'usage, si je venais,
—parce qu'il désirait me voir,—il me fit entrer immédiatement. Après
qu'il eut achevé ses complies devant moi, il m'adressa des paroles si
pleines de bonté, que je ne pourrai jamais les oublier tant que je
vivrai. Ce fut avec le visage le plus affable et qui témoignait vraiment
la satisfaction de son cœur, qu'il me dit: «Cher Monsignor, vous
savez que nous ne recevons jamais personne pour les remercîments,
mais nous avons voulu vous recevoir contre l'habitude, malgré cette
journée si occupée, et quoique notre dîner soit servi, afin d'avoir le
plaisir de vous dire nous-même ceci: En ne vous comprenant pas
dans la dernière promotion, parce que nous avons été contraint
d'attribuer à un autre le poste qui vous était destiné, nous avons
éprouvé autant de tristesse que nous goûtons de joie à nous trouver
en état de vous offrir de suite la charge de votante di segnatura
maintenant vacante. Nous le faisons pour vous témoigner la
satisfaction que vous nous causez par votre conduite. Nous vous
avons enlevé de Saint-Michel, parce que nous voulions vous faire
suivre la carrière du bureau et non celle de l'administration.»
«Le Saint-Père daigna ajouter ici quelques paroles sur l'opinion
que sa bonté, et non mon mérite, lui faisait augurer de moi sous le
rapport des études, paroles que la connaissance que je possède de
moi-même ne me permet pas de transcrire. Il continua ainsi: «Ce
que nous vous donnons aujourd'hui n'est pas grand'chose, mais je
n'ai rien de mieux, car il n'y a aucune autre place disponible. Prenez-
le cependant, comme un gage certain de la disposition où nous
sommes de vous accorder davantage à la première occasion.»
«Il est facile de comprendre qu'à un semblable discours, prononcé
avec cette grâce, cet air de majesté jointe à la plus pénétrante
douceur, et cette amabilité qui étaient particulières à Pie VI, les
expressions me manquèrent absolument pour lui répondre. C'est à
peine si je pus balbutier: «qu'ayant recueilli les paroles si clémentes
qu'il avait prononcées sur mon compte après la promotion, paroles
qui m'assuraient que je n'avais point démérité de sa justice et qu'il
n'était pas mécontent de moi dans la charge de Saint-Michel, j'étais
fort tranquille, et que je l'aurais été longtemps encore et toujours;
que je n'avais d'autre désir que celui de ne pas lui déplaire et de ne
point faillir à mes devoirs dans tous les emplois auxquels il daignerait
m'appeler.»
«Il m'interrompit: «Nous avons été content, très-content de vous
à Saint-Michel; mais nous vous répétons que nous voulons vous
attacher à d'autres études. Nos promesses d'alors étaient sincères,
mais ce n'étaient que des mots; aujourd'hui voici un fait: ce n'est
pas grand'chose, mais c'est plus encore que des mots. Prenez donc
ceci maintenant; allez! allez! mon dîner se refroidit, et nous devons
ensuite descendre à la chapelle!»
Ces paroles si bonnes et le goût que le caractère grave et la figure
gracieuse et modeste du futur cardinal inspiraient au majestueux et
beau pontife Braschi, ranimèrent les espérances bornées de
Consalvi.
VII
Il refusa, un an après, la charge d'envoyé à Cologne, par crainte
d'engager sa responsabilité.
«Je ne voyais rien de semblable à redouter l'auditorat de Rote.
Cette charge ne portait avec elle aucune responsabilité, ainsi que je
l'ai dit; elle était très-enviée et ne sortait pas du cercle d'études que
je m'étais tracé. Si le labeur produisait de grandes fatigues à une
certaine époque, il était compensé par de nombreux mois de
vacances et de repos. Enfin, je considérais que, quoique exempt de
l'ambition du cardinalat, toutefois, en le regardant comme le terme
honorable de la carrière entreprise, l'auditorat de Rote m'y
conduisait lentement, c'est vrai, mais certainement, sans avoir
besoin de mendier la faveur ou la bienveillance de qui que ce fût, ni
de faire la cour à personne, puisque le décanat de la Rote mène à la
pourpre d'après l'usage, quand le doyen n'a pas démérité et que l'on
n'a véritablement rien à lui reprocher. J'étais jeune encore,—j'avais
environ trente-cinq ans,—et mon âge me permettait d'attendre le
décanat, quelque lenteur qu'il mît à venir.
«J'ajouterai encore que j'avais un autre stimulant pour désirer si
passionnément l'auditorat de Rote. J'éprouvais un goût très-
prononcé pour les voyages, goût que je n'avais pu satisfaire
jusqu'alors que par une petite course à Naples et en Toscane, d'où
j'étais revenu depuis peu. Les vacances de la Rote commençaient
aux premiers jours de juillet; elles finissaient en décembre. Je
trouvais donc ainsi le moyen de voyager chaque année pendant cinq
mois et plus, sans manquer à aucune de mes obligations, et sans
avoir besoin de congés et de permissions obtenus à l'avance.
«Toutes ces raisons me firent désirer si fortement l'auditorat de
Rote, que je me crus autorisé, pour cette seule fois,—car je ne
l'avais pas fait avant et je ne le fis plus après,—et pour cette seule
charge, à me départir de la maxime du cardinal Negroni, d'autant
mieux que je ne la violais point par ambition, mais par un tout autre
motif, et je dirais presque par le motif contraire. Toutefois je ne pus
pas m'empêcher de me joindre à tant d'autres concurrents; et je
n'osai pas m'abandonner entièrement aux espérances que
m'inspiraient les promesses que le Pape m'avait adressées deux ans
auparavant, promesses se résumant en ces mots: «Nous veillerons
nous-même à votre avancement.»
«Je comptai plutôt sur ses bonnes dispositions, et ne me laissai
pas arrêter par le peu de temps écoulé depuis ma dernière
promotion. Je priai le cardinal secrétaire d'État (Boncompagni) de
parler de moi au Souverain Pontife en même temps que des autres
concurrents. De peur que, pressé par les affaires qu'il pouvait avoir, il
n'exauçât pas mon vœu, je demandai à l'auditeur du Pape de vouloir
bien faire connaître au Saint-Père que moi aussi j'étais sur les rangs,
et rien de plus.
«Telles furent les seules démarches que je fis et que j'autorisai à
faire. Le succès les couronna heureusement, et je passai auditeur de
Rote dans le mois de mai ou de juin 1792. Je ne me souviens pas de
la date précise.
«Je ne puis exprimer l'extrême joie que j'en éprouvai. Ayant rendu
à Sa Sainteté les actions de grâces qui lui étaient dues, je crus de
mon devoir de lui en garder, ainsi qu'à sa famille, une éternelle
reconnaissance. Je me trouvai très-embarrassé pour en porter
l'hommage au duc Braschi, son neveu. J'ai raconté plus haut qu'un
excès de délicatesse m'avait toujours éloigné de la maison Braschi,
dans l'appréhension que l'on pût s'imaginer que je la fréquentais
pour faciliter mon avancement. En obtenant l'auditorat de Rote,
j'avais touché le but de mes désirs. Comme j'étais bien résolu de
mourir auditeur ou d'attendre le cours naturel des choses, afin d'en
être le doyen et d'arriver au cardinalat par cette voie, je crus que
visiter la famille Braschi, ce serait alors gratitude et non plus intérêt.
Je surmontai avec peine la crainte que me causait mon entrée dans
un salon où je n'étais pas vu avec trop de plaisir et non sans motif,
car les proches du Pape avaient désiré et sollicité l'auditorat de Rote
pour Mgr
Serlupi, leur parent. Je fus donc accueilli avec froideur.
Avant cette époque, je n'étais jamais allé au palais Braschi, si j'en
excepte trois ou quatre visites d'étiquette en habit de prélat et
confondu dans la foule, pour l'anniversaire de l'élection du Pape. À
dater de ce jour, je ne laissai jamais passer une seule soirée sans me
rendre chez les Braschi, et je devins leur plus dévoué serviteur et
ami. Je crois en avoir fourni par mes actes les preuves les plus
certaines et les plus constantes.»
VIII
Au mois de novembre 1794 ou 1795, il visita avec un de ses amis,
Bordani, l'Italie et les bords de la rivière de Gênes.
À son retour à Rome, le Pape, pour se défendre contre les
agressions répétées de la république Cisalpine, résolut d'augmenter
son armée et d'en changer l'organisation. Il en donna le
commandement au général Caprosa, employé alors au service de
l'Autriche, et nomma une commission militaire, à la tête de laquelle il
éleva Consalvi, malgré sa jeunesse: il n'avait alors que trente-cinq
ans. Les Français attaquèrent les légations, la paix fut conclue. Le
Directoire ordonna au général Duphot de fomenter l'insurrection de
Rome contre le Pape; un coup de feu l'atteignit; il tomba mort.
«Vous savez ainsi que moi,» écrivit l'ambassadeur français au
Directoire, «que personne à Rome n'a donné d'ordre de tirer ni de
tuer qui que ce fût; le général Duphot a été imprudent, tranchons le
mot, il a été coupable.» Il y avait à Rome un droit des gens comme
partout.
Rome fut envahie par quinze mille hommes, sous les ordres du
général Berthier. Le gouvernement romain ne s'opposa point à sa
marche; Consalvi est arrêté, Pie VI est emmené à Sienne; de là à la
Chartreuse de Florence, puis à Briançon, en France. Ce martyre du
pape, terminé par sa mort, commence. Elle le délivre dans la
citadelle de Valence, la vingt-cinquième année de son pontificat. Ce
pape opulent, magnifique, prodigue envers ses neveux, les Braschi,
expia dans l'indigence et la captivité le luxe de sa vie et l'amabilité
de ses manières.
Consalvi de son côté est conduit à Civita-Vecchia. Condamné à un
éternel exil de Rome, il choisit Livourne pour lieu de son ostracisme
dans l'espoir de rejoindre Pie VI à la Chartreuse de Florence, pour
adoucir la captivité de ce pontife. À la sollicitation de ses amis
romains, Berthier s'adoucit et le fait reconduire captif dans la
capitale. Il est incarcéré au château Saint-Ange. Le général Gouvion
Saint-Cyr, qui avait succédé à Berthier, refuse de ratifier une
proscription plus odieuse du gouverneur romain, qui condamnait
Consalvi à sortir de Rome, ignominieusement monté sur un âne, et
en butte à la risée de ses ennemis; il fut conduit à Terracine, dans la
compagnie de vingt-quatre galériens napolitains. À quelque distance
de Rome, le commandant français le combla d'égards et le fit
conduire à Naples. Après un mois et demi de captivité, le roi et la
reine de Naples le reçurent avec empressement; dans le mois de juin
1798, on lui accorda la permission de se rendre à Vicina, dans les
É
États Vénitiens, de là il gagna la Chartreuse de Florence, où le pape
Pie VI languissait encore.
«Je ne rencontrai toutefois,» dit-il, «chez le ministre du grand-duc
que les manières les plus dures et le plus impoli des refus. Je me vis
forcé d'agir alors comme par surprise. Il me fallait voir le Pape à tout
prix, et lui prouver au moins ma bonne volonté. Je choisis
secrètement le jour et l'heure que je jugeai les plus favorables, et je
me rendis à la Chartreuse, à trois milles de Florence, où le Saint-
Père était prisonnier. Lorsque j'arrivai au pied de la colline, je ne puis
exprimer les sentiments dont mon cœur fut agité à l'idée de revoir
mon bienfaiteur et mon souverain, qui avait eu tant de bontés pour
moi, et en pensant au misérable état dans lequel se trouvait réduit
ce Pie VI que j'avais vu au comble des splendeurs. Chaque pas que
je faisais pour me rapprocher du Saint-Père apportait à mon âme
une émotion toujours croissante. La pauvreté et la solitude de ces
murs, le spectacle de deux ou trois malheureuses personnes
composant tout son service, m'arrachaient les larmes des yeux.
Enfin, je fus introduit en sa présence. Ô Dieu! que de sensations
affluèrent alors à mon cœur, et en vinrent presque à le briser!
«Pie VI était assis devant sa table. Cette position empêchait qu'on
ne s'aperçût de son côté faible: il avait à peu près perdu l'usage des
jambes, et il ne pouvait marcher que soutenu par deux bras
robustes.
«La beauté et la majesté de son visage ne s'étaient pas altérées
depuis Rome; il inspirait tout à la fois la plus profonde vénération et
l'amour le plus dévoué. Je me précipitai à ses pieds; je les baignai de
larmes; je lui racontai tout ce qu'il m'en coûtait pour le revoir, et
combien je souhaitais de rester à ses côtés pour le servir, l'assister et
partager son sort. Je lui jurai que je tenterais tous les moyens
possibles dans l'espoir d'atteindre ce but.
«Je renonce à rapporter ici le gracieux accueil qu'il me fit, la
manière dont il agréa mon attachement à sa personne sacrée, et ce
qu'il me dit de Rome, de Naples, de Vienne, de la France, et de la
conduite tenue par ceux qu'il devait regarder comme les plus
attachés et les plus fidèles de ses serviteurs. Le Saint-Père m'affirma
ensuite qu'il croyait de toute impossibilité que je pusse obtenir la
permission de rester auprès de lui. Je répondis que je ne négligerais
rien pour réussir, et il me congédia après une heure d'audience.
Cette heure me combla tout ensemble de consolation, de tristesse et
de vénération; elle augmenta, s'il est possible, mon respectueux
amour.
«Revenu à Florence, je ne parlai à personne de cette visite, et,
pour éloigner davantage les soupçons, je demandai l'autorisation de
me rendre à Sienne pour voir la famille Patrizi, qui arrivait de Rome.
Je n'obtins ce permis qu'avec une limite de quinze jours. Cela me fut
d'un très-fâcheux augure pour mes projets de résider à Florence,
projets que je voulais ensuite essayer de réaliser. Dès que les quinze
jours furent écoulés, le commissaire grand-ducal me força de quitter
Sienne, et je me séparai avec chagrin de cette famille, que j'aimais
beaucoup.
«D'autres jours se passèrent à Florence, pendant lesquels je tentai
tout, je dis tout, j'osai tout, directement et indirectement, pour
obtenir ce que je souhaitais avec tant d'ardeur. Mais alors le
plénipotentiaire de France demanda expressément au premier
ministre du grand-duc de me renvoyer sans retard. Mes efforts
devenaient inutiles, et mon espérance s'évanouit. Je fus contraint de
quitter Florence et d'aller habiter Venise, ainsi que j'en avais pris la
résolution dans le cas où mon séjour auprès de Pie VI ne serait pas
autorisé.
«Tout ce que je pus faire en cachette, et non sans courir certains
risques, fut de me rendre une seconde fois à la Chartreuse pour
communiquer au Pape mes vaines tentatives, pour lui baiser encore
les pieds et recevoir sa dernière bénédiction. Il éprouva quelque
peine en apprenant que je n'avais pas réussi dans mon projet, mais
il n'en fut point étonné. Pendant l'heure entière d'audience qu'il
m'accorda, il me prodigua toutes sortes de faveurs, et me donna les
plus salutaires conseils de résignation, de sage conduite et de
courage dont les actes de sa vie et son maintien m'offraient un
parfait modèle. Je le trouvai aussi grand et même beaucoup plus
grand que lorsqu'il régnait à Rome. Au moment où il me chargea de
saluer de sa part le duc Braschi, son neveu, qui habitait Venise et
qu'il avait eu la douleur, peu auparavant, de voir arracher d'auprès
de lui dans cette même Chartreuse, je jurai à ses pieds que je
considérerais partout, en tout temps et dans n'importe quelle
occasion, comme une dette la plus sacrée, d'être attaché à sa famille
jusqu'au point de devenir pour elle un autre lui-même. C'est
l'expression qui m'échappa alors dans mon enthousiasme. Je me
flatte de n'avoir pas failli à ma parole dans les circonstances où j'ai
pu le faire.
«Pie VI me remercia avec une bonté et une majesté que je ne
crois pas que l'on puisse égaler. J'implorai sa bénédiction. Il me posa
les mains sur la tête, et, comme le plus vénérable des patriarches
anciens, il leva les yeux au ciel, il pria le Seigneur, et il me bénit dans
une attitude si résignée, si auguste, si sainte et si tendre, que,
jusqu'au dernier jour de ma vie, j'en garderai dans mon cœur le
souvenir gravé en caractères ineffaçables.
«Je me retirai les larmes aux yeux. La douleur m'avait presque mis
hors de moi; néanmoins je me sentais ranimé et encouragé par le
calme inexprimable de mon souverain et par la sérénité de son
visage. C'était la grandeur de l'homme de bien aux prises avec
l'infortune. De retour à Florence, j'en partis dans les vingt-quatre
heures.
«J'étais à Venise à la fin de septembre 1798. Après y avoir passé
quelques jours, je remplis un devoir en allant visiter mon oncle, le
cardinal Carandini, qui habitait Vicence. Je restai avec lui presque
tout le mois d'octobre, à l'exception de cinq ou six jours consacrés
par moi à des amis que je possédais à Vérone. À la fin d'octobre, je
retournai à Venise, où j'avais des connaissances qui offraient de
subvenir à mon extrême détresse. Le gouvernement révolutionnaire
avait confisqué mes propriétés, sous prétexte que j'étais émigré.
«Sur les représentations que mes mandataires firent pour
démontrer la fausseté de cette allégation, les Consuls rendirent deux
décrets.
«Par le premier, on me restituait mes biens comme n'ayant pas
émigré; par le second, ces mêmes biens étaient confisqués de
nouveau comme appartenant à un ennemi de la République
romaine.
«Quoique toujours dans les transes à cause du périlleux séjour à
Rome de mon cher frère, à qui il n'était plus permis d'en sortir, je
restai tranquillement à Venise, où l'on ne tarda pas à recevoir la
nouvelle de la mort du Pape. Elle arriva le 29 août 1799 à Valence,
en France, où le Directoire l'avait fait traîner sans avoir égard à sa
décrépitude et à ses incommodités si graves. Pie VI avait perdu
l'usage des jambes, et son corps n'était qu'une plaie.
«Il était bien naturel que la nouvelle de cette mort dirigeât toutes
les pensées vers la célébration du Conclave pour l'élection de son
successeur. Le cardinal doyen résidait à Venise avec plusieurs autres
cardinaux; ceux qui habitaient sur le territoire de la République y
arrivèrent à l'instant, ainsi que ceux qui étaient dans les États les
plus voisins. Quand ils furent en majorité, ils s'occupèrent tout
d'abord de nommer le secrétaire du Conclave, parce que le prélat qui
aurait dû remplir cette charge, en raison de son emploi de secrétaire
du Consistoire, n'était pas à Venise, mais à Rome. Du reste, des
considérations personnelles interdisaient aux cardinaux de le
rappeler; ces mêmes considérations l'empêchaient de s'offrir de lui-
même. Tous les prélats les plus élevés en dignité, et alors à Venise,
concoururent pour être nommés à ce poste envié. Il y en eut un qui,
de préférence aux autres, fut protégé et porté à cet office avec le
plus grand zèle par un cardinal fort puissant. Ce cardinal avait
beaucoup de bontés pour moi; il poussa l'amabilité jusqu'à me
demander d'abord si j'avais l'intention de me mettre sur les rangs. Il
déclarait que, dans ce cas, il renoncerait à son protégé. D'un côté, je
professais une constante aversion pour tout emploi à responsabilité
quelconque; de l'autre, je n'avais pas d'ambition qui pût être flattée
des droits ou des affections que l'on devait acquérir dans ce poste,
soit auprès du nouveau Pape, soit auprès des cardinaux qui
l'approcheraient de plus près. Je n'hésitai donc pas un seul instant
sur la conduite que j'avais à tenir. J'affirmai que je ne concourrais en
aucune manière pour obtenir cette place.
«Les Cardinaux se rassemblèrent en congrégation générale: ils
étaient assistés en premier lieu par tous les concurrents, et d'une
façon particulière par celui qui étayait sa candidature sur ses propres
mérites et sur les bons offices du cardinal qui le favorisait tant. Le
fait est qu'à la réserve de quatre ou cinq votes qui lui furent
accordés, je me vis choisi à l'unanimité.»
IX
L'élection d'un Pape dans une circonstance si difficile, où sa
souveraineté temporelle était envahie, où sa capitale était occupée,
où son prédécesseur venait d'expirer captif de la France, et où les
cardinaux cherchaient en vain à emprunter un territoire libre pour se
réunir en conclave, était une œuvre aussi délicate que périlleuse.
Elle dura près de quatre mois au milieu des intrigues diverses que
l'état désespéré de l'Église ne suspendait pas, et qui finit néanmoins,
grâce à l'intervention du cardinal Consalvi, par l'élection la plus
inattendue et la plus pure qui pût édifier et sauver cette institution.
Nous allons en reproduire, à cause de ce résultat, les principales
péripéties. Jamais l'action providentielle ne se donna plus
évidemment en spectacle au monde; le conclave nomma celui qu'il
ne cherchait pas, et le cardinal Consalvi lui-même fit nommer celui
auquel il n'avait pas pensé: le hasard inspire la sagesse.
Welcome to our website – the perfect destination for book lovers and
knowledge seekers. We believe that every book holds a new world,
offering opportunities for learning, discovery, and personal growth.
That’s why we are dedicated to bringing you a diverse collection of
books, ranging from classic literature and specialized publications to
self-development guides and children's books.
More than just a book-buying platform, we strive to be a bridge
connecting you with timeless cultural and intellectual values. With an
elegant, user-friendly interface and a smart search system, you can
quickly find the books that best suit your interests. Additionally,
our special promotions and home delivery services help you save time
and fully enjoy the joy of reading.
Join us on a journey of knowledge exploration, passion nurturing, and
personal growth every day!
ebookbell.com

More Related Content

PDF
Instrument Engineers Handbook Vol 2 Process Control And Optimization 4th Edit...
PDF
Measurement And Control Basics Resources For Measurement And Control Series 3...
PDF
Fundamentals of Instrumentaton, Process Control, PLCs & SCADA for Plant Opera...
PDF
Instrument Engineers Handbook Fourth Edition Volume One Process Measurement A...
PDF
Computerbased Industrial Control 2nd Kant Krishna
PDF
Instrumentation And Control Systems 3rd Edition William Bolton
PDF
Overview of Industrial Process Automation, Second Edition K.L.S. Sharma
PPTX
I&CS orintation.pptx
Instrument Engineers Handbook Vol 2 Process Control And Optimization 4th Edit...
Measurement And Control Basics Resources For Measurement And Control Series 3...
Fundamentals of Instrumentaton, Process Control, PLCs & SCADA for Plant Opera...
Instrument Engineers Handbook Fourth Edition Volume One Process Measurement A...
Computerbased Industrial Control 2nd Kant Krishna
Instrumentation And Control Systems 3rd Edition William Bolton
Overview of Industrial Process Automation, Second Edition K.L.S. Sharma
I&CS orintation.pptx

Similar to Instrument Engineers Handbook Volume 3 Process Software And Digital Networks 3rd Bla G Liptk (20)

PPTX
I&CS orintation.pptx
PDF
Fundamentals of Instrumentation, Process Control, PLCs and SCADA for Plant Op...
PDF
Measurement and Control Basics Resources for Measurement and Control Series 3...
PDF
Overview of Industrial Process Automation, Second Edition K.L.S. Sharma - eBo...
PDF
Fundamentals of Instrumentation, Process Control, PLCs and SCADA for Plant Op...
PDF
Measurement and Control Basics Resources for Measurement and Control Series 3...
PDF
Sensors and actuators control systems instrumentation 1st Edition De Silva
PDF
Scada Supervisory Control And Data Acquisition 3rd Edition 3rd Stuart A Boyer...
PDF
Measurement Systems And Sensors Second Edition 2nd Ed Nawrocki
PDF
Sensors and actuators control systems instrumentation 1st Edition De Silva
PPT
Control loop_foundation_overview
PDF
Programmable Controllers An Engineers Guide 3rd Ed E A Parr
PPT
1 gary burgess part 11 ai ch ec
PDF
Measurement Systems And Sensors Waldemar Nawrocki
PDF
Sensors and actuators control systems instrumentation 1st Edition De Silva
PDF
Instrumentation And Control Systems Reddy
PDF
Measurement Systems and Sensors Second Edition Nawrocki
PDF
Practical Troubleshooting and Problem Solving of Modbus Protocols
PDF
Control-Loop-Foundation-Overview.pdf
PDF
Evolution ofcontrol and instrumentation in indian power plants
I&CS orintation.pptx
Fundamentals of Instrumentation, Process Control, PLCs and SCADA for Plant Op...
Measurement and Control Basics Resources for Measurement and Control Series 3...
Overview of Industrial Process Automation, Second Edition K.L.S. Sharma - eBo...
Fundamentals of Instrumentation, Process Control, PLCs and SCADA for Plant Op...
Measurement and Control Basics Resources for Measurement and Control Series 3...
Sensors and actuators control systems instrumentation 1st Edition De Silva
Scada Supervisory Control And Data Acquisition 3rd Edition 3rd Stuart A Boyer...
Measurement Systems And Sensors Second Edition 2nd Ed Nawrocki
Sensors and actuators control systems instrumentation 1st Edition De Silva
Control loop_foundation_overview
Programmable Controllers An Engineers Guide 3rd Ed E A Parr
1 gary burgess part 11 ai ch ec
Measurement Systems And Sensors Waldemar Nawrocki
Sensors and actuators control systems instrumentation 1st Edition De Silva
Instrumentation And Control Systems Reddy
Measurement Systems and Sensors Second Edition Nawrocki
Practical Troubleshooting and Problem Solving of Modbus Protocols
Control-Loop-Foundation-Overview.pdf
Evolution ofcontrol and instrumentation in indian power plants
Ad

Recently uploaded (20)

PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
advance database management system book.pdf
PPTX
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
PDF
IGGE1 Understanding the Self1234567891011
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PPTX
Orientation - ARALprogram of Deped to the Parents.pptx
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
Classroom Observation Tools for Teachers
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
PDF
RMMM.pdf make it easy to upload and study
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PPTX
Unit 4 Skeletal System.ppt.pptxopresentatiom
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Practical Manual AGRO-233 Principles and Practices of Natural Farming
202450812 BayCHI UCSC-SV 20250812 v17.pptx
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Final Presentation General Medicine 03-08-2024.pptx
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
advance database management system book.pdf
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
IGGE1 Understanding the Self1234567891011
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
Orientation - ARALprogram of Deped to the Parents.pptx
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
Classroom Observation Tools for Teachers
Supply Chain Operations Speaking Notes -ICLT Program
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
RMMM.pdf make it easy to upload and study
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
Unit 4 Skeletal System.ppt.pptxopresentatiom
Ad

Instrument Engineers Handbook Volume 3 Process Software And Digital Networks 3rd Bla G Liptk

  • 1. Instrument Engineers Handbook Volume 3 Process Software And Digital Networks 3rd Bla G Liptk download https://ebookbell.com/product/instrument-engineers-handbook- volume-3-process-software-and-digital-networks-3rd-bla-g- liptk-2259558 Explore and download more ebooks at ebookbell.com
  • 2. Here are some recommended products that we believe you will be interested in. You can click the link to download. Instrument Engineers Handbook Volume 3 Process Software And Digital Networks Fourth Edition 4th Edition Bela G Liptak https://ebookbell.com/product/instrument-engineers-handbook- volume-3-process-software-and-digital-networks-fourth-edition-4th- edition-bela-g-liptak-4397786 Instrument And Automation Engineers Handbook Volume Ii Analysis And Analyzers 5th Edition Liptk https://ebookbell.com/product/instrument-and-automation-engineers- handbook-volume-ii-analysis-and-analyzers-5th-edition-liptk-9957970 Instrument Engineers Handbook Fourth Edition Volume One Process Measurement And Analysis 4th Edition Liptak https://ebookbell.com/product/instrument-engineers-handbook-fourth- edition-volume-one-process-measurement-and-analysis-4th-edition- liptak-4647730 Instrument And Automation Engineers Handbook Volume I Measurement And Safety Fifth Edition Bla G Liptk https://ebookbell.com/product/instrument-and-automation-engineers- handbook-volume-i-measurement-and-safety-fifth-edition-bla-g- liptk-5744214
  • 3. Instrument Engineers Handbook Vol 2 Process Control And Optimization 4th Edition 4th Bela G Liptak https://ebookbell.com/product/instrument-engineers-handbook- vol-2-process-control-and-optimization-4th-edition-4th-bela-g- liptak-4723050 Instrument Engineers Handbookprocess Software And Digital Networks 4th Ed Eren https://ebookbell.com/product/instrument-engineers-handbookprocess- software-and-digital-networks-4th-ed-eren-5428038 Instrument And Automation Engineers Handbook 5th Edition Bela G Liptak https://ebookbell.com/product/instrument-and-automation-engineers- handbook-5th-edition-bela-g-liptak-44428488 Level User Guide For The Instrument And Project Engineer In The Refining Industry Rosemount https://ebookbell.com/product/level-user-guide-for-the-instrument-and- project-engineer-in-the-refining-industry-rosemount-7177556 Analog Engineers Pocket Reference 5th Edition Art Kay Tim Green Eds https://ebookbell.com/product/analog-engineers-pocket-reference-5th- edition-art-kay-tim-green-eds-34807010
  • 5. 1082 half title pg 5/20/02 2:16 PM Page 1 Process Software and Digital Networks INSTRUMENT ENGINEERS’ HANDBOOK Third Edition © 2002 by Béla Lipták
  • 6. 1082 title pg 5/20/02 2:15 PM Page 1 Process Software and Digital Networks Béla G. Lipták E D I T O R - I N - C H I E F INSTRUMENT ENGINEERS’ HANDBOOK Third Edition CRC PRESS Boca Raton London New York Washington, D.C. © 2002 by Béla Lipták
  • 7. This reference text is published in cooperation with ISA Press, the publishing division of ISA—Instrumentation, Systems, and Automation Society. ISA is an international, nonprofit, technical organization that fosters advancement in the theory, design, manufacture, and use of sensors, instruments, computers, and systems for measurement and control in a wide variety of applications. For more information, visit www.isa.org or call (919) 549-8411. This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the authors and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or internal use of specific clients, may be granted by CRC Press LLC, provided that $1.50 per page photocopied is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923 USA. The fee code for users of the Transactional Reporting Service is ISBN 0-8493-1082-2 /02/$0.00+$1.50. The fee is subject to change without notice. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe. Visit the CRC Press Web site at www.crcpress.com © 2002 by Béla G. Lipták No claim to original U.S. Government works International Standard Book Number 0-8493-1082-2 Library of Congress Card Number 2002017478 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper Library of Congress Cataloging-in-Publication Data Instrument engineers’ handbook : process software and digital networks / Béla G. Lipták, editor-in-chief.—3rd ed. p. cm. “The third edition of the IEH was initially planned for three volumes ... to cover the subjects of process measurement, process control, and process software. Chilton published the first two volumes in 1995. In October 2000, CRC Press obtained the rights to publish the third volume.”—Pref. Includes bibliographical references and index. ISBN 0-8493-1082-2 (alk. paper) 1. Process control—Handbooks, manuals, etc. 2. Measuring instruments—Handbooks, manuals, etc. I. Lipták, Béla G. II. Lipták, Béla G. Instrument engineers’ handbook. Process measurement and analysis III. Lipták, Béla G. Instrument engineers’ handbook. Process control. TS156.8 .I56 2002 681′.2—dc21 2002017478 1082 disclaimer Page 1 Monday, May 20, 2002 1:43 PM © 2002 by Béla Lipták
  • 8. Dedicated to you, my colleagues, the instrument and control engineers, hoping that by applying the knowledge found in these pages, you will make the world a better, safer, and happier place and thereby will also advance the recognition and the respectability of the I&C profession 1082_frame_FM Page v Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 9. vii C O N T E N T S Contributors ix Preface xiii Definitions xix Abbreviations, Nomenclature, Acronyms, and Symbols xxi Societies and Organizations xxxi 1 Overall Plant Design 1 1.1 Auditing Existing Plants for Upgrading 5 1.2 Project Management and Documentation 14 1.3 Operator Training, Commissioning, and Start-Up 29 1.4 Flowsheet Symbols and Functional Diagramming for Digitally Implemented Loops 42 1.5 Historical Data Storage and Evaluation 79 1.6 Integration of Process Data with Maintenance Systems 91 1.7 Applications, Standards, and Products for Grounding and Shielding 98 1.8 Concepts of Hierarchical Control 116 1.9 Analog or Discrete Input/Output, Costs and Signal Processing 123 1.10 Estimating the Costs of Control System Packages 142 2 Designing a Safe Plant 151 2.1 Hazardous Area Classification 156 2.2 Intrinsic Safety Rules for Fieldbus Installations 161 2.3 Purging and Inerting Systems 167 2.4 High-Integrity Pressure Protection Systems 173 2.5 Process Safety Management 182 2.6 Redundant or Voting Systems for Increased Reliability 192 2.7 Network Security 198 2.8 Safety Instrumented Systems: Design, Analysis, and Operation 209 2.9 Reliability Engineering Concepts 231 2.10 Intelligent Alarm Management 252 2.11 Safety Instrumentation and Justification of Its Cost 268 2.12 International Safety Standards and Certification (ANSI/ISA-S84, IEC 61511/61508/62061, ISO 13849) 278 3 Control Center, Workstation, and Logic Design 285 3.1 Operator Interface Evolution 288 3.2 Virtual Reality Tools for Testing Control Room Concepts 299 3.3 Upgrading the Control Room 307 1082_frame_FM Page vii Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 10. viii Contents 3.4 Manufacturing Platforms and Workstations 323 3.5 Workstation Hosts: Design Concepts and Classification 327 3.6 Integration of DCS, PLC, HMI, and SCADA Systems 334 3.7 Integration with RTUs, Multiplexers, Fieldbuses, and Data Highways 341 3.8 Hybrid Systems with Discrete and Analog Capability 351 3.9 SCADA—Supervisory Control and Data Acquisition 357 3.10 PLC Programming 368 3.11 Fault-Tolerant Programming and Real-Time Operating Systems 387 3.12 Practical Logic Design 396 4 Buses and Networks 423 4.1 An Introduction to Networks in Process Automation 430 4.2 PLC Proprietary and Open Networks 442 4.3 Hardware Selection for Fieldbus Systems 465 4.4 Sorting Out the Protocols 478 4.5 Overall Fieldbus Trends 495 4.6 Fieldbus Advantages and Disadvantages 505 4.7 Fieldbus Design, Installation, Economics, and Documentation 513 4.8 Instrumentation Network Design and Upgrade 522 4.9 Global System Architectures 534 4.10 Advantages and Limitations of Open Networks 540 4.11 HART Networks 547 4.12 Foundation Fieldbus Network 564 4.13 PROFIBUS-PA 578 4.14 Designing PROFIBUS-PA and Foundation Fieldbus Segments 588 4.15 Ethernet and TCP/IP-Based Systems 601 4.16 Fieldbus Networks Catering to Specific Niches of Industry 612 4.17 Proprietary Networks 627 4.18 Fiber-Optic Networks 638 4.19 Satellite, Infrared, Radio, and Wireless LAN Networks 649 5 Software Packages 669 5.1 Control Loop Optimization 672 5.2 Data Reconciliation 687 5.3 Sequence of Event Recorders and Post-Trip Reviews 703 5.4 OPC Software Architecture 708 5.5 Batch Control State of the Art 714 5.6 Plantwide Control Loop Optimization 728 5.7 Plantwide Controller Performance Monitoring 749 5.8 The ‘‘Virtual Plant,’’ A Tool for Better Understanding 761 Appendix 773 A.1 International System of Units 774 A.2 Engineering Conversion Factors 784 A.3 Chemical Resistance of Materials 807 A.4 Composition of Metallic and Other Materials 813 A.5 Steam and Water Tables 816 A.6 Friction Loss in Pipes 824 A.7 Tank Volumes 828 A.8 Partial List of Suppliers 831 Index 855 1082_frame_FM Page viii Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 11. ix C O N T R I B U T O R S The name of the author is given at the beginning of each section. Here, all the contributors of this volume are listed in alphabetical order, giving their academic degrees and affiliations they held at the time of publication. MIGUEL J. BAGAJEWICZ PhD, AIChe, Professor, University of Oklahoma, Norman, Oklahoma, U.S.A. CHET S. BARTON PE, BSEE, Senior Process Automation Engineer, Jacobs Engineering, Baton Rouge, Louisiana, U.S.A. JONAS BERGE Engineer, Smar, Singapore PETER GRAHAM BERRIE BScE, PhD, AIChe, Marketing Communications, Endress+Hauser Process Solutions AG, Reinach, Switzerland VIPUL A. BHAVSAR BE (I&C), Diploma in Management, Consultant–Control Systems Engineer, Canada STUART A. BOYER PE, BSc, EE, President, Iliad Engineering, Inc., Canada GEORGE C. BUCKBEE PE, BSChE, MSChE, Control Engineer, Top Control, Clarks Summit, Pennsylvania, U.S.A. ERIC J. BYRES PE, Research Faculty, British Columbia Institute of Technology, Canada DANIEL E. CAPANO President, Diversified Technical Services, Inc., Stamford, Connecticut, U.S.A. RICHARD H. CARO BchE, MS, MBA, CMC Associates, Acton, Massachusetts, U.S.A. HARRY L. CHEDDIE PE, BSc, Principal Engineer, Exida.com, Sarnia, Ontario, Canada SCOTT C. CLARK BS, ChE, Project Engineer, Merck & Co., Inc., Elkton, Virginia, U.S.A. ASGEIR DRØIVOLDSMO MS, Research Scientist, OECD Halden Reactor Project, Halden, Norway SHIBI EMMANUEL MTech, BTech, Head of I&C, Dar Al Riyadh Consultants, Al Khobar, Saudi Arabia HALIT EREN BSc, MEng, PhD, MBA, Senior Lecturer, Curtin University of Technology, Perth, Australia LUDGER FÜCHTLER Dipl. Eng., Marketing Manager, Endress+Hauser Process Solutions AG, Reinach, Switzerland 1082_frame_FM Page ix Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 12. x Contributors BRUCE J. GEDDES PE, BSME, Framatome ANP DE&S, Charlotte, North Carolina, U.S.A. JOHN PETER GERRY PE, BSChE, MSChE, President, ExperTune, Inc., Hubertus, Wisconsin, U.S.A. ASISH GHOSH CE, MIEE, Independent Consultant, Wrentham, Massachusetts, U.S.A. IAN H. GIBSON BSc, Dipl. ChE, Dipl. Inst.Tech., Principal Technical Specialist-Process & Control Systems, Fluor Australia Pty Ltd, Melbourne, Australia HASHEM MEHRDAD HASHEMIAN MSNE, ISA Fellow, President, Analysis and Measurement Services Corp., Knoxville, Tennessee, U.S.A. HEROLD I. HERTANU PE, MSEE, President, HLP Associates, New York, U.S.A. KARLENE A. HOO BS, MS, PhD,AIChe,Associate Professor, Texas Tech University, Lubbock, Texas, U.S.A. MICHAEL FRANK HORDESKI PE, BSEE, MSEE, Consultant, Jablon Computer, Atascadero, California, U.S.A. JAMES E. JAMISON PE, BScChE, Senior Lead Instrument and Process Control Engineer, Bantrel, Inc., Calgary, Canada KLAUS H. KORSTEN Dipl. Eng., Marketing Manager, Endress+Hauser Process Solutions AG, Reinach, Switzerland KLAUS-PETER LINDNER Dipl. Info., New Technology Specialist, Endress+Hauser Process Solutions AG, Reinach, Switzerland BÉLA G. LIPTÁK PE, MME, Consultant, ISA Fellow and recipient of Process Automation Hall of Fame award for 2001, Stamford, Connecticut, U.S.A. MICHAEL N. LOUKA BS, Section Head, IFE Halden Virtual Reality Centre, Halden, Norway M. SAM MANNAN PE, CSP, PhD, AIChe, Professor of Chemical Engineering, Texas A&M University, College Station, Texas, U.S.A. EDWARD M. MARSZAL PE, BSChE, Principal Engineer, Exida, Columbus, Ohio, U.S.A. GREGORY K. McMILLAN BSEngPhy, MSEE,Adjunct Professor, Washington University, St. Louis, Missouri, U.S.A. DANIEL MIKLOVIC BSEE, MSSM, CMFgE, Vice President and Research Director, Gartner, Sammamish, Washington, U.S.A. DOUG MORGAN BSChE, Project Engineer, Control Systems International, Irvine, California, U.S.A. MICHAEL J. PIOVOSO PE, BSEE, MSEE, PhD, Associate Professor, Pennsylvania State University, Malvern, Pennsylvania, U.S.A. WALLACE A. PRATT, JR. BSEE, Chief Engineer, HART Communication Foundation, Austin, Texas, U.S.A. ALBERTO ROHR EE, Dr. Ing., Consultant, Vedrano al Lambro (MI), Italy DERRICK KEITH ROLLINS, SR. BS, MS, PhD, AIChe, Associate Professor, Iowa State University, Ames, Iowa, U.S.A. MICHEL RUEL PE, BScA, President, TOP Control, Inc., Hubertus, Wisconsin, U.S.A. 1082_frame_FM Page x Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 13. Contributors xi GURBINDER B. SINGH BE, MBA, MCSE, Consultant—Control Systems Engineer, Chicago, Illinois, U.S.A ROBERT J. SMITH II BSEET, Electrical & Instrumentation Engineer/Information Technology Manager, Associated Professional Engineering Consultants, Inc., Cincinnati, Ohio, U.S.A. DAVID A. STROBHAR PE, BSHFE, President, Beville Engineering, Inc., Dayton, Ohio, U.S.A. ANGELA ELAINE SUMMERS PE, PhD, AIChe, President, SIS-TECH Solutions, LLC, Houston, Texas, U.S.A. G. KEVIN TOTHEROW BSEE, President, Sylution Consulting, Jesup, Georgia, U.S.A. ANN TUCK BSME, Control Systems Assistant Chief Engineer, Bechtel Corporation, Frederick, Maryland, U.S.A. IAN VERHAPPEN PE, BScE, Engineering Associate, Syncrude Canada Ltd, Fort McMurray, Alberta, Canada STEFANO VITTURI Dr. Eng., Researcher, CNR-LADSEB, Padova, Italy HARRY H. WEST PE, CSP, PhD, AIChe, Adjunct Professor of Chemical Engineering, Texas A&M University, College Station, Texas, U.S.A. 1082_frame_FM Page xi Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 14. xiii P R E F A C E THE MATURING OF THE I&C PROFESSION The first volume of the Instrument Engineers’ Handbook (ΙΕΗ ) described the devices and methods used in performing automatic industrial process measurement and analysis. The second volume of the IEH dealt with automatic process con- trol devices and systems used in our various industries. This third volume of the IEH provides an in-depth, state-of-the- art review of all the existing and evolving digital communi- cation and control systems. Although the transportation of digital information by buses and networks is a major topic in this volume, the total coverage of the volume includes much more. This volume also describes a variety of process control software packages, which are used in plant optimi- zation, maintenance, and safety-related applications. A full chapter is assigned to plant design and updating, while safety and operations-related logic systems and the design of inte- grated workstations and control centers are also emphasized. The volume concludes with a substantial appendix, providing such practical information as bidders’ lists and addresses, steam tables, materials selection for corrosive services, and much more. It is hoped that the publication of this third volume of the IEH will contribute to increasing the safety and efficiency of all control systems. Although in the previous editions of the IEH we have advocated the use of intelligent self-monitoring and self-diagnosing instrumentation, now it seems that the time has come to take the next step and aim for unattended and self- optimizing industrial control systems. It is time to proceed from the level of self-monitoring and self-diagnosing packages to self-healing systems requiring a minimum of maintenance. Ours is a relatively young profession. I do hope that this third volume of the IEH will also improve the respectability and professional standing of the instrumentation and control (I&C) profession, which is still evolving. Yet, if we compare the professional standing and the self-image of instrumentation and control engineers to those of, for example, mechanical or chemical engineers, we find ourselves at a disadvantage. The list of disadvantages starts at the universities, which offer ME or ChE degrees, but not too many of them offer degrees in I&C engineering. Some do not even have an I&C department. Even those that do often tend to treat control as if it were a subfield of mathematics.At such universities control issues are often discussed in the “frequency domain,” and control problems are analyzed by using partial differential equations and Laplace transfer functions. Under such condi- tions, the engineering students, when first exposed to the field of process control, often receive the wrong impression of what the I&C profession is all about. Our engineering societies could also do a better job to improve our professional image. The main goal of such engi- neering societies as ASME or AIChE is to serve the profes- sional development of their members. These societies focus on preparing scientific publications, on generating high-quality engineering standards, or on organizing courses aimed at assist- ing the professional advancement of their members. In contrast to that, the leadership of some I&C societies is dominated not by the users, but by the manufacturers, and focuses not on the professional advancement of their members, but on serv- ing the commercial interests of the vendors. The differences between the professional standings of I&C and other engineering disciplines are also visible in most operating plants, where one has no difficulty in finding a resident ME or ChE, but when one asks for the resident I&C engineer, the answer often is, “We have only instrument maintenance technicians, the vendors take care of our instru- ment engineering.” This shows an elementary lack of under- standing of the most basic requirement of good control. It is that in order to properly control a process, one must fully understand its unique personality, and vendors can sel- dom, if ever, do that. Another observable difference is demonstrated by the bookshelves of the members of the different engineering disciplines. If one walks into the office of an ME, it is likely that one will see one or more editions of Marks’ Handbook on the bookshelf. The same holds true for the offices of ChEs, except that there it will be Perry’s Handbook on the book- shelves. In contrast, the bookshelves of most I&C engineers are likely to be flooded by vendors’ catalogs but few profes- sional handbooks are likely to be seen there. 1082_frame_FM Page xiii Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 15. xiv Preface FRIDAY’S NOTES Having painted this rather dark picture, I should bring the topic of our professional standing into its proper perspective. We all know that it takes time for an engineering profession to mature, and we also know that I&C is a very young profes- sion. I will try to demonstrate the youth of our profession by using the example of my handbook. In 1962, at the age of 26, I became the Chief Instrument Engineer at Crawford & Russell, an engineering design firm specializing in the building of plastics plants. C&R was grow- ing and my department also had to grow. Yet, at the age of 26 I did not dare to hire experienced people, because I did not think that I could lead and supervise older engineers. Yet the department had to grow, so I hired fresh graduates from the best engineering colleges in the country. I picked the smartest graduates and, having done so, I obtained permis- sion from the C&R president, Sam Russell, to spend every Friday afternoon teaching them. In a few years my department had not only some outstand- ing process control engineers, but C&R also saved a lot on their salaries. By the time I reached 30, I felt secure enough to stop disguising my youth. I shaved off my beard and threw away my thick-rimmed, phony eyeglasses. I no longer felt that I had to look older, but all the same, my Friday’s notes still occupied a 2-ft-tall pile on the corner of my desk. In the mid-1960s an old-fashioned Dutch gentleman named Nick Groonevelt visited my office and asked: “What are all those notes?” When I told him, he asked: “Does your profession have a handbook?” I answered with my own ques- tion: “If it did, would I be teaching from these notes?” (Actu- ally, I was wrong in giving that answer, because Behar’s Handbook of Measurement and Control was already avail- able, but I did not know about it.) “So, let me publish your notes and then the instrument engineers will have a hand- book,” Nick proposed, and in 1968 the first edition of the Instrument Engineers’ Handbook was published. In 1968, the Soviet tanks, which I fought in 1956, were besieging Prague, so I decided to dedicate the three volumes of the IEH to the Hungarian and Czech freedom-fighters. A fellow Hungarian–American, Edward Teller, wrote the pref- ace to the first edition, and Frank Ryan, the editor of ISA Journal, wrote the introduction. My co-authors included such names as Hans Baumann, Stu Jackson, Orval Lovett, Charles Mamzic, Howard Roberts, Greg Shinskey, and Ted Williams. It was an honor to work with such a team. In 1973, because of the great success of the IEH, I was elected to become the youngest ISA fellow ever. But the fact still remains that ours is a very young profession: when the IEH came out, Marks’ and Perry’s handbooks were in their fifth or sixth editions! PROGRESS The third edition of the IEH was initially planned for three volumes. They were to cover the subjects of process meas- urement, process control, and process software. Chilton pub- lished the first two volumes in 1995. The publishing process was then interrupted when Walt Disney acquired Chilton in 1996. I could do nothing but wait for work on the series to resume. In October 2000, CRC Press obtained the rights to publish the third volume. This delay, though unfortunate, also had some positive consequences. First, CRC agreed with ISA to market the IEH jointly. Second, the onset of the age of digital communica- tions made it possible for me to find the best experts in the world for every key topic in this volume. This was an impor- tant consideration because the three volumes of the IEH explore nearly 1000 diverse topics from anenometers to weirs and from controlling airhandlers to controlling wastewater treatment processes. Finding the best authors possible in an efficient manner would have been next to impossible before the Internet. Now, as I start to invite co-authors for the fourth edition of this handbook, the Internet continues to be an invaluable research and communication tool. By the click of a button (liptakbela@aol.com) experts residing anywhere in the world can also contact me and offer to contribute to the IEH, thus sharing their knowledge, accumulated over a lifetime, with the international community of I&C professionals. THE FUTURE When Yale University invited me to teach I&C, I did not like it that my course was being offered by its chemical engineer- ing department, because Yale did not have an independent I&C department. On the other hand, I was pleased that I was allowed to discuss control theory in the “time domain.” Therefore, I used no mathematical abstractions, partial dif- ferential equations, or Laplace transfer functions. Instead, I talked about easily understandable terms like transportation lags and capacities, dead times, and time constants. In short, the course I gave was down to earth and practical. It was based on my old “Friday’s notes.” So, while teaching I&C in a ChE department was unfortunate, teaching I&C in the time domain, and not in the frequency domain, was a step forward. In working with the publishers of the IEH over the past decades, I was also reminded of the unrecognized nature of the I&C profession. Between the various editions, I have seen the IEH promoted in the categories of chemical engineering, electrical engineering, and computer engineering books, but seldom in its own category. This, too, has bothered me. It just seems to be taking too long to recognize that I&C is a separate and distinct profession. When CRC agreed to a joint publication with ISA, this was a small but significant step toward gaining full recognition for our slowly maturing I&C profession. In general, it is high time for our universities and publish- ers to recognize the existence of instrument engineering as a distinct and respectable profession. It is time for industrial management to understand that the availability of in-house 1082_frame_FM Page xiv Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 16. Preface xv instrument engineering know-how is essential. It is time for instrument societies to focus less on the advertising dollars from the vendors and more on helping the users by providing education and standardization. It is hoped that in the long run these steps will help in gaining the deserved respect for our slowly maturing I&C profession. DIGITAL SYSTEMS In the past, we first standardized on the pneumatic signal range of 3 to 15 PSIG and later on the electronic transmission and control signal range of 4–20 mA DC. As we move from the analog to the digital age, we also need a uniform world- wide standard for digital signals, which is universal. We need a fully open network, one that is not based on any particular vendor’s standard. Yet today, there exist some 30 digital pro- tocols, which all call themselves fieldbuses. What the Inter- national Electrotechnical Commission (IEC) did was not to issue a single standard, but simply to take the conglomeration of eight of these disparate, proprietary, non-interoperable vendors’standards and combine them into a single document (IEC 61158). This is intolerable! This is like expecting to run a plant from a control center in which eight operators might speak eight different languages. While some progress has been made in providing an Open System Interconnect (OSI) model and while most vendors support Ethernet-TCP/IP (transmission control protocol/ Internet protocol) connectivity at the business interface level, much remains to be done. With the passage of time, interop- erability among the field device network front runners (Foun- dation Fieldbus, HART, and PROFIBUS-PA/DP) has also improved, but (because of the war for the dominance at the field level of the application layer) interoperability still remains a marketing term of blurred meaning. This is more than undesirable! This is unsafe! The responsibility of the I&C engineering societies and of this handbook of mine is nothing less, but to work for a truly open and universal digital network standard. Greg Shinsky was right when he warned that smart con- trollers alone cannot solve the problem of dumb users. No, the problem of dumb users can only be solved by education and by placing the interests of the profession ahead of those of individual manufacturers. To achieve that goal, both the various I&C engineering societies (including ISA) and our publications, such as my handbook, have important roles to play. If we all pitch in, we can improve not only the next edition of the IEH and the professional atmosphere at ISA, but we can also increase the respectability and maturity of the instrument engineering profession as a whole. CONTROL OF NON-INDUSTRIAL PROCESSES A few years ago a group of social scientists invited me to Harvard University to talk about the control of non-industrial processes. I started the lecture by listing the information that we need about any process, before we can start designing a system to control it. Among the information needed, I men- tioned the set point and the manipulated variable (the control valve), which we must have to build a control loop. As an example, I mentioned that, if we wanted to build a control loop, which would control the population of our planet, we would have to agree on both a “set point” and a “manipulated variable” for it. I am not saying that it is necessarily up to us humans to control the population of the world. What I am saying is that we have not even agreed on the desired set point or on the manipulated variable for such a loop! Someone from the audience interrupted me at this point and asked about the control modes for such a population con- troller. “Should the controller be proportional and integral (as in the case of level control) or proportional and derivative (as in the case of batch neutralization)?” he asked. “One should only start thinking about control modes when the loop itself exists, not before,’’ I responded. Therefore, humankind will first have to decide if there is a maximum limit to the total population of our planet (set point). Once there is general agree- ment on that, we will have to agree on the manipulated vari- ables (on the means to be utilized to keep the population below that limit). Reaching such agreements will not be easy because the derivative settings of our political institutions (anticipation into the future) are very short (usually only 4 years) and because there is no past precedent in our culture for making decisions of such magnitude. Controlling Evolution It is difficult for us to be concerned about events that are likely to occur after we are dead. It is difficult, because human evolution in the past has been under the control of nature and it is hard for us to accept that we too are responsible for the future of the planet. I do not mean to suggest that we have “conquered nature” or that we are controlling our own evolution. No, that is not the case! The Creator has placed nature in the driver’s seat of all evolutionary processes on this planet. Yet, He has permitted humans to change some of nature’s conditions. For example, He allowed humans to min- imize the discomforts caused by the weather and also allowed us to reduce the time it takes to travel, by using up some of the exhaustible resources of the planet. Therefore, if humankind fails to come up with a set point and a manipulated variable for the population control loop, nature is likely to select and implement it for us. One can only hope that there is enough derivative (enough anticipation of future events) in our combined wisdom to prevent that from happening, because if we wait for nature to close the population control loop, the “throttling” will neither be smooth nor gradual. “So, in order to control population, we need to modify human attitudes, human culture?” asks a balding gentleman. “Yes, we can view the relationship between culture and population control as a cascade loop, where culture is the master controller which is herding a number of slave loops, one of them being population,” I responded. 1082_frame_FM Page xv Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 17. xvi Preface Controlling Cultural and Social Processes Culture is a mostly dead-time process. It takes 10 to 20 years for a child to form his or her opinions and values. At the beginning of our individual lives, every child’s mind is a blank page. Our moral and ethical standards are inscribed by our churches, our schools, by the media, and by the examples of our role models, most importantly by our parents. To understand culture as a controllable process, we must also realize that culture is the sum total of all the beliefs and convictions of all members of our society. For a society to function smoothly, at least three genera- tions should share the same moral and ethical values. When the prevailing culture changes faster, this can result in a difference between the moral standards of the generations. As a consequence of cultural conflicts between societies of different nations or among the generations of the same nation, “their manipulated variables will interact.” These interactions can be desirable (elimination of prejudices, clarifying envi- ronmental interrelationships) or undesirable (materialism, selfishness, amoral or cynical attitudes). Whatever the nature of the changes, “de-coupling of the loops” is necessary, if society is to function smoothly and effectively. Therefore, the methods used in de-coupling the interacting control loops can also be used in controlling social or cultural processes. Economic and Political Processes De-coupling is also needed when the interests of various segments of society collide. As long as the de-coupling (con- flict resolution) can be subordinated to the shared ethical and moral standards of society (“one nation under God,” “all men are created equal,” etc.), a hierarchical control system (multi- layered cascade) will function properly. On the other hand, problems will arise if the set point (the moral standards of this shared cascade master) becomes fuzzy. Such fuzziness is occurring right now, because business is already “global- ized” while the political, legal, educational, or other institu- tions are not. It is the fuzziness of this cascade master that allows perfectly moral and ethical individuals to purchase goods made by child labor in environmentally polluting plants. Such fuzziness could be eliminated by inserting a slave control loop (implemented by, say, a color-coded label on all imported goods). I also talked about the importance of the degrees of free- dom of the controlled process. The number of these degrees identifies the number of process variables that can be inde- pendently controlled (in case of a train—one, ship—two, etc.). If we try to control more variables than the number of degrees of freedom that the process has, the control loops will fight each other and the controlled process will become unstable. This discussion of degrees of freedom led to questions related to controlling such complex processes as the economy and the political system. HERDING AND ENVELOPE CONTROLS In multivariable processes one cannot use a single set point, but must implement either a “herding” or an “envelope” control configuration. When implementing herding control, all controlled variables are observed simultaneously and con- tinuously, but correction is applied to only one variable at a time. The selected control variable is the one that is farthest away from where it should be. A herding loop does the same thing that a herding dog does when it is herding 1000 sheep by going after one sheep at a time (by manipulating only one variable at a time), the one that is farthest away from the desired overall goal or aim of the control system. Envelope control is different. Here, an allowable gap (upper and lower limits) is assigned to each controlled vari- able. From the totality of these gaps, a multidimensional control envelope results. If all the controlled variables are inside this envelope, no corrective action is taken. If a con- trolled variable drifts to one of the boundaries of the enve- lope, a correction is initiated. Envelope control is best suited for controlling the econ- omy, because our overall economic well-being is a function of several variables of similar importance (unemployment, inflation, corporate profits, interest rates, budget deficits, etc.). In contrast, the herding control model is more suitable for political process, because in that process, one consideration is more important that all the others. This critical consideration is to guarantee that all votes have the same weight. In controlling the political process all other variables should be subordinated to this one goal, and all variables should be herded in the direction of guaranteeing equal influ- ence to all well-informed voters. In this sense, the one-party systems completely eliminate all degrees of freedom, while the two-party systems are superior, but still restrictive. This control analysis suggests that maximizing the degrees of free- dom of the political process would also optimize it. If that conclusion is correct, then the public financing of the campaigns of all acceptable political candidates and the elimination of private contributions could be a step in the right direction. NATIONALISM AND GLOBALIZATION It was already noted that the “dead-time” of forming cultural attitudes and cultural loyalties can take decades. It is worth noting that our loyalty to “our culture” and to the traditions of our extended family (our nation) harms no one. It is a form of healthy loyalty, which should never be given up or exchanged. Yet, this loyalty should not stand in the way of developing other loyalties. A person with multiple loyalties is a richer and happier person. If one can maintain one’s 100% loyalty to one’s own culture while simultaneously developing an understanding and respect for another, that person has become a richer individual, a 200% person. Understanding and accepting this 1082_frame_FM Page xvi Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 18. Preface xvii will be the great test of the “globalization process.” Global- ization can aim for a multicultural and hence richer global society, but it can also result in a uniformly commercialized and hence poorer culture for all people. The choice is ours, but to control the globalization process, we must also under- stand its time constants, which in case of electronic com- merce can be seconds, while in the cases of culture or ethical and moral standards can be decades or even centuries. MATCHING OF TIME CONSTANTS Similarly to the control of culture, the time constants of global biology and its relationship with the preservation of the species must also be understood. For example, it takes thousands of years to displace the waters in all the oceans only once. Therefore, the irreversible consequences of the pollutants that we are discharging into our receiving waters today might not fully evolve for a couple of millennia. The time constants of the processes involving atmospheric pollution and global warming are similarly long and just as poorly understood. The time requirements of switching to nonpolluting and inexhaustible energy sources are also critical. We do not know which of the proposed inexhaustible processes will ultimately replace the fossil fuels as our new, long-term energy supply. We do not know which of a dozen proposals will eventually work. We do not know if solar energy, collected by artificial islands around the equator will fuel a hydrogen-based econ- omy or we will “burn” the carbon dioxide in the air, use solar cells, wind turbines, or what. What we do know is that fossil fuels are exhaustible, that the disposal problems associated with nuclear waste are unsolved and that the time needed to develop an economy based on nonpolluting and inexhaustible energy sources is long. So the wisdom of process control would suggest that we had better get started! We will only be able to adjust our actions to protect and serve the future generations when we fully understand the time constants of the cultural and physical processes of our planet. To do that, it is not only necessary to understand the basic principles of process control but it is also necessary to help the process control profession gain the kind of respect and maturity that it deserves. The goal of the three volumes of the Instrument Engi- neers’ Handbook is nothing less than that. I do hope that your verdict will be that the co-authors of these volumes have made an important contribution to increasing the respectabil- ity of the I&C profession. Béla G. Lipták (E-mail: Liptakbela@aol.com) 1082_frame_FM Page xvii Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 19. xix D E F I N I T I O N S AMPACITY The current (amperes) a conducting system can support without exceeding the temperature rating assigned to its configuration and application. ATTENUATION Loss of communication signal strength. BACKPLANE Physical connection between individ- ual components and the data and power distribution buses inside a chassis. BALUN Balanced/unbalanced. A device used for matching characteristics between a balanced and an unbalanced medium. BANDWIDTH Data-carrying capacity, the range of fre- quencies available for signals. The term is also used to describe the rated through- put capacity of a given network medium or protocol. BASEBAND A communication technique where only one carrier frequency is used to send one signal at a time. Ethernet is an example of a baseband network. Also called nar- rowband. Contrast to broadband. BONDING The practice of creating safe, high- capacity, reliable electrical connec- tivity between associated metallic parts, machines, and other conductive equipment. BROADBAND A communication technique that mul- tiplexes multiple independent signals simultaneously, using several distinct carriers. A common term in the tele- communications industry to describe any channel with a bandwidth greater than a voice-grade channel (4 kHz). Also called wideband. Contrast to baseband. CAPACITANCE The amount of charge, in coulombs, stored in a system necessary to raise the potential difference across it 1 V; represented by the SI unit farad. DATA SERVERS A standard interface to provide data exchange between field devices and data clients. DEMULTIPLEXING Separating of multiple input streams that were multiplexed into a common physical signal back into multiple out- put streams. DEVICE DESCRIPTION A clear and unambiguous, structured text description that allows full utiliza- tion/operation of a field device by a host/master without any prior knowl- edge of the field device. ETHERNET A baseband local area network specifi- cation developed by Xerox Corporation, Intel, and Digital Equipment Corpora- tion to interconnect computer equipment using coaxial cable and transceivers. FIELDBUS An all-digital, two-way, multidrop com- munications system for instruments and other plant automation equipment. FIREWALL Router or access server, designated as a buffer between any public networks and a private network. GROUND A conducting connection, whether intentional or accidental, between an electrical circuit or equipment and the earth, or to some conducting body that serves in place of earth. (See NFPA 70- 100.) GROUND FAULT PROTECTOR Device used to open ungrounded con- ductors when high currents, especially those due to line-to-ground fault cur- rents, are encountered. HOME RUN WIRING Wire between the cabinet where the fieldbus host or centralized control system resides and the first field junc- tion box or device. HUB (SHARED) Multiport repeater joining segments into a network. 1082_frame_FM Page xix Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 20. xx Definitions IMPEDANCE Maximum voltage divided by maxi- mum current in an alternating current circuit. Impedance is composed of resistive, inductive, and capacitive components. Like direct current cir- cuits, the quantity of voltage divided by current is expressed in ohms. INTERFACE (1) Shared boundary. For example, the physical connection between two sys- tems or two devices. (2) Generally, the point of interconnection of two compo- nents, and the means by which they must exchange signals according to some hardware or software protocol. INTEROPERABILITY A marketing term with a blurred mean- ing. One possible definition is the abil- ity for like devices from different man- ufacturers to work together in a system and be substituted one for another with- out loss of functionality at the host level (HART). LAMBDA The desired closed-loop time constant, often set to equal the loop lag time (λ). LATENCY Latency measures the worst-case max- imum time between the start of a trans- action and the completion of that trans- action. LINE DRIVER Inexpensive amplifier and signal con- verter that conditions digital signals to ensure reliable transmissions over extended distances without the use of modems. MANCHESTER A digital signaling technique that con- tains a signal transition at the center of every bit cell. MODEM Modulator-demodulator. Device that converts digital and analog signals. At the source, a modem converts digital signals to a form suitable for transmis- sion over analog communication facil- ities. At the destination, the analog sig- nals are returned to their digital form. Modems allow data to be transmitted over voice-grade telephone lines. MULTIPLEXING Scheme that allows multiple logical signals to be transmitted simulta- neously across a single physical chan- nel. Compare with demultiplexing. NETWORK All media, connectors, and associated communication elements by which a given set of communicating devices are interconnected. A network may consist of several segments joined by repeat- ers. Networks may be joined using bridges. PLENUM Air distribution ducting, chamber, or compartment. PROTOCOL Formal description of a set of rules and conventions that govern how devices on a network exchange information. RACEWAY A general term for enclosed channels, conduit, and tubing designed for hold- ing wires, cables, or busbars. SEGMENT The section of a network that is termi- nated in its characteristic impedance. Segments are linked by repeaters to form a complete network. SERVICE Term used by NFPA-70 (NEC) to demarcate the point at which utility electrical codes published by IEEE (NESC) take over. Includes conductors and equipment that deliver electricity from utilities. SMART FIELD DEVICE A microprocessor-based process trans- mitter or actuator that supports two- way communications with a host; dig- itizes the transducer signals; and digi- tally corrects its process variable values to improve system performance. The value of a smart field device lies in the quality of data it provides. STICTION Combination of sticking and slipping when stroking a control valve. SUBCHANNEL In broadband terminology, a fre- quency-based subdivision creating a separate communications channel. SWITCHED HUB Multiport bridge joining networks into a larger network. THROUGHPUT Throughput is the maximum number of transactions per second that can be communicated by the system. TIMEOUT Event that occurs when one network device expects to hear from another net- work device within a specified period of time, but does not. The resulting tim- eout usually results in a retransmission of information or the dissolving of the session between the two devices. TOPOLOGY Physical arrangement of network nodes and media within an enterprise net- working structure. 1082_frame_FM Page xx Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 21. xxi A B B R E V I A T I O N S , N O M E N C L A T U R E , A C R O N Y M S , A N D S Y M B O L S 2D two dimensional 3D three dimensional A a acceleration A (1) area; (2) ampere, symbol for basic SI unit of electric current; also amp Å Ångstrom (=10–10 m) abs absolute (e.g., value) AC, ac, or a-c alternating current ACFM volumetric flow at actual conditions in cubic feet per minute (=28.32 alpm) ACL asynchronous connection-less ACMH actual cubic meter per hour ACMM actual cubic meter per minute ACS analyzer control system ACSL advanced continuous simulation language A/D analog to digital ADIS approved for draft international standard circulation A&E alarm and event AF or a-f audio frequency AGA3 American Gas Association Report 3 AI analog input a(k) white noise ALARP as low as reasonably practicable alt altitude amp ampere; also A, q.v. AMPS advanced mobile phone system or service AMS asset management solutions AO analog output AP access point APC automatic process control APDU application (layer) protocol data unit API application programming interface or abso- lute performance index °API API degrees of liquid density APM alternating pulse modulation ARA alarm response analysis ARIMA autoregressive integrated moving average ARP address resolution protocol ASCII American Standard Code for Information Interchange AS-i actuator sensor interface ASIC application specific integrated chips ASK amplitude shift keying asym asymmetrical; not symmetrical atm atmosphere (=14.7 psi) AUI attachment unit interface aux auxiliary AWG American wire gauge B b dead time °Ba Balling degrees of liquid density bar (1) barometer; (2) unit of atmospheric pres- sure measurement (=100 kPa) barg bar gauge bbl barrels (=0.1589 m3) BCD binary coded decimal BCS batch control system °Bé Baumé degrees of liquid density BFW boiler feed water bhp or b.h.p. braking horsepower (=746 W) °Bk Barkometer degrees of liquid density blk black (wiring code color for AC “hot” con- ductor) bp or b.p. boiling point BPCS basic process control system bps bits per second BPSK binary phase shift keying Bq becquerel, symbol for derived SI unit of radioactivity, joules per kilogram, J/kg °Br Brix degrees of liquid density B2B business to business BTU British thermal unit (=1054 J) BWG Birmingham wire gauge C c (1) velocity of light in vacuum (3 × 108 m/s); (2) centi, prefix meaning 0.01 1082_frame_FM Page xxi Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 22. xxii Abbreviations, Nomenclature, Acronyms, and Symbols C coulombs °C Celsius degrees of temperature ca. circa: about, approximately CAC channel access code CAD computer-aided design cal calorie (gram, =4.184 J); also g-cal CAN control area network or control and auto- mation network CATV community antenna television (cable) CBM condition-based maintenance cc cubic centimeter (=10–6 m3) CCF common cause failure ccm cubic centimeter per minute CCR central control room ccs constant current source CCS computer control system cd candela, symbol for basic SI unit of lumi- nous intensity CD compact disk, compel data, or collision detector CD dangerous coverage factor CDF cumulative distribution function CDMA code division multiple access CDPD cellular digital packet data CEMS continuous emissions monitoring system CENP combustion engineering nuclear power CFM or cfm cubic foot per minute (28.32 lpm) CF/yr cubic foot per year Ci curie (=3.7 × 1010 Bq) CI cast iron CIM computer-integrated manufacturing CIP computer-aided production or control and information protocol (an application layer protocol supported by DeviceNet, Control- Net, and Ethernet/IP) CLP closed-loop potential factor cm centimeter (=0.01 m) CM condition monitoring CMMS computerized maintenance management system CMPC constrained multivariable predictive control CMOS complementary metal oxide semiconductor cmph cubic meter per hour CNC computerized numerical control CNI ControlNet International CO controller output COM component object model COTS commercial off-the-shelf cos cosine, trigonometric function cp or c.p. (1) candle power; (2) circular pitch; (3) center of pressure (cp and ctp may also be used for centipoises) cpm cycles per minute; counts per minute cps (1) cycles per second (=Hz); (2) counts per second; (3) centipoises (=0.001 Pa.s) CPS computerized procedure system CPU central processing unit CRC cyclical redundancy check or cyclic redun- dancy code (an error detection coding technique based upon modulo-2 division. Sometimes misused to refer to a block check sequence type of error detection coding) CRLF carriage return-line feed CRT cathode ray tube CS carbon steel CSMA/CD carrier sense, multiple access with collision detection CSS central supervisory station cSt centistoke CSTR continuous-stirred tank reactor CTDMA concurrent time domain multiple access cvs comma-separated variables D d (1) derivative; (2) differential as in dx/dt; (3) deci, prefix meaning 0.1; (4) depth; (5) day D diameter; also dia and φ or derivative time of a controller DA data access D/A digital to analog DAC device access code; digital-to-analog con- verter DAE differential algebraic equation DAMPS digital advanced mobile phone system or service dB decibels DBPSK differential binary phase shift keying DC diagnostic coverage DC or dc direct current DCE data communications equipment DCOM distributed COM DCS distributed control system DD data definition or dangerous component failure is detected in a leg, or a device description written in using DDL DDC direct digital control DDE dynamic data exchange DDL device description language (an object- oriented data modeling language currently supported by PROFIBUS, FF, and HART) deg degree; also °(π/180 rad) DEMUX demultiplexer DES data encryption standard DFIR diffused infrared DG directed graph DH data highway DI discrete (digital) input dia diameter; also D and φ DIAC dedicated inquiry access code DIR diffused infrared DIS draft international standard 1082_frame_FM Page xxii Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 23. Abbreviations, Nomenclature, Acronyms, and Symbols xxiii DIX Digital-Intel-Xerox (DIX is original spec- ification that created the de facto Ethernet standard; IEEE 802.3 came later after Ethernet was well established) d(k) unmeasured disturbance D(k) measured disturbance DLE data link escape DLL dynamic link library DMM digital multimeter DO dissolved oxygen or discrete (digital) output DP decentralized periphery d/p cell differential pressure transmitter (a Foxboro trademark) DPDT double pole double throw (switch) DQPSK differential quadrature phase shift keying DSL digital subscriber line DSR direct screen reference DSSS direct sequence spread spectrum DT dead time (seconds or minutes) DTE data terminal equipment DTM device type manager (an active-X compo- nent for configuring an industrial network component; a DTM “plugs into” an FDT) DU dangerous component failure occurred in leg but is undetected DVM digital voltmeter E e (1) error; (2) base of natural (Naperian) logarithm; (3) exponential function; also exp (–x) as in e–x E (1) electric potential in volts; (2) scientific notation as in 1.5E–03 = 1.5 × 10–3 E{.} expected value operator EAI enterprise application integration EAM enterprise asset management EBCDIC extended binary code for information inter- change EBR electronic batch records EDS electronic data sheet (DeviceNet) E/E/PE electrical/electronic/programmable electronic E/E/PES electrical/electronic/programmable electronic system EFD engineering flow diagram e.g. exempli gratia: for example EHC electrohydraulic control EHM equipment health management E&I electrical and instrumentation e(k) feedback error E.L. elastic limit emf (1) electromotive force (volts); (2) electro- motive potential (volts) EMI electromagnetic interference EMI/RFI electromagnetic and radio-frequency inter- ference em(k) process/model error EN European standard EPA enhanced performance architecture EPC engineering-procurement-construction (firm) EPCM engineering, procurement, and construc- tion management (companies) EQ or eq equation ERM enterprise resource manufacturing ERP enterprise resource planning or effective radiated power ESD emergency shutdown (system) ESN electronic serial number exp exponential function as in exp (−at) = e–at; also e F f frequency; also freq F farad, symbol for derived SI unit of capac- itance, ampere⋅second per volt, A⋅s/V °F Fahrenheit degrees [t°C = (t°F − 32)/1.8] FAT factory acceptance testing FBAP function block application process (FF) FBD function block diagram FCC fluidized catalytic cracker FCOR filtering and correlation (method) FCS frame check sequence FDE fault disconnection electronics FDL fieldbus data link FDMA frequency division multiple access FDT field device tool (an MS-Windows-based framework for engineering and configura- tion tools) FE final elements FEED front end engineering and design FES fixed end system FF or F.F. Foundation Fieldbus FF-HSE Foundation Fieldbus, high-speed Ethernet FH frequency hopping fhp fractional horsepower (e.g., 1/4 HP motor) FHSS frequency hopped spread spectrum FIFO first-in, first-out Fig. figure FISCO Fieldbus Intrinsic Safety COncept fl. fluid fl.oz. fluid ounces (=29.57 cc) FMEA failure mode and effects analysis FMS fieldbus message specification or fieldbus messaging services/system FNC function byte FO fiber optic FOP fiber-optic probe fp or f.p. freezing point FPM or fpm feet per minute (=0.3048 m/min) fps or ft/s feet per second (=0.3048 m/s) FRM frequency response method FS or fs full scale 1082_frame_FM Page xxiii Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 24. xxiv Abbreviations, Nomenclature, Acronyms, and Symbols FSC fail safe controller FSK frequency shift keying FTA fault tree analysis FTP file transfer protocol FTS fault tolerant system G g acceleration due to gravity (=9.806 m/s2) G giga, prefix meaning 109 or process gain gal gallon(s) (=3.785 liters) GB giga-byte, 1,000,000,000 bytes GbE gigabit Ethernet gbps gigabits per second Gc feedback controller transfer function g-cal gramcalorie; also cal, q.v. Gd unmeasured disturbance transfer function GD measured disturbance transfer function GD approximate feedforward transfer function model GEOS geosynchronous Earth orbit satellites Gff feedforward controller transfer function GHz giga-hertz GIAC general inquiry access code GLR generalized likelihood ratio G-M Geiger-Mueller tube, for radiation moni- toring Gm model transfer function Gp process transfer function gph gallons per hour (=3.785 lph) GPM or gpm gallons per minute (=3.785 lpm) GPS global positioning satellite or system gr gram grn green (wiring code color for grounded conductor) GSD Profibus version of an electronic data sheet GUI graphical user interface Gy gray, symbol for derived SI unit of absorbed dose, joules per kilogram, J/kg H h (1) height; (2) hour H (1) humidity expressed as pounds of mois- ture per pound of dry air; (2) henry, symbol of derived SI unit of inductance, volt⋅ second per ampere, V⋅s/A HAZOP HAZard and OPerability studies HC horizontal cross-connect HAD historical data access HART highway accessible remote transducer HEC header error check HFE human factors engineering HFT hardware fault tolerance hhv higher heating value HIPPS high-integrity pressure protection system HIPS high-integrity protection systems HIST host interoperability support test HMI human–machine interface H1 field-level fieldbus; also refers to the 31.25 kbps instrinsically safe SP-50, IEC61158- 2 physical layer hor. horizontal HP or hp horsepower (U.S. equivalent is 746 W) H&RA hazard and risk analysis HSE high-speed Ethernet (host-level fieldbus) HSI human–system interface HTML hypertext markup language HTTP hypertext transfer protocol HVAC heating, ventilation, and air conditioning H/W hardware Hz hertz, symbol for derived SI unit of fre- quency, one per second (1/s) I I integral time of a controller in units of time/repeat IA instrument air IAC inquiry access code IAE integral of absolute error ibidem in the same place IC intermediate cross-connect I&C instrumentation and control or information and control ICA independent computing architecture ICCMS inadequate core cooling monitoring system ICMP Internet control message protocol ID inside diameter i.e. id est: that is I&E instrument and electrical IEH Instrument Engineers’ Handbook IETF Internet engineering task force IIS Internet information server IL instruction list ILD instrument loop diagrams IMC internal model control in. inch (=25.4 mm) in-lb inch-pound (=0.113 N × m) I/O input/output IP Internet protocol I-P current to pressure conversion IPL independent protection layer IR infrared IRQ interrupt request queue IS intermediate system ISE integral of squared error ISM industrial, scientific, medical ISP Internet service provider or interoperable system project IT information technology (as in IT manager or IT department) ITAE integral of absolute error multiplied by time ITSE integral of squared error multiplied by time 1082_frame_FM Page xxiv Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 25. Abbreviations, Nomenclature, Acronyms, and Symbols xxv ITT intelligent temperature transmitters IXC interexchange carrier J J joule, symbol for derived SI unit of energy, heat, or work, newton-meter, N⋅m JIT just-in-time manufacturing K k kilo, prefix meaning 1000 K kelvin, symbol for SI unit of temperature or process gain (dimensionless) Kbs, Kbps kilo bits per second KBs kilo bytes per second k-cal kilogram-calories (=4184 J) kg kilogram symbol for basic SI unit of mass kg-m kilogram-meter (torque, =7.233 foot-pounds) kip thousand pounds (=453.6 kg) km kilometers Kp proportional gain of a PID controller, q.v. kPa kilo-pascals kVA kilovolt-amperes kW kilowatts kWh kilowatt-hours (=3.6 × 106 J) L l liter (=0.001 m3 = 0.2642 gallon) L (1) length; (2) inductance, expressed in henrys LAN local area network LAS link active scheduler (FF) lat latitude lb pound (=0.4535 kg) LCD liquid crystal display LCM life cycle management LCSR loop current step response LD ladder diaphragm LDP large display panel LEC local exchange carrier LED light-emitting diode LEL lower explosive limit LEOS low Earth orbit satellites lim. or lim limit lin. linear liq. liquid LLC logical link control lm lumen, symbol for derived SI unit of lumi- nous flux, candela⋅steradian, cd⋅sr ln Naperian (natural) logarithm to base e LNG liquefied natural gas LOC limiting oxygen concentration log or log10 logarithm to base 10; common logarithm long. longitude LOPA layers of protection analysis LP liquefied petroleum or propane gas lph liters per hour (0.2642 gph) lpm liters per minute (0.2642 gpm) LQG linear quadratic Gaussian LRC longitudinal redundancy check LSB least significant bit LTI linear time-invariant LVDT linear variable differential transformer lx lux, symbol for derived SI unit of illumi- nance, lumen per square meter, lm/m2 M m (1) meter, symbol for basic SI unit of length; (2) mulli, prefix meaning 10−3; (3) minute (temporal), also min M (1) thousand (in commerce only); Mach number; (2) molecular weight; mole; (3) mega, prefix meaning 106 mA or ma milliamperes (=0.001 A) MAC medium access control MACID medium access control identifier MAP manufacturing automation (access) protocol MAU media access unit MAWP maximum allowable working pressure max maximum MB mega-byte, 1,000,000 bytes Mbs, mbps megabits per second MBs mega bytes per second MC main cross-connect mCi or mC millicuries (=0.001 Ci) m.c.p. mean candle power MCP main control panel MDBS mobile database station MDIS mobile data intermediate system med. medium or median MEDS medium Earth orbit satellites m.e.p. mean effective pressure MES manufacturing execution system or man- agement executive system or mobile end station MFD mechanical flow diagram mfg manufacturer or manufacturing mg milligrams (=0.001 g) MHz megahertz mho unit of conductance, replaced by siemens, S, q.v. mi miles (=1.609 km) MI melt index MIB management information base micro prefix = 109; also µ (mu) or µm and some- times u, as in ug or µg, both meaning microgram (=10−9 kg) micron micrometer (=10−6 m) MIMO multiple-input multiple-output MIMOSA machinery information management open system alliance 1082_frame_FM Page xxv Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 26. xxvi Abbreviations, Nomenclature, Acronyms, and Symbols min (1) minutes (temporal), also m; (2) mini- mum; (3) mobile identification number MIS management information system ml milliliters (=0.001 l = l cc) mm millimeters or millimicrons (=0.001 m) mmf magnetomotive force in amperes MMI man–machine interface MMS machine monitoring system or manufactur- ing message specification MOC management of change MODBUS a control network MODEM modulator/demodulator mol mole, symbol for basic SI unit for amount of substance mol. molecules MOON M out of N voting system MOSFET metallic oxide semiconductor field-effect transistor mp or m.p. melting point MPa megapascal (106 Pa) MPC model predictive control mph miles per hour (1.609 km/h) mps or m/s meters per second MPS manufacturing periodic/aperiodic services mR or mr milliroentgens (=0.001 R) mrd millirads (=0.001 rd) mrem milliroentgen-equivalent-man MRP material requirement planning or manufac- turing resource planning ms milliseconds (=0.001 s) MS Microsoft MSA metropolitan statistical areas MSB most significant bit MSD most significant digit MSDS material safety data sheet MT measurement test MTBF mean time between failures MTSO mobil telephone switching offices MTTF mean time to failure MTTFD mean time to fail dangerously MTTFS mean time to spurious failure MTTR mean time to repair MTU master terminal unit MUX multiplexer MVC minimum variance controller MW megawatts (=106 W) N n (1) nano, prefix meaning 10−9; (2) refractive index N newton, symbol for derived SI unit of force, kilogram-meter per second squared, kg⋅m/s2 N0 Avogadro’s number (=6.023 × 1023 mol) NAP network access port/point NAT network address translation NC numeric controller NDIR nondispersive infrared NDM normal disconnect mode NDT nondestructive testing NEC National Electrical Code NESC National Electrical Safety Code NEXT near end cross talk nF nanofarad NIC network interface card nm nanometer (10−9 meter) NRM normal response mode NRZ nonreturn to zero (NZR refers to a digital signaling technique) NTP network time protocol NUT network update time O OD outside diameter ODBC open database connectivity or communica- tion oft optical fiber thermometry ohm unit of electrical resistance; also Ω (omega) OJT on-the-job training OLE object linking and embedding OLE_DB object linking and embedding database OPC object link embedding (OLE) for process control or orange (typical wiring code color) OS operator station or operating system OSEK German for “open system interfaces for in- car electronics” OSFP open shortest path first OSI open system interconnect (model) or open system integration OSI/RM open system interconnect / reference model OT operator terminal OTDR optical time domain reflectometers oz ounce (=0.0283 kg) P p (1) pressure; (2) pico, prefix meaning 10−12 Pa pascal, symbol for derived SI unit of stress and pressure, newtons per square meter, N/m2 PA plant air PAN personal area network Pas pascal-second, a viscosity unit PAS process automation system (successor to DCS) PB proportional band of a controller in % (100%/controller gain) PC personal computer (MS-Windows based) PCA principal component analysis PCCS personal computer control system 1082_frame_FM Page xxvi Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 27. Abbreviations, Nomenclature, Acronyms, and Symbols xxvii PCL peer communication link PCS process control system or personal commu- nication services pct percent; also % PD positive displacement or proportional and derivative PDA personal digital assistant PDF probability density function PdM predictive maintenance PDU protocol data unit PE polyethylene PES programmable electronic system pf picofarad (=10−12 F) PF or p.f. power factor PFC procedure functional chart PFD (1) process flow diagram; (2) probability of failure on demand PFDavg average probability of failure on demand pH acidity index (logarithm of hydrogen ion concentration) PHA process hazards analysis pi or pl Pouiseville, a viscosity unit PI proportional and integral PID proportional, integral, and derivative (con- trol modes in a classic controller) P&ID piping (process) and instrumentation dia- gram (drawing) PIMS process information management system PLC programmable logic controller PLS physical layer signaling or projection to latent structures PMA physical medium attachment PMBC process model-based control PMF probability mass function ppb parts per billion ppm parts per million PPM pulse position modulation PPP point-to-point protocol ppt parts per trillion precip precipitate or precipitated PSAT pre-start-up acceptance test psi or PSI pounds per square inch (=6.894 kPa) PSI pre-start-up inspection PSIA or psia absolute pressure in pounds per square inch PSID or psid differential pressure in pounds per square inch PSIG or psig above atmospheric (gauge) pressure in pounds per square inch PSK phase shift keying PSM process safety management PSSR pre-start-up safety review PSTN public switched telephone network PSU post-start-up pt (1) point; (2) part; (3) pint (=0.4732 liter) PT pass token PTB Physikalisch-Technische Bundesanstalt PV process variable (measurement) or the HART primary variable PVC polyvinyl chloride PVDF polyvinylidene fluoride PVLO process variable low (reading or measure- ment) PVHI process variable high (reading or measure- ment) Q q (1) rate of flow; (2) electric charge in coulombs, C q−1 backward shift operator Q quantity of heat in joules, J, or electric charge °Q Quevenne degrees of liquid density QA quality assurance QAM quadrature amplitude modulation QoS quality of service QPSK quadrature phase shift keying qt quart (0.9463 liter) q.v. quod vide: which see QV quaternary variable R r radius; also rad r2 multiple regression coefficient R (1) resistance, electrical, ohms; (2) resistance, thermal, meter-kelvin per watt, m⋅K/W; (3) gas constant (=8.317 × 107 erg⋅mol–1, °C−1); (4) roentgen, symbol for accepted unit of exposure to x and gamma radiation (=2.58 × 10−4 C/kg) rad (1) radius; also r; (2) radian, symbol for SI unit of plane angle measurement or symbol for accepted SI unit of absorbed radiation dose (=0.01 Gy) RAID redundant array of inexpensive disks RAM random access memory RASCI responsible for, approves, supports, consults, informed RCU remote control unit R&D research and development RDP remote desktop protocol Re Reynolds number rem measure of absorbed radiation dose by living tissue (roentgen equivalent man) rev revolution, cycle RF or rf radio-frequency RFC request for comment (an Internet protocol specification) RFI radio-frequency interference RFQ request for quotes RH relative humidity RI refractive index RIP routing information protocol 1082_frame_FM Page xxvii Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 28. xxviii Abbreviations, Nomenclature, Acronyms, and Symbols r(k) set point RMS or rms square root of the mean of the square RNG rung number ROI return on investment ROM read-only memory RPC remote procedure call (RFC1831) RPG remote password generator RPM or rpm revolutions per minute rps revolutions per second RRF risk reduction factor RRT relative response time (the time required to remove 90% of the disturbance) RS recommended standard RSA rural service areas RTD resistance temperature detector RTO real-time optimization or operation RTOS real-time operating system RTR remote transmission request RTS ready (or request) to send RTS/CTS request to send/clear to send RTU remote terminal unit RWS remote work station S s second, symbol for basic SI unit of time, also sec; or Laplace variable S siemens, symbol for derived SI unit of con- ductance, amperes per volt, A/V SAP service access point sat. saturated SAT site acceptance test or supervisory audio tone SC system codes SCADA supervisory control and data acquisition SCCM standard cubic centimeter per minute SCFH standard cubic feet per hour SCFM standard cubic feet per minute (airflow at 1.0 atm and 70°F) SCM station class mark SCMM standard cubic meter per minute SCO synchronous connection oriented SCR silicon controlled rectifier SD component in leg has failed safe and failure has been detected SDN send data with no acknowledge SDS smart distributed system SEA spokesman election algorithm sec seconds; also s SER sequence of event recorder SFC sequential function chart SFD system flow diagram or start of frame delimiter SFF safe failure fraction SFR spurious failure rate SG or SpG specific gravity; also sp.gr. SID system identification digit (number) SIF safety instrumented function SIG special interest group SIL safety integrity level sin sine, trigonometric function SIS safety instrumented system SISO single-input single output SKU stock keeping units SLC safety life cycle slph standard liters per hour slpm standard liters per minute SMR specialized mobile radio SMTP simple mail transfer (management) protocol SNMP simple network management protocol SNR signal-to-noise ratio SOAP simple object access protocol (an Internet protocol that provides a reliable stream- oriented connection for data transfer) SOE sequence of events SOP standard operating procedure SP set point SPC statistical process control SPDT single-pole double-pole throw (switch) sp.gr. specific gravity; also SG SPRT standard platinum resistance thermometer sq square; also SQC statistical quality control SQL standard query language sr steradian, symbol for SI unit of solid angle measurement SRD send and request data with reply SRS safety requirements specification SS stainless steel SSL secure socket layers SSU Saybolt universal seconds ST structual text, also a fiber optic connector type std. standard STEP standard for the exchange of product model data STP shielded twisted pair STR spurious trip rates SU component in leg has failed safe and failure has not been detected SV secondary variable S/W software sample variance of output y T t (1) ton (metric, = 1000 kg); (2) time; (3) thickness T (1) temperature; (2) tera, prefix meaning 1012; (3) period (=1/Hz, in seconds); (4) tesla, symbol for derived SI unit of mag- netic flux density, webers per square meter, Wb/m2 sy 2 1082_frame_FM Page xxviii Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 29. Abbreviations, Nomenclature, Acronyms, and Symbols xxix T half life tan tangent, trigonometric function Tau process time constant (seconds) TCP transmission (or transport) control protocol TCP/IP transmission control protocol/Internet protocol td process dead time (seconds) Td derivative time (in seconds) of a PID controller TDM time division multiplexing TDMA time division multiple access TDR time domain reflectometry TFT thin film transistor Ti integral time (in seconds) of a PID controller TI time interval between proof tests (test interval) TMR triple modular redundancy TOP technical office protocol TQM total quality management T.S. tensile strength TSR terminate and stay resident TV tertiary variable °Tw Twadell degrees of liquid density U u prefix = 10–6 when the Greek letter µ is not available UART universal asynchronous receiver transmitter UBET unbiased estimation UCMM unconnected message manager UDP user/universal data protocol (an Internet protocol with low overhead but no guaran- tee that communication was successful) UEL upper explosive limit uf b(k) feedback controller output UFD utility flow diagram uff(k) feedforward controller output UHF ultrahigh frequency UHSDS ultrahigh-speed deluge system u(k) controller output UML universal modeling language UPS uninterruptible power supply UPV unfired pressure vessel USB universal serial bus UTP unshielded twisted pair UUP unshielded untwisted pair UV ultraviolet V v velocity v or V volt, symbol for derived SI units of voltage, electric potential difference and electromo- tive force, watts per ampere, W/A VBA visual basic for applications VCR virtual communication relationship VDU video display unit vert. vertical VFD variable frequency drive VFIR very fast infrared VHF very high frequency VMS vibration monitoring system VPN virtual private network VR virtual reality VRML virtual reality modeling language vs. versus VV verification and validation W w (1) width; (2) mass flow rate W (1) watt, symbol for derived SI unit of power, joules per second, J/s; (2) weight; also wt w. water WAN wide area network Wb weber, symbol for derived SI unit of mag- netic flux, volt⋅second, V⋅s WG standard (British) wire gauge wh white (wiring code color for AC neutral conductor) WI wobble index WLAN wireless local area network WPAN wireless personal area network WS workstation wt weight; also W X X reactance in ohms XML extensible markup language x ray electromagnetic radiation Y y(k) process output yd yard (=0.914 m) yr year Z Z (1) atomic number (proton number); (2) electrical impedance (complex) expressed in ohms zeb zero energy band GREEK CHARACTERS η(b) normalized performance index η(b+h) extended horizon performance index λ desired closed-loop time constant 1 2 -- - 1082_frame_FM Page xxix Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 30. xxx Abbreviations, Nomenclature, Acronyms, and Symbols λDU = 1/MTTFDU failure rate for dangerous undetected faults λS = 1/MTTFS spurious trip rate µm microns θ process dead time (seconds or minutes) σ2 population variance population variance in output y theoretical minimum variance τ process time constant (seconds or minutes) τF PV filter time constant ψ impulse weights NOTES 1. Whenever the abbreviated form of a unit might lead to confusion, the abbreviation should not be used and the name should be written out in full. 2. The values of SI equivalents were rounded to three decimal places. 3. The words meter and liter are used in their accepted spelling forms instead of those in the standards, namely, metre and litre, respectively. σy 2 σmv 2 1082_frame_FM Page xxx Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 31. xxxi S O C I E T I E S A N D O R G A N I Z A T I O N S ACC American Chemistry Council ACS American Chemical Society AGA American Gas Association ANSI American National Standards Institute APHA American Public Health Association API American Petroleum Institute ARI Air Conditioning and Refrigeration Institute ASA American Standards Association ASCE American Society of Civil Engineers ASME American Society of Mechanical Engineers ASRE American Society of Refrigeration Engineers ASTM American Society for Testing and Materials BSI British Standards Institution CCITT Consultative Committee for International Telegraphy and Telephony CENELEC European Committee for Electrotechnical Standardization CII Construction Industry Institute CIL Canadian Industries Limited CNI ControlNet International CSA Canadian Standards Association DARPA Defense Advanced Research Projects Agency DIN Deutsche Institut fuer Normung DOD Department of Defense (United States) DOE Department of Energy (United States) EIA Electronic Industries Association EIA/TIA Electrical Industries Alliance/Telecommu- nications Industries Association EPA Environmental Protection Agency (United States) EPRI Electric Power Research Institute FCI Fluid Control Institute FDA Food and Drug Administration (United States) FF Fieldbus Foundation FIA Fire Insurance Association FM Factory Mutual FPA Fire Protection Association HCF HART Communication Foundation IAEI International Association of Electrical Inspectors ICE Institute of Civil Engineers ICEA Insulated Cable Engineer’s Association IEC International Electrotechnical Commission IEEE Institute of Electrical and Electronic Engineers IETF Internet Engineering Task Force IPTS International Practical Temperature Scale IrDA or IRDA Infrared Data Association ISA Instrumentation, Systems, and Automation Society (formerly Instrument Society of America) ISO International Standards Organization ISTM International Society for Testing Materials JBF Japan Batch Forum KEPRI Korean Electric Power Research Institute LPGA National LP-Gas Association MCA Manufacturing Chemists’ Association NAMUR German standardization association for process control (Normenarbeitsgemein- schaft für Meß- und Regelungstechnik in der chemischen Industrie) NASA National Aeronautics and Space Administration 1082_frame_FM Page xxxi Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 32. xxxii Societies and Organizations NBFU National Board of Fire Underwriters NBS National Bureau of Standards NEMA National Electrical Equipment Manufac- turers Association NFPA National Fire Protection Association NIST National Institute of Standards and Technology NSC National Safety Council NRC Nuclear Regulatory Commission NSPE National Society of Professional Engineers ODVA Open DeviceNet Vendors Association OSHA Occupational Safety and Health Adminis- tration (United States) OTS Office of Technical Services PNO Profibus User Organization SAMA Scientific Apparatus Manufacturers Association TIA Telecommunications Industries Alliance USNRC U.S. Nuclear Regulatory Commission WBF World Batch Forum 1082_frame_FM Page xxxii Saturday, May 18, 2002 8:35 AM © 2002 by Béla Lipták
  • 33. 1 Overall Plant Design 1 1.1 AUDITING EXISTING PLANTS FOR UPGRADING 5 Prerequisites to Auditing 5 Goals 5 Functionality 6 Plant Standards 6 Identify Key Areas for Special Attention 7 Who Audits the Plant? 7 The Audit 8 Upgrading Existing Systems 9 Evolution 9 Audit the Installation and Process 10 Process Information and System Integration 11 System Diagnostics and Redundancy 12 References 13 Bibliography 13 1.2 PROJECT MANAGEMENT AND DOCUMENTATION 14 Good Documentation Practices 14 Project Criteria Document 15 The Preferred Vendors/Technology List 15 IC Documentation System 15 Documents—Purpose, Contents, and Standard Formats 18 Process/Mechanical Flow Diagrams 18 Piping and Instrumentation Diagrams 18 The Instrument Schedule 18 Instrument Data Sheets (Specification Forms) 18 System Architecture/Network Diagram 19 Control System Documentation 19 Instrument and Junction Box Layout Drawings 20 Cable Block Diagrams 20 Control Room Layout Drawings 20 Panel Layouts and General Arrangement 20 Interconnection or Wiring Diagrams 20 Cable Routing, Cableway Sections, and Details 20 Grounding System Drawings 20 Instrument Loop Diagrams 21 Logic Diagrams 21 Instrument Installation Checkout and Calibration/Configuration Procedure 21 Decommissioning Documents 21 Documentation—An Information Management Perspective 21 Commercial Instrumentation Documentation Tools 23 Project Management—An IC Perspective 23 Project Integration Management 25 Project Scope Management 25 Time Management 26 Cost Management 26 Quality Management 26 Human Resources Management 26 Project Communications 27 Risk Management 27 Procurement 27 Conclusions 27 References 27 Bibliography 28 1082_frame_Section1 Page 1 Tuesday, May 21, 2002 10:45 PM © 2002 by Béla Lipták
  • 34. 2 Overall Plant Design 1.3 OPERATOR TRAINING, COMMISSIONING, AND START-UP 29 Commissioning 29 Clear Goals and Objectives 29 Staffing 29 Schedule 32 Communications 32 Pre-Start-Up Inspection 32 Partial Operation and Water Runs 33 Documentation 35 Operator Training 35 Operating Procedures 35 Approach to Training 38 Simulation 38 On-the-Job Training 39 Start-Up 40 Field Changes 40 Turnover 40 Post-Start-Up 40 Conclusions 41 Bibliography 41 1.4 FLOWSHEET SYMBOLS AND FUNCTIONAL DIAGRAMMING FOR DIGITALLY IMPLEMENTED LOOPS 42 Scope 42 General 42 Application to Industries 42 Application to Work Activities 43 Application to Classes of Instrumentation and to Instrument Functions 43 Extent of Loop and Functional Identification 43 Extent of Symbolization 43 Inclusion of the New S5.1 Standard (now ANSI/ISA-5.01.01) in User/Owner Documents 43 Definitions Related to Flowsheet Diagram Symbology 44 General 44 Definitions 44 Identification System Guidelines 47 General 47 Instrument Index 48 Guideline Modifications 48 Multipoint, Multifunction, and Multivariable Devices 48 Systems Identification 48 Loop Identification Number 49 Typical Instrument Identification/Tag Number 49 Identification Letter Tables 49 General 50 Graphic Symbol System Guidelines 51 General 51 Guideline Modifications 51 Instrument Line Symbols 51 Measurement and Control Devices and/or Function Symbols 51 Multipoint, Multifunction, and Multivariable Devices and Loops 59 Fieldbus Devices, Loops, and Networks 61 Comments and Exceptions (Including Non-ISA Industrial Practice) 61 Fieldbus PID Examples: DeviceNet 63 Functional Diagramming for Digital Systems (ex-SAMA) 63 Instrument and Control Systems Functional Diagramming 63 Equivalent Loop, Functional Instrument, and Electrical Diagrams 64 Functional Diagramming Symbol Tables 64 1.5 HISTORICAL DATA STORAGE AND EVALUATION 79 Clarifying the Purpose of the Data System 79 Interactions and Integration with Other Systems 80 Integration with Maintenance 80 Integration with Management 80 Data Collection 81 Event Data 81 Data Loggers 82 Data Collection Frequencies 82 Architecture of a Data Historian System 83 Data Storage 84 Where to Store Data 85 Data Compression 86 Meta-Data 86 The Cost of Data Storage 86 Hardware Selection 87 Backup Media 87 Analysis and Evaluation 88 Data Filtering and Editing 89 System Testing 89 Support of the Data Historian System 89 Security 90 Backup, Archive, and Retrieval 90 Bibliography 90 1.6 INTEGRATION OF PROCESS DATA WITH MAINTENANCE SYSTEMS 91 Plant Floor Systems 91 Maintenance 92 Computerized Maintenance Management System 92 Condition Monitoring and Predictive Maintenance 93 Operation and Maintenance Needs 93 1082_frame_Section1 Page 2 Tuesday, May 21, 2002 10:45 PM © 2002 by Béla Lipták
  • 35. Contents of Chapter 1 3 CMMS Integration 95 Integration Techniques and Business Alliances 96 Summary 97 References 97 1.7 APPLICATIONS, STANDARDS, AND PRODUCTS FOR GROUNDING AND SHIELDING 98 Grounding- and Shielding-Related Standards 98 Power Grounding Basics 99 Grounding, Bonding, and Overload Protection 102 Grounding Electrode Resistance 102 Power Grounding Definitions 102 NEC Article 250 103 Grounding Examples 104 Service Entrance 104 Separately Derived Instrumentation Power System 105 Single-Point Grounding of Power Supplies 105 The Ungrounded System 106 Resistance Grounding 106 Shielding Theory 106 Lightning 109 Electrostatic Instrument Shielding 110 Differential Amplifiers and Isolators 111 Instrument Power Transformer Shielding 111 Floating vs. Grounded Instruments 111 Isolation Transformers 112 Power Supply Shielding 112 Digital Communications Shielding 112 Magnetic Field Influences 112 EMI and RF Shielding 112 Shielded Cable 113 Intrinsic Safety Grounding and Shielding 113 The Static Electricity Problem 114 Products 114 Conclusion 114 References 115 Bibliography 115 1.8 CONCEPTS OF HIERARCHICAL CONTROL 116 Functionality 116 Measurements and Basic Controls (Functional Section 1) 116 Advanced/Supervisory Controls (Functional Section 2) 116 Management (Functional Section 3) 117 Hardware Architecture 117 Input/Output Systems 117 Controllers 117 Workstations 118 Communications 118 Architectural Concepts 119 Structural Configuration 119 Hardware/Software Interplay 119 Hardware 119 Operating Systems 119 Communication Protocols 120 Application Software 120 System Hierarchy Interplay 121 System Specification, Selection, Design, and Implementation 121 Conclusions 122 Bibliography 122 1.9 ANALOG AND DISCRETE INPUT/OUTPUT, COSTS AND SIGNAL PROCESSING 123 A/D and D/A Signal Conversions 127 D/A Converters 127 Weighted Current D/A Converter 127 A/D Converters 128 Counter Ramp ADCs 128 Successive Approximation ADC (Serial) 129 Flash ADCs (Parallel) 129 Data-Acquisition Systems 130 Single-Channel Systems 130 Analog Signal Conditioning 130 Sample-and-Hold Circuits 131 Multichannel Systems 131 Analog Multiplexing 131 Digital Multiplexing 132 Data-Acquisition Boards 132 Digital to Digital I/O 133 Distributed Systems and Networks 133 RS-232-C 133 The GPIB (IEEE 488) 135 VXIbus 136 The Fieldbuses 136 Virtual Instruments 136 Software for Virtual Instrumentation 137 Theory of Signal Acquisition 137 The Sampling Process 137 Quantization 138 Coding 139 Unipolar Codes 139 Bipolar Codes 140 Conclusions and Comments 140 Bibliography 140 1.10 ESTIMATING THE COST OF CONTROL SYSTEM PACKAGES 142 Suppliers 142 Desired Accuracy of the Estimate 142 Clarify Scope and Objectives of This Control System 143 Estimating Techniques 143 1082_frame_Section1 Page 3 Tuesday, May 21, 2002 10:45 PM © 2002 by Béla Lipták
  • 36. 4 Overall Plant Design Software Tools 144 Controller Costs 144 Operator Station Costs 145 Instrumentation 145 Control Valves 145 Motors and Drives 146 Software Costs 146 Maintenance Costs 148 Engineering Costs 148 Training and Start-Up Costs 148 Installation Costs 149 Control Room Incidental Costs 149 Taxes 149 Working with Vendors 149 Contingency Costs 149 Estimating vs. Bidding 150 Submitting the Budget 150 Bibliography 150 1082_frame_Section1 Page 4 Tuesday, May 21, 2002 10:45 PM © 2002 by Béla Lipták
  • 37. 5 1.1 Auditing Existing Plants for Upgrading G. K. TOTHEROW Manufacturing is only one part of a business. The needs of the business can change rapidly from forces outside manufacturing and the control and information systems must follow and sup- port the short-term and long-term business goals and needs of the business. The process of auditing and upgrading control systems is primarily one of determining engineering solutions for business problems. Many companies embrace the concept of continual improvement. These companies constantly review and evolve plant systems to support their continued improve- ment in manufacturing. 1 However, most companies only review their automation systems in connection with a major project. There is a good reason for this behavior. It is expensive and disruptive to the plant operation to upgrade control systems. Some people recommend auditing existing plant sys- tems compared with “world-class” or best-practices stan- dards. These audits have their place, but the value realized by upgrading existing systems is in achieving business needs and goals. The time to stop upgrading plant automa- tion and information systems is when it is not a good finan- cial decision as a way to meet the business needs. The only way to determine if the upgrade to the existing systems is a good financial decision is to audit the existing systems against the functionality needed to achieve company and plant goals. The purpose of this chapter is to provide a methodology to audit a plant for upgrading systems. A side benefit to the methodology given is that the justification for the upgrade project is written from the audit information. There are two types of plant upgrades. First, there is what could be described as the maintenance audit to avoid obsolete components, eliminate worn-out components, or conform to new regulatory requirements to keep the plant operating. Then, there is the upgrade for process improve- ment or manufacturing cost savings that will show a return- on-investment from the upgrade. Both share the common theme of keeping the plant achieving business goals. The goals and the project funding are different but the prerequisites to the audit, the methodology of the audit, the integration of old and new components, and the recommendation report are the same when reviewing a plant system for upgrade. There are five prerequisites to a meaningful consistent automation system audit: 1. Understand the company and plant goals. 2. Determine the functionality that is needed from plant- systems to achieve or contribute to those goals. 3. Establish or communicate the plant standard compo- nents and systems that can be maintained effectively with the available support personnel and spare parts. 4. Identify key processes, machinery, or areas of the plant for special attention. 5. Choose the best person to perform the audit. This section first discusses the five prerequisites to the audits, the methodology for conducting the audits, and particular issues of integrating new technology into existing plants. PREREQUISITES TO AUDITING Every plant and every industry has different equipment, raw materials, and personnel. It stands to reason that every plant and industry will have a different recipe to optimize profits. State-of-the-art controls that reduce variation will not provide the same return on the investment in one process, one line, one plant, or one company, as they will in another. The same is true with respect to head count reduction, reducing main- tenance costs, and increasing reliability. All these factors are very important to every manufacturer, but the degree to which they are important varies between plants, industries, company financial standing, and the general economy. For this reason it is of foremost importance to fully understand plant and company goals and audit systems against those goals. Plant personnel, corporate experts, or outside consultants may conduct system audits and make recommendations. The degree to which they understand the plant will certainly be different so the purpose of the five prerequisites to an audit is to ensure that pertinent background information and goals of the audit are clearly understood. Specific prerequisites to an audit will need to be contracted or expanded based on the industry and the scope of the project. The prerequisites here will give the outside expert a good idea of how to meet the needs of the company and will help the plant technical person con- vince others to share the direction and success of the upgrade. Goals If this entire section were devoted to the importance of under- standing company and plant goals, it would still not be enough. The importance of focusing on project goals and the comple- menting company goals and initiatives cannot be overstated. 1082_frame_C1.1 Page 5 Tuesday, May 21, 2002 9:52 PM © 2002 by Béla Lipták
  • 38. 6 Overall Plant Design Manufacturing is only one facet of a business, and it seldom drives the company; it swings to the demands of marketing, sales, design, and other business factors. Manufacturing may be asked to produce greater quantities, increase quality, decrease delivery, shave costs, reduce downtime, add grades, change packaging, or any number of other things to meet business demands. Understanding the current business goals is highly important prior to modifying manufacturing systems. There was a time when only the highest-level people in the company knew the corporate goals. And under them only a few people knew the business and manufacturing goals of the plants. And lower still only a few clearly understood the department goals. Today, most companies have a mission statement and a policy of passing down written goals so that those below can establish supporting goals. Whether easy or difficult to attain, the company, plant, and area goals are important to auditing an existing plant because these goals and company initiatives will be the basis for justifying the audit recommendations. It is good to be given company, plant, and specific goal information, but it must be understood that many business decisions and business information will only be disclosed on a “need to know” basis. It is also a fact of some businesses that goals change rapidly and they may not be communicated effectively. So, the first work that we do is to write a specific goal for the audit in terms of the company or plant goal to communicate effectively the basis for the audit. The audit of an existing plant for upgrading should always have a specific, stated goal. The following are some likely goals for the audit: • Reduce variation of product • Increase throughput • Increase reliability • Avoid obsolescence • Adhere to safety or environmental regulations • Reduce maintenance costs • Decrease manufacturing changeover or process mod- ification time Functionality The world of plant and process automation is changing very rapidly. Whereas 25 years ago an operator interface device might be a panel with a gauge and push buttons, today the operator interface device might be a wireless hand-held com- puter. It is far too easy and common to jump from the project goal or problem statement to looking for equipment or sys- tems that a vendor says will solve the problem. An important intermediate step is to obtain a layperson’s description writ- ten in simple language that tells what the “ideal” systems must do for the operators, maintenance mechanics, and man- agers to allow them to accomplish the stated goal or solve the problem. Most of the functional description should come from the users and area process managers along with an estimate of the financial payback for solving the problem or achieving the goal. The functional description and the esti- mated return on that functionality are often acquired by inter- viewing the appropriate operating and maintenance personnel. One purpose of the written functionality description is that it breaks the components of the existing plant into digestible pieces and describes the “ideal” as established from the goals. It does so in terms of the functionality rather than component descriptions. This is necessary because the physical component often provides several functionalities. A control system may provide the controls, operator interface device, alarming, and other functionality. The system may perform near the level of the ideal functionality in one or two areas and may perform far below the ideal functionality in others. The audit recom- mendations could advocate replacement of the system or it might recommend add-on components to enhance the system capability in the poorly performing functional areas. A second reason for the “ideal” functionality and the estimated financial payback for the functionality is that it will provide an estimate for the preliminary return on investment for the upgrade project. Better yet, the return for providing the functionality comes from the plant personnel who must support the project. The functional description should address: • Process measurement • Final control element • Input/output system wiring • Control needs • Redundancy • Operator interface needs • Alarm handling needs • Historical process data needs • Management information needs • Production/cost/scheduling needs • Maintenance needs • Customer information needs Plant Standards Manufacturing and process facilities should establish and main- tain a list of preferred components and vendors that have the functionality needed to achieve plant and project goals. Plant standards are useful to set a general direction in the components and ways a facility will try to meet company and plant goals and avoid obsolete components. Other common uses of a stan- dard is to establish better vendor relationships, minimize spare parts, minimize decision making, minimize training costs, and ensure consistent and predictable results. That standards help in all the ways listed above needs no explanation; however, using standards to establish general direction and the period of review of standards needs further clarification. Few plants can justify the capital financing or the pro- duction downtime to replace components across the facility when new devices are proved better to meet the needed func- tionality or when new industry trends and standards are estab- lished. Innovation must be integrated into the facility. The plant standard should lead in setting the direction to keep the 1082_frame_C1.1 Page 6 Tuesday, May 21, 2002 9:52 PM © 2002 by Béla Lipták
  • 39. 1.1 Auditing Existing Plants for Upgrading 7 components from becoming obsolete and promoting devices that will better satisfy the functionality desired. When should the existing standards be reviewed and modified? The answer is more often than is done for most plants. Any of the fol- lowing events signal a time to review plant standards: • The manufacturer announces a discontinuation of the product. • An organizational or industry standards committee selects another standard. • The plant is planning a major expansion or revision. • A problem of service develops with established ven- dors or manufacturers. Consider the example below, which shows a company that sets and changes its plant standards to establish a strategic direction. A chemical plant built in 1961 installed Foxboro transmit- ters using 10–50 mA DC current signals. Once installed, the transmitters and wiring worked well and met the functionality criteria for field instrumentation and field wiring. Some time after the ISA standards committee adopted 4–20 mA DC as the standard for field signal wiring (ISA S50.1-1972) the plant decided to adopt the 4–20 mA transmitters as their new stan- dard. The next major opportunity to install transmitters was during a major expansion and renovation project in 1975. The plant replaced 100 of the old transmitters in the area of the renovation and put them in the storeroom for spares for the rest of the plant that kept the old 10–50 mA DC transmitters. In 1999, the plant had another major renovation project. This time the project convinced the plant to use Foundation Fieldbus for the signal wiring. The plant adopted Foundation Fieldbus as its new standard field wiring. By 2000, 30% of the plant was using new smart transmitters and Foundation Field- bus, 65% of the plant was using transmitters with 4–20 mA DC signal wiring, and 5% of the transmitters were the old 10–50 mA DC Foxboro transmitters. The company will continue to install the Foundation Fieldbus standard with each project. The hypothetical plant used the “plant standard” to set an appropriate direction to avoid obsolescence and integrated the new standard along with the old where both met the required functionality. The 4–20 mA DC only transmitters and signal cable will not meet necessary functionality requirements when the plant demands smart transmitters with online diagnostics. A final word concerning standards is to guard against using the “standard” to thwart innovation that meets the func- tionality of its intended use and achieves company or project goals better, faster, or cheaper. Identify Key Areas for Special Attention There are key areas, processes, and control loops in every plant that are crucial to quality, production, or profitability. They will be referred to as key success areas. These key success areas and their impact on the operation should be noted and understood by the auditors prior to reviewing the systems for upgrading. The purpose of this prerequisite item is to ensure that audit recommendations address any issues that might affect the process or operations at these points. These key areas may be ISO (International Standards Organization) tagged control loops, OSHA (Occupational Safety and Health Administration) regulated areas, FDA (Food and Drug Administration) certified processes, or just important areas of the plant. The audit to upgrade existing systems in the plant should specifically address the potential impact to these regulated areas. The importance of the key success areas of the plant will be well understood by the operations and man- agement people that will be curious about how any changes may affect their operations. There may be some merit in specifically addressing these areas in the upgrade recommen- dations even to note that there is no effect on the process or operation at that point. The important point to remember is that the information about these key success areas of plant operation should be communicated to those responsible for the audit. It is certain that if the potential impact on these areas is not addressed up-front, the issue will be questioned later. Who Audits the Plant? The last prerequisite before performing the audit is to deter- mine who should perform the audit. There are several persons or groups that can be made responsible for the auditing so the recommendations of this section may be a little difficult to understand as we have not yet defined all of the steps and expectations of the audit. This subsection should be reread after the audit steps are reviewed if the reader disagrees with the author’s opinion. Webster’s NewWorld Dictionary 2 defines audit as follows: 5. any thorough examination and evaluation of a problem. The person, or group, conducting the plant review and making upgrade recommendations should have the time to dedicate to doing a thorough examination of the existing systems, experience in evaluating and making appropriate recommendations to resolve problems, and ability to write a report that will show the value of implementing the recom- mendations. Choosing the best person to perform the job among the several who regularly perform such tasks is as important as successful accomplishment of the goals. Figure 1.1a is a subjective chart showing a rating of the qualifications of the persons who regularly conduct such work. The chart shows the ranking of the various people on a scale of 1 to 5, with 5 the best. The categories on the chart are explained below. Plant engineer—A technical person at the plant with 3 to 7 years’ automation experience Corporate engineer—A senior-level engineer who travels between various plants providing technical troubleshooting and project support 1082_frame_C1.1 Page 7 Tuesday, May 21, 2002 9:52 PM © 2002 by Béla Lipták
  • 40. 8 Overall Plant Design Vendor—A technical salesperson who might be called to assess the existing systems and make recommen- dations Engineering firm—An outside engineer from a firm that does detail engineering and project management Consultant—An individual with extensive technical background and experience who is a specialist in that process industry or is an expert in the technical area of the upgrade project Process knowledge—Knowledge of the plant process in the area of the audit Plant knowledge—Understanding of the plant, goals, systems, and personnel Industry knowledge—Understanding of the business, regulations, projects, and trends for that process industry Problem resolution—Capability of determining equip- ment and system changes that will resolve the tech- nical problems and add the functionality that the audit reveals Time—The dedicated time to study the problem, deter- mine resolution, and write reports Experience—Generic estimate of the experience each has in this type of audit and problem resolution Influence—Assessment of the capabilities of the per- son or group to have the recommendations imple- mented at the plant Cost—The cost of the audit Project cost—The degree to which the auditor will work without bias on the company’s behalf to gain return- on-investment and save capital money on the project Four of the audit prerequisites are listed to give the out- side experts the detail plant knowledge that they need to do a very thorough audit. Unfortunately, there is no efficient way to transfer the knowledge and experience of the outside expert to plant personnel. Even if the plant had a technical person with the time and experience to adequately examine and evaluate systems for upgrading, that plant person may not have the political influence to be the catalyst for change that is needed to convince the plant to implement the recom- mendations. THE AUDIT The introduction to this chapter mentioned that there are two types of projects: the maintenance upgrades to avoid obsolete components, eliminate problem components, or conform to new regulatory requirements to keep the plant operating; and the capital project for process improvement or manufacturing cost savings that will show a return on investment from the upgrade. The primary differences between these types of audits are perhaps the scale of the job and the internal funding differences. Otherwise, both audits are essentially the same and share the same characteristics and steps. Either type of project will require finding the best place to replace the functionality of the old components with new. Both projects will require the new components to integrate with old com- ponents. The maintenance project to replace individual com- ponents relies more on the plant standards that set strategic directions to ensure the solutions are synchronized with the plant long-term goals. Plant Engineer Corporate Engineer Vendor Engineering Firm Consultant Process Knowledge 5 5 3 4 4 Plant Knowledge 5 5 3 4 4 Industry Knowledge 4 5 3 3 5 Problem Resolution 2 3 4 4 5 Time 2 3 2 5 5 Experience 3 4 3 3 5 Influence 2 3 2 5 5 Cost 4 3 5 2 1 Project Cost 3 4 2 2 5 FIG. 1.1a Chart showing a subjective ranking of the relative strengths of persons who might perform a plant audit: 5 is best, 1 is worst. 1082_frame_C1.1 Page 8 Tuesday, May 21, 2002 9:52 PM © 2002 by Béla Lipták
  • 41. 1.1 Auditing Existing Plants for Upgrading 9 Now, we understand the company, plant, process area, and upgrade project goals. We interviewed operations and management personnel and we know the functional specifi- cations for an ideal system that would allow operations achieve the project goals. We have estimates from operators, managers, and maintenance personnel of the time, product, rework, quality, and other tangible savings that they can achieve with functionality discussed. We understand the plant standards for various components in the audited systems. We identified the key success areas of the plant and noted their impact on profitability. We selected an auditor and gave him or her all our background material. So, now what methodol- ogy should our expert follow? 1. The first step of the audit is to review the prerequisites with the auditor. Remember that the purpose of the prerequisites is to share plant-specific knowledge and establish a functionality that would enable the plant to accomplish the goals. 2. Perform a physical audit of the systems (Figure 1.1b). Thoroughly examine the existing systems auditing functionality, models of components, and operating procedures. Take special notice of communication ports and communication capability of electronic devices. Look carefully at the physical condition of signal wiring and input/output (I/O) systems as well as the installation of the existing equipment. Note again that the systems should be audited in functional groups rather than physical components. The operator interface device includes at least three functional groups: interface to process data and control, alarm management, and historical data. 3. Define the gap that exists between the functionality needed and the functionality in the present systems. Consider submitting this gap analysis for review and approval by operations and management as an inter- mediate step. 4. Evaluate the upgrades needed to close or eliminate the functional gap using plant standard equipment where applicable. 5. Evaluate the modifications to the operation and main- tenance practices needed with the system upgrades to achieve and sustain the project goals. 6. Make a formal recommendation of the most effective upgrade that will evolve the present systems and sup- ply the functionality needed to achieve the goals of the project. Recommend the changes needed to oper- ation and maintenance practices that are necessary to achieve and sustain improvements. Provide a cost esti- mate of the upgrade and a rough return on investment from the information gathered in the ideal functional specification. Define the operating performance goals that can be achieved by following the recommenda- tions, and determine the measurable results that will be the success criteria for the project. The recommen- dation should also state the estimated length of time that the system will remain viable. 7. Audit the system performance as compared to the project goals and the agreed-upon project success cri- teria approximately 6 months after the upgrade project is complete. These seven steps constitute an outline for auditing a plant for automation system upgrades. The procedure does not address what to look for or how to evaluate the selection of various components. Other sections of the Instrument Engineers’ Handbook adequately address the selection and installation of control elements and transmitters, networking, control systems, operator interface devices, and other tech- nical information. The last part of this section focuses on a few of the fundamental issues of the integration of new and old components in upgrading existing systems. UPGRADING EXISTING SYSTEMS The person performing the audit should have knowledge beyond that of the typical plant personnel of the trends, alliances, and evolving technologies that will provide a great return on investment for manufacturing and process industries. These items may not be in the functional specification. The auditor has an obligation to make the plant aware of trends, evolving technologies, and integration issues so that the plant can determine the value of an immediate investment. The rest of this section on auditing an existing plant for upgrades addresses some of the issues of integration of old and new and other items that the auditor should include in the upgrade recommendation report. Evolution Systems should evolve, not become extinct. Evolution should be the plan while auditing existing sys- tems and should definitely be a primary consideration in the evaluation phase of the system upgrade. In the 1980s and 1990s a distributed control system (DCS) meant proprietary I/O systems, controllers, data highways, operator interface devices, and process historians from a single vendor. Initial investment to purchase these systems was high, and the cost FIG. 1.1b List of some of the items that should be noted by observation or discussions with operators during a control system audit. Check Sheet for Control System Audits • Model numbers of components • Instrument installation • Communication capability of electronic devices • Physical condition of instruments, valves, controllers, and wiring • Valve position, cycling at typical conditions • Operating procedures, problems, suggestions • Documentation • Problems with regulatory control • Multiple operator interface devices to various systems 1082_frame_C1.1 Page 9 Tuesday, May 21, 2002 9:52 PM © 2002 by Béla Lipták
  • 42. 10 Overall Plant Design of outages and disturbance to operations installing them were even greater. Suppliers replaced components and had major new releases often because the “systems” encompassed both the hardware and software in many areas of functionality and because competition and development were very active. A result is that it is common for customers to have two “sys- tems” from the same vendor with new operator interface devices that cannot communicate with old controllers, or new controllers that will not communicate with old operator devices. Today, many companies operate with independent “systems” from various suppliers on the same plant site. Like others, Fisher Controls, now part of Emerson Process Management, began assisting customers with life-cycle plan- ning for the DCS in the early 1990s. These life-cycle programs provide migration paths to keep systems current and provide notification of new products and manufacturing changes and supply of older products. 3 (Honeywell offers several options of LifeCycle Management (LCM) to help its customers inte- grate new technology with predictable costs. 4 ) These pro- grams help successfully avoid component obsolescence and assure that the components interface through several vintages, but they do not always lessen the cost and disruption to plant operations. There is another option to supply the evolution needed. In the late 1990s open standards, increased functionality, and reliability of personal computers and the need for process information combined to enable, and force, vendors to create access to their systems. Today, a plant system can be defined as an arrangement of independent components connected to form a unity for the achievement of specified functionality. The components do not need to be from one vendor. Archi- tecture of the system is very important. Hardware and phys- ical connectivity to the proper data highway systems enable very highly flexible and upgradable functionality through upgrading software. The components can be selected because they are the best of breed, or selected on the basis of lowest cost to fill the functional requirement. With the proper archi- tecture, the hardware and software components that comprise the process control and information system can evolve at different speeds over many years with minimal impact on operations and minimum cost. The audit should identify existing components supporting interfaces to open systems as well as existing components from suppliers that refuse to provide open interfaces. Figure 1.1c shows a typical 1990-vintage DCS with a good, high-speed interface to other systems. Figure 1.1d shows PCs as new operator interface devices connected with redundant links to the DCS and PLCs (programmable logic controllers). Addi- tional functionality is added to the operator interface device through software to allow retrieval of grade specifications from the specification management system and downloading of grade set points and tuning parameters to the existing control systems. Audit the Installation and Process Few situations are more frustrating or more futile than trying to correct process design problems with process control. Sim- ilarly, changing manufacturers or styles of instruments will hardly improve the control problems caused by instrument installation errors. Every control and system upgrade project should strive to correct the physical process and instrument installation problem of past projects. Physical problems involve piping and mechanical work that is usually expensive, and controls engineers are always under pressure to make the existing system work without modification. However, the best FIG. 1.1c Typical DCS architecture circa 1990. 1082_frame_C1.1 Page 10 Tuesday, May 21, 2002 9:52 PM © 2002 by Béla Lipták
  • 43. 1.1 Auditing Existing Plants for Upgrading 11 approach is to address the problems directly. Allowing oper- ations and management to think that a new controller or new instrumentation will resolve a physical problem is as great a disservice as failing to recognize the physical problem. The audit is the time to recognize and note process and instrument installation problems. Sometimes it is not feasible to conduct an audit to scru- tinize every process and every instrument and control valve installation looking for installation problems. The process design problems are particularly difficult to see without ana- lyzing Process and Instrument Diagrams (PID) and yet with existing systems this is not something that is typically part of the control system upgrade project. Scrutiny of the process and control system designs must be focused on certain areas prior to the field audit. One way to identify process areas for extra scrutiny is through recognizing indicators of process problems from other parts of the audit. Figure 1.1e lists some of the key indicators that a control problem is more involved than just needing a new controller or upgraded system. Process Information and System Integration Great process control is not enough. Process information is more valuable than control in many industries today. This is not totally without reason or justification since the information is needed for product tracking, product genealogy, offline statistical analysis, regulatory compliance, and marketing and customer relations. Process information increasingly interfaces to enterprise resource planning (ERP) systems, enterprise asset management (EAM) systems, manufacturing execution systems (MES), and data historians. Every system audit and recommendation should address these issues. The functional specification in the prerequisites to the audit should contain a statement about the desired interfaces to other systems. Today, any audit should address this issue whether it is in the functional specification or not. The trend is clear that more process information and process system health information are desired by higher-level systems. It is also true that the process control system and the operator, or process manager as the position is often called, increasingly need access to many more systems than just a process con- troller. The integration between the management systems will be bidirectional where quality control persons may need to see the key information about the current product and the FIG. 1.1d Illustration of the same DCS as Figure 1.1c with a new DCS controller, PLC, new operator interfaces, and supervisory controls added. FIG. 1.1e Do not try to correct problems and disturbances introduced by poor process design and nonfunctional process equipment when the best solution is to recognize and correct the process. Indications of Physical Process Problems • Control of process was always poor. • Periodic or seasonal fluctuations in controllability of the process. • Instruments and valves that work in other places are not working. • Fast oscillations in process characteristic properties after mixing. • Fast process transients and oscillations while in manual mode. • Control valves that operate at extremes of their range. • Excessive process equipment and control component failures. 1082_frame_C1.1 Page 11 Tuesday, May 21, 2002 9:52 PM © 2002 by Béla Lipták
  • 44. 12 Overall Plant Design operator may need to see, approve, and download the spec- ification for the next run in the plant. Operators, or their systems, need access to the maintenance system, e-mail, upstream and downstream processes information, historical data, time and attendance systems, possibly accounting to show real-time cost of production, and various other systems in the future. Figure 1.1f shows the connectivity for the operator interface devices to integrate to the other plant infor- mation systems. System Diagnostics and Redundancy System diagnostics and redundancy, like process information and system integration, is an area that the auditor may under- stand better than the plant personnel. So too, the auditor making recommendations for upgrading systems should include recommendations on the system diagnostics and redundancy even when the functional specification does not address the issues. System diagnostics begins with the transmitters and final control elements in the field. Smart transmitters, valves, and a device network are the basis for a system to alert folks of process and instrument problems and provide the diagnostics to isolate the problem. The 4–20 mA DC has been the standard for signal wiring since the 1960s but it now looks extravagant to run a pair of copper wires in a plant to every instrument for just one piece of information. Fieldbus technologies are discussed in Section 4.7. The plant may need direction and recommendations on the diagnostic and quality information available. Regulatory control is as important as ever, but supervi- sory controls and coordinating plant controls are needed in most plants to make a step change in quality and productivity. Changing one regulatory controller for another is not a recipe for success. Section 1.8 of this chapter discusses hierarchical control. The auditor must consider that recommendations address virtual sensors, automatic loop tuning, statistical pro- cess control, and model-based control. Also, the control sys- tems recommendations should make the plant aware of redundancy options, diagnostic capabilities, and automatic telephone dialing system alarms. Redundancy of control systems, where it is required, is often considered a dreaded but necessary expense. Where applicable, the control system upgrade recommendation should address the advantages of redundancy for purely eco- nomic reasons. Systems that continue to function through a component failure avoid forced downtime, lost product, the cost of emergency maintenance support, interruptions to pro- duction scheduling, and other problems. As systems are inte- grated, redundancy may be needed in communication net- works, interface devices, and software to ensure that the systems continue to function through a failure. The technical FIG. 1.1f Illustration of the same DCS as in the previous figures with direct operator interface communication to the PLC, and the addition of interfaces to other plant information systems that need process data. 1082_frame_C1.1 Page 12 Tuesday, May 21, 2002 9:52 PM © 2002 by Béla Lipták
  • 45. 1.1 Auditing Existing Plants for Upgrading 13 expert must make the plant aware of opportunities. Section 2.9 discusses system architecture for increased reliability. References 1. Walton, M., The Deming Management Method, NewYork: Dodd, Mead Company, 1986. 2. Webster’s New World Dictionary, 2nd college ed., New York: World Publishing Company, 1970. 3. Proceedings 1992 PROVOX Users Group Meeting Report, Austin, TX: Fisher Controls Company, 1992. 4. Honeywell Web Site, 2001, http://www.iac.honeywell.com/ pulp_paper/Services/InternetServiceLifeCycleMgtContent.htm. Bibliography McMillan, G. K., Process Industrial Instruments and Controls Handbook, 5th ed., New York: McGraw-Hill, 1999. 1082_frame_C1.1 Page 13 Tuesday, May 21, 2002 9:52 PM © 2002 by Béla Lipták
  • 46. 14 1.2 Project Management and Documentation S. EMMANUEL The dynamic fiery engine of a well-run project advances inexorably to its objectives on tracks laid of good documen- tation. And documentation had better be good, when it refers to the details of the central nervous system of a process plant. Faulty connections in the brain of the plant could result in the worst nightmares or if the project is lucky a dysfunctional plant. Good documentation is only one of the prerequisites for successful instrumentation and control (IC) projects. The multifaceted nature of IC projects means that the project has implications for almost every department of a plant owner’s organization. Satisfying each of these stake- holders will require the best of project management skills. This section describes the structure and underlying relation- ships of traditional IC documentation and its effective exploitation in conjunction with project management tech- niques for successfully managing an IC project. For the purposes of this section, the following definitions apply: Project: A temporary endeavor undertaken to create a unique product or service Owner: The entity with final responsibility for the com- plete operation of the facility Contractor: The owner’s hired representative, provid- ing any combination of engineering, procurement and construction services The descriptions and terminology used here are common practice in the process industry. The documentation and project management practices would be applicable as is in related industrial sectors with some changes in names of drawings and terminology. GOOD DOCUMENTATION PRACTICES Good documentation practices have to be enforced from the preliminary engineering phase of the project. As the project progresses, the stewardship of the engineering documents changes hands from design contractors to construction con- tractors or vendors to eventually reside with the owner. Thus, it is the owner’s commitment to good documentation practice during each project phase that will ensure that documents always change hands in a state appropriate to that phase. Owners ensure this by enforcing review and approval cycles and maintaining a system of documentation. An independent reviewer, representing the owner’s inter- est, is valuable for the project. Design reviews take place during the design phases of the project when most of the documents are produced. Thoroughness of review and approval can be ensured by the use of standard checklists for each type of document and each phase of the project. These checklists are developed applying the three “C”s criteria for good documentation: • Completeness • Correctness • Consistency Completeness criteria ensure coverage of scope of the project and adequacy of the level of detail on the drawings with respect to the phase of the project. However, a project sometimes has to proceed with incomplete information and in such cases the portion of a document containing such information must be clearly marked out (shading or clouds are frequently used) with a appropriate clarification in the form of remarks or notes. The correctness criteria ensure the integ- rity of data on the documents with respect to IC engineering principles, requirements of other engineering disciplines, existing plant or site conditions, and applicable standards. Consistency criteria refer to maintaining correct cross refer- ences within the project and plant documents, using specified file, border, and title block formats, using the correct drawing naming and numbering schemes, using consistent terminology and units, using drawing templates, seed files, etc. Consistency is also improved if repetition of the data is minimized, which ensures that, when the data change, only a minimum number of documents are affected. Maintaining a system of documentation requires that the owner define and administer, as a minimum, a system of naming and revising documents and a system of tagging plant, area, equipment, and instruments. An administered system of tagging and document numbering serves to anchor the documentation system of the plant, allowing these attributes to be used as key attributes or to index into lists of equipment and documents. Although document and revision numbering conventions vary in practice, instrument tagging conventions follow ISA S5.1. 8 1082_frame_C1.2 Page 14 Tuesday, May 21, 2002 9:53 PM © 2002 by Béla Lipták
  • 47. 1.2 Project Management and Documentation 15 In addition, particularly in large plants involving various construction and engineering agencies, it is common for owner organizations to: • Maintain written procedures for all activities related to official documentation • Maintain and enforce the use of standard libraries of cell or block reference files for standard equipment • Retain control of drawing seed or template files for each type of document and database structure • Require the use of standard installation details, mate- rials, and use of standard coding and classification schemes These kinds of standardization affect all phases of the project, saving time and cost and improving the quality of the con- struction. PROJECT CRITERIA DOCUMENT Capturing the requirements of a project with all its com- plexity is a difficult task. The traditionally quoted project objectives, that is, cost, schedule, quality, and safety, are always paramount. However, every project needs to satisfy unique requirements, which the whole project team should be aware of from the beginning so that the project ends in success. Hence, irrespective of the project phase, a project summary or criteria document helps focus efforts on the requirements of the system, indicating physical, economic, or logistical constraints that are applicable and the standards to which the system needs to comply. This could take the form of a checklist or a preformatted document with blanks to be filled in at the time of project start or estimation. Table 1.2a is a sample design criteria format for the IC portion of a design project. On this form, design criteria typically refer to scope documents and functional specification doc- uments to extract the system requirements. Typically, a preliminary site visit will reveal a host of constraints and new requirements, which could well be consolidated into this design criteria report. The accepted standards and prac- tices should be listed. Standard symbols for computer-aided drafting (CAD) drawings as defined by owner and/or con- tractor should be documented. If the owner provides a list of preferred manufacturers and any additional practices or schematics that further clarify owner design requirements, they must also be cited here. Finally, the sizing of a project provides a measure of the complexity and uses preliminary input/output (I/O) and field instrument counts as the basis. When the design is nearing completion, this document becomes a tool to ensure that the design will meet all the functional requirements, constraints, and standards. Table 1.2a is also an indication of the many ways IC projects can differ from one another and emphasizes the uniqueness of each project. THE PREFERRED VENDORS/TECHNOLOGY LIST Owners do not always have a published list; however, the owner organizations are often precommitted to a certain brand or flavor of technology for various valid reasons, such as: • The plant is already using the brand or technology, which means spares are available, operators need not be retrained, components have site-proven reliability. • To avoid obsolescence by buying products based on standard protocols (e.g., HART or Fieldbus) and by buying the most recent hardware and software. • Certain vendor architectures are a better fit for certain kinds of process (e.g., batch control vs. continuous control). Identifying the preferred vendors at the beginning of the project has several advantages: • The vendor can be a part of the project team from the beginning, bringing in experts on the specific system who are then able to provide optimal architectures based on vendor’s products to meet the plant’s present and future needs. • Design can proceed with fewer uncertainties, leading to more consistent and complete designs. • Overall project duration is shortened because of con- sistent and complete designs and also because the vendor can start production earlier on the project cycle. Disadvantages are the possibility of higher costs due to the lack of competition and the danger of excluding consider- ation of better and newer technologies. IC DOCUMENTATION SYSTEM The system of IC documentation has evolved over the years with each document having an inherent structure of informa- tion that is useful during specific phases of the project. For example, loop diagrams are most useful as an aid for main- tenance and troubleshooting, whereas interconnection draw- ings are used predominantly during the construction phase. The system of documentation has also evolved to minimize repetition of data between documents and to minimize the refinements required by each iterative phase of the project. Thus, the cable block diagram aids the optimal allocation of junction boxes and cables during a FEED or basic engineering phase, the details of which would be required to be worked out only during detailed engineering in the form of layouts of cable routing and interconnection drawings. This structure of the documentation is presented as a dependency map in Figure 1.2b. Given the uniqueness of each project, this is only a suggested sequence for creation of new documents. Some of the documents may not be formal deliverables but are used as intermediate design documents only. The dependency map is useful in determining the impact of changes to a project, which is described in one of the following sections. 1082_frame_C1.2 Page 15 Tuesday, May 21, 2002 9:53 PM © 2002 by Béla Lipták
  • 48. 16 Overall Plant Design TABLE 1.2a A Project Criteria Form for Instrumentation and Control Design Projects 1082_frame_C1.2 Page 16 Tuesday, May 21, 2002 9:53 PM © 2002 by Béla Lipták
  • 49. 1.2 Project Management and Documentation 17 FIG. 1.2b A document dependency map of instrumentation and control system design project. 1082_frame_C1.2 Page 17 Tuesday, May 21, 2002 9:53 PM © 2002 by Béla Lipták
  • 50. 18 Overall Plant Design DOCUMENTS—PURPOSE, CONTENTS, AND STANDARD FORMATS Various standards organizations specify content and format of data in these documents. ISA S5.1 to S5.4, 8–11 ISA S20, 12 ISA RP60.4, 21 and PIP practice PIP PCEDO001 7 are valuable references. ISA S51.1 14 and IEH, Volume 1, Chapter 1 is a reference for terminology to be used in all IC documents. Many owners also maintain their own documentation stan- dards. Because project requirements vary considerably, the following description is given only to emphasize the content for the various documents with respect to purpose and sig- nificance to the project. Process/Mechanical Flow Diagrams These drawings depict the flow of material through a plant, the major equipment, and their capacities. The process flow diagrams (PFDs) are useful for quickly grasping an overview of the process because it depicts the process in a compact fashion without a clutter of information. The process condi- tions required to be maintained to achieve the process objec- tives are shown on these diagrams at various points along the flow and this becomes very handy for the IC engineer. The process licensee or the process engineer in the orga- nization generally provides these drawings. Typically, at the preliminary stage of a project the control or instrument engi- neer’s involvement is restricted to review of the major control loops in the system. A small subset of the symbols is used for the creation of the piping and instrument diagrams (PIDs) to depict the instrumentation and control loops. Piping and Instrumentation Diagrams In the process industry the IC design begins with the PID, which is also the starting point for some of the other disci- plines such as piping and mechanical engineering. The process engineer in the organization typically leads the development of this document with inputs as appropriate from the piping and IC departments. PIDs are derived from the PFDs. PIDs enjoy a special place in the plant documentation system. They are among the most utilized of documents in all phases of the plant life cycle and by several disciplines. To maximize the utility of this key document, it is imperative that the following aspects are closely followed: • Standard symbols are used throughout. • Sufficient details of instrument and piping are always provided. • Presentation provides for clarity of the process flow. The facility owner typically prescribes standard symbols to be used in the PIDs. The owner’s instrumentation sym- bols and tagging conventions typically adhere to ISA S5.1 8 and IEH, Volume 1, Chapter 1. However, other systems of symbols are also used. Depending on the type of instrument, additional infor- mation is very useful outside of each instrument circle on the PID. Below are listed some common types of instruments followed by examples of the desired information. • Orifices—The orifice flange size in inches and ANSI class rating (e.g., 8″-600#). • Control Valves—The valve size in inches, ANSI rating class, air action, and air failure action (e.g., 8″-900# AO/AFC). • Safety Relief Valves—The inlet and outlet size in inches, orifice letter and set pressure in PSIG (e.g., 6Q8, set at 150 PSIG). • Gauge Glasses—The visible glass length in inches. • Electric or Pneumatic Switches—Switch point in unit of the process variable and actuation with respect to the measured variable (e.g., “H” for high, “LL” for low-low). • Recorders or Indicators (Direct Process Connected)— Chart or scale range. • Nonstandard Air/Power Supply—Requirements for supply pressure of instrument air other than standard pressure or control voltage not generally available (e.g., for use with shutdown systems or similar special requirements). • Other information, which will assist in reading and checking the design, calibration, and operation of the instrumentation, may be added. The Instrument Schedule Design information generated during the course of an instru- mentation and control project is most effectively stored and retrieved from properly structured relational database tables. One of the primary tables in such a database is the main instrument index, which is created as soon as working PIDs are made available and which contains information on all the instruments in the project. Such an index thereafter becomes an effective tool for determining current work completion status and for ascertaining that required work has been per- formed and documents have been issued. Some of the com- mon fields in an instrumentation schedule are shown in Fig- ure 1.2c. Other useful fields can be added per project-specific requirements. Instrument Data Sheets (Specification Forms) Most field instruments are not commercial, off-the-shelf items; they must be manufactured, calibrated, and tested against each specification. This is so because the process fluid, mea- surement, and operation range and other requirements dictate the use of one of many possible combinations of metallurgy, size, and sensor technology that may be available. Instru- ments are precision-made, high-value items that are not eco- nomical to be maintained on the shelf. The instrument data sheets are prepared to present the basic information for the instrument requisition. When completed, they provide a 1082_frame_C1.2 Page 18 Tuesday, May 21, 2002 9:53 PM © 2002 by Béla Lipták
  • 51. 1.2 Project Management and Documentation 19 readily accessible, concise summary of information with suf- ficient detail to allow a vendor to select the appropriate instru- ment. ISA S20 or the equivalent should be used. A database is a very effective tool for maintaining large numbers of specification sheets. System Architecture/Network Diagram This drawing will show in block diagram format all major control system components, including routers, switches, gateways, servers, subsystems, etc. The drawing shall iden- tify where all components are physically located (e.g., Cen- tral Control Room, Substation, Utilities Control Building, etc.). The system cable connection philosophy shall be shown. The cable/wiring details shall specify the media (i.e., fiber, coax, twisted pair, etc.), speed of communication link, protocol, and whether the link is redundant. Control System Documentation Control system design is a very intense phase of the project during which the owner departments, engineering contrac- tors, and vendors have to exchange a large volume of infor- mation back and forth. Properly done, the documentation can be useful in many ways: • Approval by the players having jurisdiction • Check for code compliance, quality assurance, and control • Basis for cost estimate, budget, and schedule • Support of field installation, test, calibration, and maintenance • Manufacturer’s test records, basis for shipping-damage claims • Basis for planning for future expansion, modification, and duplication • Record of configuration and reference for operations in the future • Historical records The vendor or systems integrator produces the bulk of the documentation for a large control system following a functional specification document generated during the detail design phase of the project. The functional specification should provide sufficient details for a vendor to price the system and provide details of how each function is realized in the system. Before bid award the vendor’s final offer doc- ument should detail the material and services provided.Along with the technical specification, the vendor’s project delivery schedule, spare parts prices, support availability, and instal- lation schedule are also included in a bid evaluation. On award, the vendor produces detailed documents, which shall typi- cally comprise: • Detailed system description, system planning infor- mation • Vendor standard documentation for configuration, management, maintenance, and operation FIG. 1.2c A database view of the object model of IC system and documentation. 1082_frame_C1.2 Page 19 Tuesday, May 21, 2002 9:53 PM © 2002 by Béla Lipták
  • 52. 20 Overall Plant Design • I/O, panel, and cable schedules • Detailed panel/console drawings showing layouts and interconnections • System configuration database • Software documentation including source code, lad- der, or logic diagrams • Factory acceptance procedure • Site acceptance procedure The project should monitor and advance the status of each document from “preliminary” to “approved” and then to “as-built” with a well-specified plan agreed to by all the players. This plan is frequently represented with a responsi- bility matrix that indicates which specific people need or produce each type of document at each phase, the purpose, and the date for completion. Instrument and Junction Box Layout Drawings When locations of instruments are imposed on a facility plot plan or piping plan, the resultant cluster patterns allow for determination of optimal placement of junction boxes and identification of routing of conduits based on availability of supports, clearance and access requirements, etc. These draw- ings are directly derived from piping or facility plans. Cable Block Diagrams Cable block diagrams are created to show all the cables and the panels or instruments on which the ends terminate. These drawings are particularly useful in large projects where it is worthwhile standardizing on a small set of cable sizes and junction boxes. In an iterative manner, the process merges and splits home run cables and junction boxes until an opti- mal set of cables and junction boxes is reached. These draw- ings are also useful intermediates to the production of cable routing drawings, interconnection drawings, and cable and conduit schedules. Control Room Layout Drawings Control room/interface building/analyzer house layout draw- ings shall show in plan view the location of consoles, panels, control racks, computer racks and peripherals, logic racks, termination racks, and the position of each item of major equipment. The spacing and arrangement of cabinets should adhere to requirements for easy access for maintenance, heat dissipation, and electrical interference. Also shown are seg- regated pathways for cables carrying analog signals, emer- gency shutdown (ESD) signals, discrete signals, and power. ISA RP- 60.4 provides the detailed information for the design of control centers. Panel Layouts and General Arrangement In the preliminary design phase only the overall dimensions, location of instrument items, shape, graphic layout, and general layout are provided. The detailed layout shall be provided by the vendor and shall be approved by the owner before fabri- cation of the console or panel and shall include: • The cutout dimensions and mounting details for all instrument items • Exact locations where signal cabling, data highway cabling, and electrical power wiring enter the console or panel-board; instrument air supply and pneumatic tubing must also be shown as applicable to each instal- lation • Panel illumination • Location and designation number of terminal strips or electrical junction boxes • Schematic layout of pneumatic tubing runs, when applicable • Dimensions, equipment location, wiring raceway, cable entries, and terminal strips Careful consideration to the size, color, and layout of these panels contributes to good aesthetic appeal of the control rooms. Interconnection or Wiring Diagrams These documents should show the terminal strips with ter- minal numbers for junction boxes, field control panels, mar- shaling cabinets, and instrument cabinets and racks, with the appropriate identification. They should also show the con- nections of instrument multicore cables to the terminals, with identification by cable number and core/pair number. A table can represent the wiring for most junction boxes and mar- shaling panels just as well as by a conventional drawing. The advantage of a table is that it is more easily modified and maintained. However, a drawing shall be used if the wiring is complex as when multiple jumpers, resistor elements, and other devices are to be shown on the same document. Cable Routing, Cableway Sections, and Details The conduit/tray layout and cable routing (drawing or list) should show the general conduit/tray layout and the following cable/conduit data: identification number, approximate length, type, and routing. The routing drawing is generally imposed on a piping or facility plot plan. If the routing is underground, this drawing must accurately show all under- ground facilities and must be consulted and updated in the event of any change to these facilities. In addition to speci- fying routing of the cable, this drawing helps to estimate the wiring and cabling requirements for the plant. Grounding System Drawings The grounding system drawings should show grounding con- nections to the appropriate power supply systems as well as earth grounding locations for all instrument power systems, 1082_frame_C1.2 Page 20 Tuesday, May 21, 2002 9:53 PM © 2002 by Béla Lipták
  • 53. 1.2 Project Management and Documentation 21 wiring system shield grounding, distributed control system grounding, and grounding for other appropriate instrumenta- tion and control systems. Instrument Loop Diagrams Instrument loop diagrams (ILDs) are the culmination of the IC design work as they contain the complete design infor- mation on a loop-by-loop basis. The objective is to depict the complete signal flow path from the originating device to the operator’s desk accompanied by all associated informa- tion such as range, size, control, alarm settings, etc. See ISA S5.4 10 for formats and content. ILDs are extremely useful at the time of commissioning, start-up, and troubleshooting. However, ILDs repeat information that is already present in other documents. Maintenance departments in operating plants depend on ILDs and generally keep them updated. Problems arise when these changes are not always reflected in the other drawings. One solution is instrumentation doc- umentation tools, which generate ILDs from a central data- base and other documents, as described in the following sections. Logic Diagrams Some plants maintain their process logic separate from the system-generated documentation of the logic. This serves to provide a common format of drawings irrespective of the vendor’s format and the hardware used. ISA S 5.2 9 and IEH, Volume 1, Chapter 1 provide guidelines on format and con- tent of binary logic. A consolidated view of the logic is also highly desirable for emergency shutdown portion of the logic, sometimes represented in the form of a cause-and-effect matrix. Logic diagrams are ideally generated from written process narratives and PIDs and form the basis for vendors’ programming of the system. INSTRUMENT INSTALLATION CHECKOUT AND CALIBRATION/CONFIGURATION PROCEDURE A detailed procedure should be prepared to define the respon- sibility for instrument installation, including complete cali- bration (or configuration for smart transmitters, etc.) and operational checks of all instrument loops, sequencing and interlock systems, annunciators, and shutdown systems. A checkout form should be used to record calibration and loop check sign-off/approval. DECOMMISSIONING DOCUMENTS Decommissioning documents are often required to show the portion to be decommissioned on a revamp job. Procedures for proper disposal or refurbishment of instruments must be provided. DOCUMENTATION—AN INFORMATION MANAGEMENT PERSPECTIVE The level of information technology employed on projects varies considerably; however, studies 1,2 established its effec- tiveness and identified the use of electronic data management as one of the prime techniques most likely to shorten project duration with no increase in total cost. The instrumentation and control portion of a project is particularly amenable to the effective utilization of information technology. Simple use of office software enables the creation and maintenance of specification sheets, schedules, and list documents. Widely available computer-aided drafting and design tools have long been part of the repertoire used by engineering companies to create drawings. However, to benefit fully from this technol- ogy it is essential to be able to link together the data resident in various traditional document formats so that data can be viewed, maintained, correlated, and shared. Traditional documentation tools are essentially document- centric, which means information is stored with each docu- ment or file as the final atomic unit, whereas in the engineer- ing world the atomic unit is the individual component that makes up the overall system. The components can typically be classified into various types (instruments, cables, junction boxes, I/O) with each type having a set of attributes common to that type (e.g., every instrument has a tag no., service, PID no., etc). Components of different types in a system are associated with each other in terms of relationships that relate some of their attributes in one type to that of another. For example, an “I/O” allocation to a particular field “instru- ment” is an associative type of relationship between the “I/O” and “instrument” components in the system. Other types of relationships between components are possible. For example, a cable made of several conductors represents a “whole-part” type of relationship. Similarly, the “instrument” component is a generalization of the specific type, for example, the pressure gauge. This is an example of a “general-specific” type of relationship. The components or objects also have to satisfy certain constraints and conditions with respect to the value of each of its attributes and in its relationships with other components (e.g., each conductor end can have only one termination point). Object technology refers to data struc- tures, which enable storage of data associated with real-world components along with their relationships and rules of inter- action with other components. Clearly, the object technology is better suited for storage of engineering data, which obvi- ates the translation process from an object-centric world to a document-centric space required for the document-centric approach. See Reference 3 for a description of solutions addressing this issue. Engineering information needs to be exchanged between the various disparate players in a project. Any data storage format needs to be sharable and usable by the whole project community. Various consortiums of companies 3 and standard bodies 4,5 have been established to achieve standardization of various aspects of this process. These standards provide the 1082_frame_C1.2 Page 21 Tuesday, May 21, 2002 9:53 PM © 2002 by Béla Lipták
  • 54. 22 Overall Plant Design bedrock for building the next generation of software tools, which will allow information sharing across disciplines and spanning entire plant life cycles. Underlying relationships and data structures of the com- ponents of a system are always constant irrespective of the approach a project may take to create the documents. Figure 1.2c depicts a part of the structure of the engineering data of components used in a typical IC project. When using a database, the blocks would be implemented as database tables, whereas in the traditional documentation these would be called schedules or list documents. On a database table or list, each of the items in each of the blocks would appear as a field name or column title. Each row in the table or list represents one real-world object or entity such as an instru- ment, cable, junction box, or I/O channel. Ensuring that each row represents an actual object helps to keep the database structure intuitive and easily understood. Using a relational database, the relationships between these objects can be mod- eled easily. For example, allocating I/O to a specific field instrument would be simply implemented by providing a link field, in this case the instrument tag number in the I/O table. More intricate relationships would require to be modeled using a table itself, such as, for example, the wiring/termination table represents a relationship between the instrument, cable, and panel tables, as depicted in Figure 1.2c. This table actually represents the wiring of the cables to a termination box and hence is the database equivalent of the more traditional inter- connection or wiring diagram. The advantages of using electronic databases over paper documentation stem from the underlying advantages of data- base systems. That is, the ability to find, search, sort, arrange and link data in various ways allows easier maintenance, retrieval, and storage of data. Moreover, databases allow multiple access to the data, at the same time allowing con- current engineering in large projects. The relational data- base systems allow data to be stored in a meaningful and intuitive manner. Also, relational databases can minimize the storage of the same data in multiple tables and thereby ensure that, if a piece of data needs to change, that change needs to be performed in just one place and is reflected in all the other views and documents generated from the same database. Advanced users of the database would also incorporate data integrity checks to ensure that the data as entered satisfy various engineering, technocommercial, and physical con- straints. For example, integrity checks could ensure that a wiring database does not have electrical shorts or disconti- nuities, instrument ranges cover the process operating ranges, material used are compatible with the process fluid, approved vendors are used, etc. Accruing full benefits from using the database approach requires its use starting from the initial design phase of the project. The CII study 1 provides addi- tional benefits in terms of schedule and cost reduction to a project on use of electronic media in general. The data structure represented in Figure 1.2d also extends the previous structure to include data for individ- ual instrument types, process engineering information, FIG. 1.2d Extension of object model to include project organization and estimation. 1082_frame_C1.2 Page 22 Tuesday, May 21, 2002 9:53 PM © 2002 by Béla Lipták
  • 55. Exploring the Variety of Random Documents with Different Content
  • 59. The Project Gutenberg eBook of Cours familier de Littérature - Volume 19
  • 60. This ebook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this ebook or online at www.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook. Title: Cours familier de Littérature - Volume 19 Author: Alphonse de Lamartine Release date: October 14, 2012 [eBook #41056] Most recently updated: October 23, 2024 Language: French Credits: Produced by Mireille Harmelin, Keith J Adams, Christine P. Travers and the Online Distributed Proofreading Team at http://www.pgdp.net (This file was produced from images generously made available by the Bibliothèque nationale de France (BnF/Gallica) at http://gallica.bnf.fr) *** START OF THE PROJECT GUTENBERG EBOOK COURS FAMILIER DE LITTÉRATURE - VOLUME 19 ***
  • 62. PAR M. A. DE LAMARTINE TOME DIX-NEUVIÈME PARIS ON S'ABONNE CHEZ L'AUTEUR, RUE DE LA VILLE-L'ÉVÊQUE, 43. 1865 L'auteur se réserve le droit de traduction et de reproduction à l'étranger. COURS FAMILIER DE LITTÉRATURE REVUE MENSUELLE. XIX
  • 63. Paris.—Typographie de Firmin Didot frères, imprimeurs de l'Institut et de la Marine, 56, rue Jacob.
  • 64. CIXe ENTRETIEN. MÉMOIRES DU CARDINAL CONSALVI, MINISTRE DU PAPE PIE VII, PAR M. CRÉTINEAU-JOLY. (PREMIÈRE PARTIE.) I Quelle que soit l'opinion qu'on se fasse du principe divin ou humain de l'autorité spirituelle ou temporelle de la papauté en Europe, il est impossible de nier que les papes soient des souverains, soit en vertu d'un mandat de Dieu, soit en vertu d'une antique tradition humaine; qu'en vertu du titre surhumain, leur autorité, sous le rapport spirituel, soit sacrée; et qu'en vertu du titre de possession humaine et traditionnelle, leur gouvernement soit respectable. Les gouvernements, monarchies ou républiques, traitent avec eux, leur envoient des ambassades ou en reçoivent d'eux, concluent des concordats ou des conventions avec eux, et sont tenus de les exécuter par le simple respect de leur parole, jusqu'à ce qu'ils soient périmés ou modifiés d'un consentement commun; en un mot ils gouvernent légitimement la portion d'empire qui leur a été dévolue sur ce globe.
  • 65. Détrôné pour cause de papauté, est un axiome de droit public qui n'a pas encore été admis sur la terre. Qu'on n'admette pas le mélange sacrilége du spirituel et du temporel, c'est libre à chacun; mais qu'on ne reconnaisse pas le gouvernement temporel de la papauté parce que le pape exerce comme pape des fonctions ecclésiastiques à Rome ou ailleurs, c'est confondre les deux puissances et passer soi-même d'un ordre d'idées dans un autre. Les papes ont donc comme souverains un gouvernement. Or, du moment où les papes ont un gouvernement, ils ont des ministres; et si au nombre de ces ministres ils ont le bonheur de trouver un homme supérieur, modéré, dévoué jusqu'à l'exil et jusqu'à la mort, comme Sully était censé l'être à Henri IV; si ce rare phénix, né dans la prospérité, éprouvé par les vicissitudes du pouvoir et du temps, continue pendant vingt-cinq ans, au milieu des fortunes les plus diverses, en butte aux persécutions les plus acerbes et les plus odieuses, à partager dans le ministre, sans cause, les adversités de son maître; si le souverain sensible et reconnaissant a payé de son amitié constante l'affection, sublime de son ministre, et si ce gouvernement de l'amitié a donné au monde le touchant exemple du sentiment dans les affaires, et montré aux peuples que la vertu privée complète la vertu publique dans le maître comme dans le serviteur; pourquoi des écrivains honnêtes ne rendraient-ils pas justice et hommage à ce phénomène si rare dans l'histoire des gouvernements, et ne proclameraient-ils pas dans Pie VII et dans Consalvi le gouvernement de l'amitié? C'est le véritable nom de ce gouvernement à deux têtes ou plutôt à deux cœurs, qui a traversé tant d'années de calamités sans se diviser, après quoi le ministre est mort de douleur de la mort du souverain, laissant pour toute fortune une tombe sacrée à celui qu'il a tant aimé.
  • 66. Voilà l'histoire exacte du règne pontifical de Pie VII et du ministre Consalvi. II J'ai beaucoup connu et familièrement fréquenté le cardinal- ministre, à Rome, à différentes époques, sous les auspices de la duchesse de Devonshire, son amie la plus intime, et j'oserai dire la mienne aussi; elle m'en a légué une preuve touchante en me léguant une de ses munificences par son testament. Cette munificence acquit à mes yeux un triple prix parce qu'elle me fut transmise par madame Récamier, femme digne de cette société avec les illustrations de Londres, de Paris et de Rome, et qui m'a légué elle-même un souvenir immortel, le beau portrait de notre ami commun le duc Matthieu de Montmorency. J'ai été le témoin confidentiel, dans des circonstances difficiles, de la mesure, de la sagesse, de l'équilibre de son gouvernement et de l'impassibilité de son courage. Ce n'était pas seulement un grand ministre, c'était un grand cœur; j'ai passé avec lui en 1821 les semaines glissantes où l'armée napolitaine de Pépé et l'armée autrichienne de Frimont allaient s'aborder à Introdocco et se disputer les États romains envahis des deux côtés, et où Rome attendait des hasards d'une bataille son sort et sa révolution; il était aussi calme que s'il avait eu le secret du destin: «Experti invicem sumus ego et fortuna,» nous disait-il. «Quant au pape, il a touché le fond de l'adversité à Savone et à Fontainebleau; il ne craint pas de descendre plus bas, laissant à Dieu sa providence.» N'est-on pas trop heureux, dans ces agitations des peuples et dans ces oscillations du monde, d'avoir son devoir marqué par sa place, et ne pouvoir tomber qu'avec son maître et son ami? III
  • 67. J'attendais, je l'avoue, avec impatience le moment où un hasard quelconque, mais un hasard certain, quoique tardif, ramènerait le nom du cardinal Consalvi dans la discussion des grands noms de mon époque pour lui rendre témoignage. Ce jour est arrivé; un homme que je ne connais pas personnellement, et dont les opinions ne sont, dit-on, pas les miennes sur beaucoup de choses, M. Crétineau-Joly, vient de publier un livre intitulé: Mémoires du cardinal Consalvi. Il ne faut pas qu'on s'y trompe, le titre ne donne pas une idée précise du livre; bien qu'il soit d'un grand et vif intérêt, il n'a que très-peu d'analogie avec ce que nous appelons ordinairement Mémoires. Ce sont les mémoires diplomatiques plus que les mémoires intimes et personnels du cardinal. Cet homme de bien, très-détaché de lui-même, ne se jugeait pas assez important pour s'occuper exclusivement de lui et pour en occuper les autres; il se passe habituellement sous silence; mais, quand il rencontre sur le chemin de ses souvenirs et de sa plume quelqu'une de ces questions historiques qui ont agité et l'Église et le monde, telles que le concordat, le rétablissement du culte en France, le conclave d'où sortit Pie VII, le voyage du pape à Paris pour y couronner Napoléon, l'emprisonnement de ce pontife à Savone, sa dure captivité, sa résidence forcée à Fontainebleau, les désastres de Russie et de Leipsick qui forcèrent l'empereur à tenter sa réconciliation avec Pie VII et à renoncer à l'empire des âmes pour recouvrer à demi l'empire des soldats; le retour du pape à Rome, l'enthousiasme de l'Italie à sa vue, qui le fait triompher seul à Rome de l'omnipotence indécise de Murat en 1813; enfin sa restauration spontanée sur son trône: alors Consalvi, directement ou indirectement mêlé à toutes ces transactions, prend des notes, les rédige et les confie aux archives du saint-siége pour éclairer le gouvernement pontifical et traditionnel sur ses intérêts. Ce sont ces notes authentiques dont le gouvernement romain d'aujourd'hui a donné communication à M. Crétineau-Joly, et celui-ci nous les livre à son tour sous le titre de Mémoires du cardinal Consalvi. Elles seraient plus convenablement nommées Mémoires de l'Église de Rome pendant la persécution de
  • 68. Pie VII, rédigées par son premier ministre et son ami. Mais elles sont cependant et effectivement des fragments très-réels et très- véridiques des Mémoires du cardinal-ministre; il n'y a aucune supercherie, il y a seulement lacune; ce ne sont pas tous les Mémoires, ce sont les documents originaux, préparés par le ministre lui-même, pour la rédaction de ses Mémoires. Nous allons suppléer, à l'aide des documents fournis par M. Crétineau-Joly et par nos notions personnelles, aux commencements de la vie du cardinal, omis ou trop légèrement relatés dans ce livre, dont l'objet était plus vaste. IV Le cardinal Consalvi naquit à Rome, le 8 juin 1755, et fut baptisé sous le nom d'Hercule; il était l'aîné de quatre frères et d'une sœur; son père était le marquis Consalvi, de Rome, et la marquise Carandini, de Modène, sa mère. Il aurait dû réclamer légalement le nom de Brunacci, famille plus illustre de Sienne que la famille Consalvi à Rome; il n'en fit rien par respect pour son père, et persuadé, dit-il, que la plus précieuse noblesse est celle du cœur et des actions. Il n'avait que six ans quand il perdit son père; sa mère alla demander asile à la maison du cardinal Carandini, son frère de prédilection; il resta, ainsi que ses petits frères, sous la tutelle du marquis Gregorio Consalvi. Gregorio, avant de mourir, en 1766, les confia à la tutelle du cardinal Negroni, homme distingué du sacré collége. Ce cardinal, qui avait été élevé à Urbino par les frères des écoles pies, envoya ces enfants à Urbino pour y recevoir la même éducation que lui. «Une circonstance douloureuse m'éloigna d'Urbino quatre ans après, avant d'y avoir fini mes études,» dit-il. «Mon second frère, Jacques-Dominique, y contracta une horrible maladie. On l'attribua, —je ne veux pas affirmer avec certitude que telle en fut la cause,—à
  • 69. la brutale férocité d'un religieux, surveillant de la division (prefetto della camerata) où nous nous trouvions. Ce surveillant frappait avec un gros nerf de bœuf, et pour chaque peccadille commise dans la journée, les faibles enfants revêtus seulement de leurs chemises au moment où ils allaient se mettre au lit. Or moi, qui n'avais que dix ans, j'étais l'un des plus âgés. Mon pauvre frère se plaignit bientôt d'une douleur très-intense à l'un de ses genoux, sans aucun signe extérieur tout d'abord; mais peu à peu le genou se dressa presque jusqu'au menton, et demeura ainsi durant le reste de sa vie. «Ma mère et notre tuteur le firent revenir à Rome pour le soigner. Il fallut envoyer de Rome à Urbino la litière du Palais pontifical,—on n'en trouva pas d'autre,—car il était impossible que mon infortuné frère pût faire ce long trajet sans être porté sur un lit. Arrivé à la maison maternelle, après avoir langui dans la souffrance et subi une opération chirurgicale, il mourut vers l'âge de dix ou douze ans et fut enterré à Saint-Marcel. Le grand amour que je lui avais voué me fit amèrement ressentir sa perte, bien que je ne fusse que petit enfant. Mais ce n'était pas le coup le plus douloureux que me préparait mon triste sort. «Le cardinal tuteur, voyant que, par suite de ce trépas, notre mère en voulait toujours au collége d'Urbino, nous rappela, mon frère André et moi, pour nous placer dans le collége Nazaréen à Rome, tenu, lui aussi, par les Scolopii. Mais une circonstance accidentelle ne lui permit pas de réaliser son projet. Le cardinal Negroni, étant prélat, avait été auditeur du cardinal duc d'York, alors évêque de Frascati. Or, ce royal cardinal, fils de Jacques III, roi d'Angleterre, rouvrait justement alors son séminaire et son collége, qu'il venait de retirer des mains de la Société de Jésus. Comme il recrutait de jeunes clercs pour peupler cet établissement, il demanda au cardinal Negroni de nous y envoyer, lui promettant de nous accorder à tous deux sa protection spéciale. «Le cardinal Negroni ne put pas refuser; il vit même qu'il commençait notre fortune en nous plaçant sous la protection d'un
  • 70. aussi puissant personnage. «Nous fûmes installés dans le collége de Frascati au mois de juillet 1771 pour y terminer nos études. J'acquis de la sorte les faveurs et l'amour infini dont, à dater de ce moment, le cardinal duc d'York m'honora jusqu'à la dernière heure de sa vie. Je restai à Frascati environ cinq ans et demi; j'y terminai la rhétorique, la philosophie, les mathématiques et la théologie. J'eus le bonheur d'avoir en rhétorique, en philosophie et en mathématiques deux excellents professeurs, et j'appellerai même le second très-excellent. Je puis bien dire que c'est à lui que je dois presque entièrement ce discernement, cette critique, ce jugement sûr,—si toutefois j'en ai un peu,—que l'indulgence des autres, bien plus que la vérité, a fait quelquefois remarquer en moi. Je prie ceux qui par hasard parcourront ces lignes de regarder ce que je dis à ce sujet comme un effet de ma reconnaissance pour le maître auquel je rapporte le peu que je sais, et non comme une louange de ma propre personne. C'était un homme d'un rare mérite: il connaissait la philosophie, les mathématiques, la théologie et les belles-lettres, et j'ai rarement vu quelqu'un digne de lui être comparé. «Je contractai au collége de Frascati une maladie très-sérieuse qui interrompit mes études pendant quelques mois, et non sans me causer un véritable préjudice. Je fus appelé à Rome et placé par mon tuteur dans la maison maternelle, afin de m'y rétablir. Je retournai ensuite au collége. Je fis cette maladie au printemps de 1774, et je me trouvais en convalescence à l'époque de la mort de Clément XIV, ainsi qu'au commencement du conclave dans lequel Pie VI fut élu. Ayant achevé ma théologie au séminaire de Frascati, je le quittai définitivement au mois de septembre 1776. Mon tuteur me plaça, et plus tard il y plaça aussi mon frère André, qui était resté au collége pour achever ses études, dans l'Académie ecclésiastique ouverte de nouveau à Rome par le nouveau pontife Pie VI, qui l'entourait d'une spéciale protection. J'y demeurai six ans et mon frère quatre, et j'y étudiai les lois et l'histoire ecclésiastique professée par le célèbre abbé Zaccaria, autrefois jésuite. En sortant
  • 71. de cette académie, je reçus une pension de cinquante écus, ainsi que mon frère. Nous penchions l'un et l'autre vers l'état ecclésiastique, moi plus que lui cependant; c'est pourquoi j'embrassai cette carrière, quoique je fusse l'aîné de la famille. Quant à André, il renonça au sacerdoce, non pour se marier—ce qu'il ne fit jamais,—mais parce que sa santé ne lui permettait pas de consacrer toutes ses heures, et spécialement celles du matin, aux occupations et aux études imposées par les devoirs de cet état et les emplois qu'il aurait pu remplir. «Par délicatesse de conscience, il ne se crut pas autorisé de demander dispense pour conserver un bénéfice ecclésiastique de cent écus, qu'il tenait de la générosité du Pape. Il le remit loyalement entre les mains du donateur. Sans que je l'eusse sollicité, le Pape déclara au cardinal dataire que ce bénéfice étant déjà entré, comme on dit, dans ma maison, il ne voulait point l'en retirer, et qu'en conséquence on devait m'en attribuer la collation. Ce fut la seule rente ecclésiastique que je touchai jusqu'au cardinalat. La pension dont j'ai parlé plus haut cessa de m'être payée à l'époque de l'invasion de Ferrare par les Français. «Nous sortîmes, mon frère et moi, de l'Académie au mois d'octobre 1782, avec la pensée d'entrer dans la prélature. Il nous était impossible de vivre sous le même toit que notre mère, qui, demeurant avec son frère, ne pouvait pas se réunir à nous. Nous choisîmes donc une habitation près d'elle, dans le casino Colonna, aux Tre Canelle, nous réservant d'en prendre une plus fixe et plus convenable quand je serais devenu prélat. Le 20 avril 1783, tandis que je demeurais dans cet appartement provisoire, je fus nommé camérier secret de Sa Sainteté, et par conséquent prélat de mantellone. À la fin du mois d'août de cette même année, je fus éprouvé par une perte qui me causa une très-vive douleur. J'avais jusqu'alors fréquenté plus que toute autre la maison Justiniani: j'étais l'ami du prince et de la princesse Justiniani, ainsi que de leurs deux filles, mariées, l'une dans la maison des princes Odescalchi, l'autre dans la maison des princes Ruspoli. Cette dernière fut
  • 72. attaquée par la petite vérole, alors qu'elle était enceinte, et il lui fallut dire adieu à la vie à l'âge si tendre de dix-huit ans. C'était un miroir de toutes les vertus, elle apparaissait aussi aimable que sage. Vingt-neuf années se sont écoulées, et aujourd'hui je ressens aussi profondément ce malheur que le jour où il arriva. Je puis dire qu'après le trépas de mon frère,—alors que j'étais presque enfant,— la mort de la princesse Ruspoli fut pour ma jeunesse et pour mon âge mûr la première de toutes les pertes si cruelles que j'eus à déplorer par la suite. Il paraît que le Seigneur voulut éprouver ainsi la sensibilité peut-être trop ardente de mon cœur, ou plutôt je crois que, dans sa clémence, il chercha à punir mes nombreux péchés par ces deuils que mon caractère me rendait plus pénibles. «Pendant un an et plus, je fus camérier secret du Pape. Au mois de juin 1784,—si je ne me trompe, car je ne me rappelle pas très- bien,—ou dans le mois d'août au plus tard, je devins prélat domestique. J'habitais déjà le petit palais au bas de la daterie; je ne le quittai qu'à ma promotion au cardinalat et quand je fus nommé ministre. «Aux vacances d'automne, j'allai à Naples avec mon frère, afin de rétablir ma santé compromise par une maladie assez sérieuse que je fis au mois de septembre. Nous revînmes à Rome dans les premiers jours de novembre. Autant que je puis m'en souvenir, il se passa encore quatorze ou quinze jours sans que j'eusse aucune charge. J'étais cependant référendaire de la signature. La Curie se disait contente de mes services, et personne plus que moi n'était rapporteur d'autant de causes. Des quarante qui sont le non plus ultra des séances de ce tribunal, moi seul j'en avais vingt-cinq et même trente. «Je fus enfin nommé ponente del buon governo dans une promotion nombreuse que fit le Pape à peu près au mois de janvier 1786,—si j'ai bon souvenir. Mon premier pas ne fut ni trop prompt ni trop inespéré, comme celui de plusieurs autres dans cette promotion, et j'aurais pu, si j'avais songé à en prendre la peine,
  • 73. avancer bien plus vite. Il m'eût été facile de marcher à pas de géant, ainsi que plus d'un de mes compagnons de l'Académie ecclésiastique et d'autres prélats mes confrères, si, à l'indulgence que me témoignait le Pape et à la réputation que me créait le grand concours de la Curie, j'avais cherché à joindre quelques-uns des bons offices de ceux qui s'offraient de me servir auprès du Souverain Pontife. Mais, outre que mon caractère était très-éloigné de demander, et plus encore de faire la cour au premier venu pour mon avancement, j'avais eu sur cette matière un trop bel exemple dans la personne de mon tuteur, le cardinal Negroni. «Cet homme sans ambition, que sa probité, ses mœurs, l'élévation de son esprit, l'affabilité de ses manières et son désintéressement rendaient incomparable, ne fut pas heureux dans sa carrière. Durant sa prélature il n'avait rien obtenu malgré sa capacité et ses mérites, uniquement parce qu'il ne fit la cour à personne et qu'il ne sollicita rien. En fin de compte cependant, la vérité perça d'elle-même, et, sous le pontificat de Clément XIII, il devint auditeur du Pape, et Pie VI le nomma dataire. Or jamais il ne demanda rien, et, chose rare et même unique, il fut constamment estimé et aimé par trois papes successifs, Clément XIII, Clément XIV et Pie VI, qui tous, comme on sait, différaient d'habitudes et de caractère. Il professait donc une maxime, maxime mise par lui en pratique dès le principe et qu'il m'inculquait sans cesse avec beaucoup d'autres excellentes,—je veux payer ce tribut de reconnaissance à sa mémoire.—Le cardinal me disait: «Il ne faut rien demander, ne jamais faire la cour pour avancer, mais s'arranger de manière à franchir tous les obstacles par l'accomplissement le plus ponctuel de ses devoirs et par une bonne réputation.» «Je suivis toujours ce conseil, et quand j'étais à l'Académie ecclésiastique, je ne flattai jamais le célèbre abbé Zaccaria,—que cependant j'estimais beaucoup. «C'était un homme que le Pape aimait et qui, par ses rapports favorables sur les talents et les études de plusieurs de mes
  • 74. compagnons, avait commencé leur fortune. Je ne fréquentais pas davantage les cardinaux, ou ceux qui approchaient le plus près du Saint-Père. Poussant même les choses au-delà des justes bornes, je ne visitai jamais, ainsi que mes confrères, les neveux du Pape, et je n'assistai jamais à leurs réunions, car j'avais peur qu'on ne crût que l'intérêt me guidait. «Ce n'est pas ici le lieu de parler de l'importance, de l'étendue, de la direction et de l'administration qu'entraîne cette œuvre gigantesque. Deux des cardinaux de la Congrégation étant morts, comme le Pape avait toujours eu la pensée d'abolir cette Congrégation et de faire de Saint-Michel une charge prélatice, il ne les remplaça pas. Le cardinal Negroni, survivant, demeura seul à la tête de l'hospice. La Congrégation avait pour secrétaire monsignor Vai. Quand il mourut, le cardinal Negroni, sans me consulter, me proposa au Pape pour le remplacer, et c'est ainsi que je devins secrétaire de la Congrégation. Je m'efforçai de mériter de mon mieux la confiance que le cardinal me témoignait; et, comme l'état de sa santé ne lui permettait plus de faire de la direction de ce grand établissement l'objet de ses occupations assidues, ce soin retomba sur moi seul. J'eus à traiter toutes sortes d'affaires. «L'année 1789 arriva. Ce fut une époque de grands désastres généralement pour tous, à cause de la révolution sans pareille qui éclata en France vers la moitié de cette année, et qui se répandit comme un vaste incendie dans l'Europe entière et même au delà. Ce fut aussi pour moi, en particulier, une époque de véritables disgrâces qui surgirent alors, ou dont les conséquences se firent sentir plus tard.» V Le cardinal Negroni, son président, lui fut enlevé par la mort en 1789.
  • 75. «Peu après, mon cœur reçut encore un coup très-sensible du même genre. J'avais à mon service un jeune homme de vingt ans, de mœurs angéliques, d'une prudence, d'une intelligence et d'une capacité très au-dessus de sa condition, d'une rare intégrité et d'une fidélité sans exemple, d'une propreté en tout et d'une amabilité peu communes. Un dimanche,—c'était le 1er mars,—comme il revenait avec sa femme de Saint-Michel à Ripa, quatre soldats, échauffés par le vin et par la luxure, se mirent à les suivre. D'abord à l'aide de paroles, ensuite par des actes indécents, ils tourmentèrent la pauvre femme et cherchèrent à la faire accéder à leurs désirs. Le malheureux jeune homme, avec beaucoup de patience, hâta sa course sans oser se retourner vers eux. Mais voyant que, malgré cela, ils voulaient exécuter leur projet et qu'ils touchaient les vêtements de sa femme, il fit volte-face et leur dit avec douceur que c'était son épouse, et qu'il les priait de cesser leurs poursuites et leurs obsessions. Il n'en fallut pas davantage pour enflammer leur colère. Les soldats le saisirent avec violence, ils l'arrachèrent d'auprès de sa femme. À quelques pas de distance, l'un d'eux, malgré ses prières,—il n'avait point d'autre défense,—lui enfonça sa baïonnette dans une côte. Le coup, ayant traversé l'artère, le tua en peu de minutes, noyé dans une mare de sang. Ce genre de mort et la perte de cet excellent jeune homme, qui m'était très-attaché, me furent plus pénibles qu'on ne saurait se l'imaginer. Cette même année, j'eus la douleur de perdre la duchesse d'Albany, nièce du cardinal duc d'York, qui m'avait toujours comblé de bontés et de gracieusetés. Elle mourut très-jeune à Bologne, où elle était allée prendre les bains d'après l'avis de la Faculté. Elle cherchait à se guérir de deux maladies, restes d'une petite vérole mal soignée, ou qui n'avait pas rendu suffisamment. «Enfin la mort d'un autre de mes domestiques, ayant tous les droits à mon estime à cause de la fidélité et de l'attachement avec lesquels il me servait, mit le comble aux afflictions de cette espèce, afflictions, je l'ai dit, par lesquelles mon âme a toujours été très- éprouvée.»
  • 76. VI Consalvi ressentit quelque amertume du refus du pape de le choisir pour successeur du cardinal Negroni dans un emploi inférieur auquel il avait droit. Le pape, sans s'expliquer, le consola de cette disgrâce, en montrant à ses amis l'intention secrète de le réserver pour d'autres fonctions plus élevées et plus intimes. Il attendit patiemment, n'ayant alors pour tout emploi salarié que sa pension de deux cents écus romains (1,200 fr.). «Je ne restai toutefois que fort peu de temps dans cette incertitude. La mort imprévue d'un des votanti di segnatura fit vaquer une place à ce tribunal. Tous mes amis m'engagèrent à ne pas perdre un moment et à la demander. Je n'accédai point à leurs instances, et le pape ne m'en aurait point laissé le loisir si j'eusse voulu le faire. C'est le jeudi saint que cette mort arriva. Le matin suivant, bien que ce fût le vendredi saint, bien que les augustes cérémonies de ce jour dussent avoir lieu, et que, selon l'usage, la secrétairerie d'État fût comme fermée, le pape envoya au secrétaire d'État l'ordre de m'expédier tout de suite votante di segnatura, charge de magistrature élevée. Dès que ma nomination me fut parvenue, je courus, comme c'était mon devoir, remercier Sa Sainteté. Elle n'avait pas pour habitude de recevoir quand on lui venait offrir des actions de grâces. Beaucoup moins imaginais-je être reçu ce jour-là, et au moment où le pape, rentré dans ses appartements après la fonction du vendredi saint, et devant retourner quelques heures après à la chapelle pour les matines que l'on nomme Ténèbres, récitait complies et allait, quand il les aurait achevées, se mettre à table pour dîner. «Ayant appris alors que j'étais dans l'antichambre, où il avait donné l'ordre qu'on ne me renvoyât pas, selon l'usage, si je venais, —parce qu'il désirait me voir,—il me fit entrer immédiatement. Après qu'il eut achevé ses complies devant moi, il m'adressa des paroles si pleines de bonté, que je ne pourrai jamais les oublier tant que je
  • 77. vivrai. Ce fut avec le visage le plus affable et qui témoignait vraiment la satisfaction de son cœur, qu'il me dit: «Cher Monsignor, vous savez que nous ne recevons jamais personne pour les remercîments, mais nous avons voulu vous recevoir contre l'habitude, malgré cette journée si occupée, et quoique notre dîner soit servi, afin d'avoir le plaisir de vous dire nous-même ceci: En ne vous comprenant pas dans la dernière promotion, parce que nous avons été contraint d'attribuer à un autre le poste qui vous était destiné, nous avons éprouvé autant de tristesse que nous goûtons de joie à nous trouver en état de vous offrir de suite la charge de votante di segnatura maintenant vacante. Nous le faisons pour vous témoigner la satisfaction que vous nous causez par votre conduite. Nous vous avons enlevé de Saint-Michel, parce que nous voulions vous faire suivre la carrière du bureau et non celle de l'administration.» «Le Saint-Père daigna ajouter ici quelques paroles sur l'opinion que sa bonté, et non mon mérite, lui faisait augurer de moi sous le rapport des études, paroles que la connaissance que je possède de moi-même ne me permet pas de transcrire. Il continua ainsi: «Ce que nous vous donnons aujourd'hui n'est pas grand'chose, mais je n'ai rien de mieux, car il n'y a aucune autre place disponible. Prenez- le cependant, comme un gage certain de la disposition où nous sommes de vous accorder davantage à la première occasion.» «Il est facile de comprendre qu'à un semblable discours, prononcé avec cette grâce, cet air de majesté jointe à la plus pénétrante douceur, et cette amabilité qui étaient particulières à Pie VI, les expressions me manquèrent absolument pour lui répondre. C'est à peine si je pus balbutier: «qu'ayant recueilli les paroles si clémentes qu'il avait prononcées sur mon compte après la promotion, paroles qui m'assuraient que je n'avais point démérité de sa justice et qu'il n'était pas mécontent de moi dans la charge de Saint-Michel, j'étais fort tranquille, et que je l'aurais été longtemps encore et toujours; que je n'avais d'autre désir que celui de ne pas lui déplaire et de ne point faillir à mes devoirs dans tous les emplois auxquels il daignerait m'appeler.»
  • 78. «Il m'interrompit: «Nous avons été content, très-content de vous à Saint-Michel; mais nous vous répétons que nous voulons vous attacher à d'autres études. Nos promesses d'alors étaient sincères, mais ce n'étaient que des mots; aujourd'hui voici un fait: ce n'est pas grand'chose, mais c'est plus encore que des mots. Prenez donc ceci maintenant; allez! allez! mon dîner se refroidit, et nous devons ensuite descendre à la chapelle!» Ces paroles si bonnes et le goût que le caractère grave et la figure gracieuse et modeste du futur cardinal inspiraient au majestueux et beau pontife Braschi, ranimèrent les espérances bornées de Consalvi. VII Il refusa, un an après, la charge d'envoyé à Cologne, par crainte d'engager sa responsabilité. «Je ne voyais rien de semblable à redouter l'auditorat de Rote. Cette charge ne portait avec elle aucune responsabilité, ainsi que je l'ai dit; elle était très-enviée et ne sortait pas du cercle d'études que je m'étais tracé. Si le labeur produisait de grandes fatigues à une certaine époque, il était compensé par de nombreux mois de vacances et de repos. Enfin, je considérais que, quoique exempt de l'ambition du cardinalat, toutefois, en le regardant comme le terme honorable de la carrière entreprise, l'auditorat de Rote m'y conduisait lentement, c'est vrai, mais certainement, sans avoir besoin de mendier la faveur ou la bienveillance de qui que ce fût, ni de faire la cour à personne, puisque le décanat de la Rote mène à la pourpre d'après l'usage, quand le doyen n'a pas démérité et que l'on n'a véritablement rien à lui reprocher. J'étais jeune encore,—j'avais environ trente-cinq ans,—et mon âge me permettait d'attendre le décanat, quelque lenteur qu'il mît à venir.
  • 79. «J'ajouterai encore que j'avais un autre stimulant pour désirer si passionnément l'auditorat de Rote. J'éprouvais un goût très- prononcé pour les voyages, goût que je n'avais pu satisfaire jusqu'alors que par une petite course à Naples et en Toscane, d'où j'étais revenu depuis peu. Les vacances de la Rote commençaient aux premiers jours de juillet; elles finissaient en décembre. Je trouvais donc ainsi le moyen de voyager chaque année pendant cinq mois et plus, sans manquer à aucune de mes obligations, et sans avoir besoin de congés et de permissions obtenus à l'avance. «Toutes ces raisons me firent désirer si fortement l'auditorat de Rote, que je me crus autorisé, pour cette seule fois,—car je ne l'avais pas fait avant et je ne le fis plus après,—et pour cette seule charge, à me départir de la maxime du cardinal Negroni, d'autant mieux que je ne la violais point par ambition, mais par un tout autre motif, et je dirais presque par le motif contraire. Toutefois je ne pus pas m'empêcher de me joindre à tant d'autres concurrents; et je n'osai pas m'abandonner entièrement aux espérances que m'inspiraient les promesses que le Pape m'avait adressées deux ans auparavant, promesses se résumant en ces mots: «Nous veillerons nous-même à votre avancement.» «Je comptai plutôt sur ses bonnes dispositions, et ne me laissai pas arrêter par le peu de temps écoulé depuis ma dernière promotion. Je priai le cardinal secrétaire d'État (Boncompagni) de parler de moi au Souverain Pontife en même temps que des autres concurrents. De peur que, pressé par les affaires qu'il pouvait avoir, il n'exauçât pas mon vœu, je demandai à l'auditeur du Pape de vouloir bien faire connaître au Saint-Père que moi aussi j'étais sur les rangs, et rien de plus. «Telles furent les seules démarches que je fis et que j'autorisai à faire. Le succès les couronna heureusement, et je passai auditeur de Rote dans le mois de mai ou de juin 1792. Je ne me souviens pas de la date précise.
  • 80. «Je ne puis exprimer l'extrême joie que j'en éprouvai. Ayant rendu à Sa Sainteté les actions de grâces qui lui étaient dues, je crus de mon devoir de lui en garder, ainsi qu'à sa famille, une éternelle reconnaissance. Je me trouvai très-embarrassé pour en porter l'hommage au duc Braschi, son neveu. J'ai raconté plus haut qu'un excès de délicatesse m'avait toujours éloigné de la maison Braschi, dans l'appréhension que l'on pût s'imaginer que je la fréquentais pour faciliter mon avancement. En obtenant l'auditorat de Rote, j'avais touché le but de mes désirs. Comme j'étais bien résolu de mourir auditeur ou d'attendre le cours naturel des choses, afin d'en être le doyen et d'arriver au cardinalat par cette voie, je crus que visiter la famille Braschi, ce serait alors gratitude et non plus intérêt. Je surmontai avec peine la crainte que me causait mon entrée dans un salon où je n'étais pas vu avec trop de plaisir et non sans motif, car les proches du Pape avaient désiré et sollicité l'auditorat de Rote pour Mgr Serlupi, leur parent. Je fus donc accueilli avec froideur. Avant cette époque, je n'étais jamais allé au palais Braschi, si j'en excepte trois ou quatre visites d'étiquette en habit de prélat et confondu dans la foule, pour l'anniversaire de l'élection du Pape. À dater de ce jour, je ne laissai jamais passer une seule soirée sans me rendre chez les Braschi, et je devins leur plus dévoué serviteur et ami. Je crois en avoir fourni par mes actes les preuves les plus certaines et les plus constantes.» VIII Au mois de novembre 1794 ou 1795, il visita avec un de ses amis, Bordani, l'Italie et les bords de la rivière de Gênes. À son retour à Rome, le Pape, pour se défendre contre les agressions répétées de la république Cisalpine, résolut d'augmenter son armée et d'en changer l'organisation. Il en donna le commandement au général Caprosa, employé alors au service de l'Autriche, et nomma une commission militaire, à la tête de laquelle il
  • 81. éleva Consalvi, malgré sa jeunesse: il n'avait alors que trente-cinq ans. Les Français attaquèrent les légations, la paix fut conclue. Le Directoire ordonna au général Duphot de fomenter l'insurrection de Rome contre le Pape; un coup de feu l'atteignit; il tomba mort. «Vous savez ainsi que moi,» écrivit l'ambassadeur français au Directoire, «que personne à Rome n'a donné d'ordre de tirer ni de tuer qui que ce fût; le général Duphot a été imprudent, tranchons le mot, il a été coupable.» Il y avait à Rome un droit des gens comme partout. Rome fut envahie par quinze mille hommes, sous les ordres du général Berthier. Le gouvernement romain ne s'opposa point à sa marche; Consalvi est arrêté, Pie VI est emmené à Sienne; de là à la Chartreuse de Florence, puis à Briançon, en France. Ce martyre du pape, terminé par sa mort, commence. Elle le délivre dans la citadelle de Valence, la vingt-cinquième année de son pontificat. Ce pape opulent, magnifique, prodigue envers ses neveux, les Braschi, expia dans l'indigence et la captivité le luxe de sa vie et l'amabilité de ses manières. Consalvi de son côté est conduit à Civita-Vecchia. Condamné à un éternel exil de Rome, il choisit Livourne pour lieu de son ostracisme dans l'espoir de rejoindre Pie VI à la Chartreuse de Florence, pour adoucir la captivité de ce pontife. À la sollicitation de ses amis romains, Berthier s'adoucit et le fait reconduire captif dans la capitale. Il est incarcéré au château Saint-Ange. Le général Gouvion Saint-Cyr, qui avait succédé à Berthier, refuse de ratifier une proscription plus odieuse du gouverneur romain, qui condamnait Consalvi à sortir de Rome, ignominieusement monté sur un âne, et en butte à la risée de ses ennemis; il fut conduit à Terracine, dans la compagnie de vingt-quatre galériens napolitains. À quelque distance de Rome, le commandant français le combla d'égards et le fit conduire à Naples. Après un mois et demi de captivité, le roi et la reine de Naples le reçurent avec empressement; dans le mois de juin 1798, on lui accorda la permission de se rendre à Vicina, dans les É
  • 82. États Vénitiens, de là il gagna la Chartreuse de Florence, où le pape Pie VI languissait encore. «Je ne rencontrai toutefois,» dit-il, «chez le ministre du grand-duc que les manières les plus dures et le plus impoli des refus. Je me vis forcé d'agir alors comme par surprise. Il me fallait voir le Pape à tout prix, et lui prouver au moins ma bonne volonté. Je choisis secrètement le jour et l'heure que je jugeai les plus favorables, et je me rendis à la Chartreuse, à trois milles de Florence, où le Saint- Père était prisonnier. Lorsque j'arrivai au pied de la colline, je ne puis exprimer les sentiments dont mon cœur fut agité à l'idée de revoir mon bienfaiteur et mon souverain, qui avait eu tant de bontés pour moi, et en pensant au misérable état dans lequel se trouvait réduit ce Pie VI que j'avais vu au comble des splendeurs. Chaque pas que je faisais pour me rapprocher du Saint-Père apportait à mon âme une émotion toujours croissante. La pauvreté et la solitude de ces murs, le spectacle de deux ou trois malheureuses personnes composant tout son service, m'arrachaient les larmes des yeux. Enfin, je fus introduit en sa présence. Ô Dieu! que de sensations affluèrent alors à mon cœur, et en vinrent presque à le briser! «Pie VI était assis devant sa table. Cette position empêchait qu'on ne s'aperçût de son côté faible: il avait à peu près perdu l'usage des jambes, et il ne pouvait marcher que soutenu par deux bras robustes. «La beauté et la majesté de son visage ne s'étaient pas altérées depuis Rome; il inspirait tout à la fois la plus profonde vénération et l'amour le plus dévoué. Je me précipitai à ses pieds; je les baignai de larmes; je lui racontai tout ce qu'il m'en coûtait pour le revoir, et combien je souhaitais de rester à ses côtés pour le servir, l'assister et partager son sort. Je lui jurai que je tenterais tous les moyens possibles dans l'espoir d'atteindre ce but. «Je renonce à rapporter ici le gracieux accueil qu'il me fit, la manière dont il agréa mon attachement à sa personne sacrée, et ce
  • 83. qu'il me dit de Rome, de Naples, de Vienne, de la France, et de la conduite tenue par ceux qu'il devait regarder comme les plus attachés et les plus fidèles de ses serviteurs. Le Saint-Père m'affirma ensuite qu'il croyait de toute impossibilité que je pusse obtenir la permission de rester auprès de lui. Je répondis que je ne négligerais rien pour réussir, et il me congédia après une heure d'audience. Cette heure me combla tout ensemble de consolation, de tristesse et de vénération; elle augmenta, s'il est possible, mon respectueux amour. «Revenu à Florence, je ne parlai à personne de cette visite, et, pour éloigner davantage les soupçons, je demandai l'autorisation de me rendre à Sienne pour voir la famille Patrizi, qui arrivait de Rome. Je n'obtins ce permis qu'avec une limite de quinze jours. Cela me fut d'un très-fâcheux augure pour mes projets de résider à Florence, projets que je voulais ensuite essayer de réaliser. Dès que les quinze jours furent écoulés, le commissaire grand-ducal me força de quitter Sienne, et je me séparai avec chagrin de cette famille, que j'aimais beaucoup. «D'autres jours se passèrent à Florence, pendant lesquels je tentai tout, je dis tout, j'osai tout, directement et indirectement, pour obtenir ce que je souhaitais avec tant d'ardeur. Mais alors le plénipotentiaire de France demanda expressément au premier ministre du grand-duc de me renvoyer sans retard. Mes efforts devenaient inutiles, et mon espérance s'évanouit. Je fus contraint de quitter Florence et d'aller habiter Venise, ainsi que j'en avais pris la résolution dans le cas où mon séjour auprès de Pie VI ne serait pas autorisé. «Tout ce que je pus faire en cachette, et non sans courir certains risques, fut de me rendre une seconde fois à la Chartreuse pour communiquer au Pape mes vaines tentatives, pour lui baiser encore les pieds et recevoir sa dernière bénédiction. Il éprouva quelque peine en apprenant que je n'avais pas réussi dans mon projet, mais il n'en fut point étonné. Pendant l'heure entière d'audience qu'il
  • 84. m'accorda, il me prodigua toutes sortes de faveurs, et me donna les plus salutaires conseils de résignation, de sage conduite et de courage dont les actes de sa vie et son maintien m'offraient un parfait modèle. Je le trouvai aussi grand et même beaucoup plus grand que lorsqu'il régnait à Rome. Au moment où il me chargea de saluer de sa part le duc Braschi, son neveu, qui habitait Venise et qu'il avait eu la douleur, peu auparavant, de voir arracher d'auprès de lui dans cette même Chartreuse, je jurai à ses pieds que je considérerais partout, en tout temps et dans n'importe quelle occasion, comme une dette la plus sacrée, d'être attaché à sa famille jusqu'au point de devenir pour elle un autre lui-même. C'est l'expression qui m'échappa alors dans mon enthousiasme. Je me flatte de n'avoir pas failli à ma parole dans les circonstances où j'ai pu le faire. «Pie VI me remercia avec une bonté et une majesté que je ne crois pas que l'on puisse égaler. J'implorai sa bénédiction. Il me posa les mains sur la tête, et, comme le plus vénérable des patriarches anciens, il leva les yeux au ciel, il pria le Seigneur, et il me bénit dans une attitude si résignée, si auguste, si sainte et si tendre, que, jusqu'au dernier jour de ma vie, j'en garderai dans mon cœur le souvenir gravé en caractères ineffaçables. «Je me retirai les larmes aux yeux. La douleur m'avait presque mis hors de moi; néanmoins je me sentais ranimé et encouragé par le calme inexprimable de mon souverain et par la sérénité de son visage. C'était la grandeur de l'homme de bien aux prises avec l'infortune. De retour à Florence, j'en partis dans les vingt-quatre heures. «J'étais à Venise à la fin de septembre 1798. Après y avoir passé quelques jours, je remplis un devoir en allant visiter mon oncle, le cardinal Carandini, qui habitait Vicence. Je restai avec lui presque tout le mois d'octobre, à l'exception de cinq ou six jours consacrés par moi à des amis que je possédais à Vérone. À la fin d'octobre, je retournai à Venise, où j'avais des connaissances qui offraient de
  • 85. subvenir à mon extrême détresse. Le gouvernement révolutionnaire avait confisqué mes propriétés, sous prétexte que j'étais émigré. «Sur les représentations que mes mandataires firent pour démontrer la fausseté de cette allégation, les Consuls rendirent deux décrets. «Par le premier, on me restituait mes biens comme n'ayant pas émigré; par le second, ces mêmes biens étaient confisqués de nouveau comme appartenant à un ennemi de la République romaine. «Quoique toujours dans les transes à cause du périlleux séjour à Rome de mon cher frère, à qui il n'était plus permis d'en sortir, je restai tranquillement à Venise, où l'on ne tarda pas à recevoir la nouvelle de la mort du Pape. Elle arriva le 29 août 1799 à Valence, en France, où le Directoire l'avait fait traîner sans avoir égard à sa décrépitude et à ses incommodités si graves. Pie VI avait perdu l'usage des jambes, et son corps n'était qu'une plaie. «Il était bien naturel que la nouvelle de cette mort dirigeât toutes les pensées vers la célébration du Conclave pour l'élection de son successeur. Le cardinal doyen résidait à Venise avec plusieurs autres cardinaux; ceux qui habitaient sur le territoire de la République y arrivèrent à l'instant, ainsi que ceux qui étaient dans les États les plus voisins. Quand ils furent en majorité, ils s'occupèrent tout d'abord de nommer le secrétaire du Conclave, parce que le prélat qui aurait dû remplir cette charge, en raison de son emploi de secrétaire du Consistoire, n'était pas à Venise, mais à Rome. Du reste, des considérations personnelles interdisaient aux cardinaux de le rappeler; ces mêmes considérations l'empêchaient de s'offrir de lui- même. Tous les prélats les plus élevés en dignité, et alors à Venise, concoururent pour être nommés à ce poste envié. Il y en eut un qui, de préférence aux autres, fut protégé et porté à cet office avec le plus grand zèle par un cardinal fort puissant. Ce cardinal avait beaucoup de bontés pour moi; il poussa l'amabilité jusqu'à me
  • 86. demander d'abord si j'avais l'intention de me mettre sur les rangs. Il déclarait que, dans ce cas, il renoncerait à son protégé. D'un côté, je professais une constante aversion pour tout emploi à responsabilité quelconque; de l'autre, je n'avais pas d'ambition qui pût être flattée des droits ou des affections que l'on devait acquérir dans ce poste, soit auprès du nouveau Pape, soit auprès des cardinaux qui l'approcheraient de plus près. Je n'hésitai donc pas un seul instant sur la conduite que j'avais à tenir. J'affirmai que je ne concourrais en aucune manière pour obtenir cette place. «Les Cardinaux se rassemblèrent en congrégation générale: ils étaient assistés en premier lieu par tous les concurrents, et d'une façon particulière par celui qui étayait sa candidature sur ses propres mérites et sur les bons offices du cardinal qui le favorisait tant. Le fait est qu'à la réserve de quatre ou cinq votes qui lui furent accordés, je me vis choisi à l'unanimité.» IX L'élection d'un Pape dans une circonstance si difficile, où sa souveraineté temporelle était envahie, où sa capitale était occupée, où son prédécesseur venait d'expirer captif de la France, et où les cardinaux cherchaient en vain à emprunter un territoire libre pour se réunir en conclave, était une œuvre aussi délicate que périlleuse. Elle dura près de quatre mois au milieu des intrigues diverses que l'état désespéré de l'Église ne suspendait pas, et qui finit néanmoins, grâce à l'intervention du cardinal Consalvi, par l'élection la plus inattendue et la plus pure qui pût édifier et sauver cette institution. Nous allons en reproduire, à cause de ce résultat, les principales péripéties. Jamais l'action providentielle ne se donna plus évidemment en spectacle au monde; le conclave nomma celui qu'il ne cherchait pas, et le cardinal Consalvi lui-même fit nommer celui auquel il n'avait pas pensé: le hasard inspire la sagesse.
  • 87. Welcome to our website – the perfect destination for book lovers and knowledge seekers. We believe that every book holds a new world, offering opportunities for learning, discovery, and personal growth. That’s why we are dedicated to bringing you a diverse collection of books, ranging from classic literature and specialized publications to self-development guides and children's books. More than just a book-buying platform, we strive to be a bridge connecting you with timeless cultural and intellectual values. With an elegant, user-friendly interface and a smart search system, you can quickly find the books that best suit your interests. Additionally, our special promotions and home delivery services help you save time and fully enjoy the joy of reading. Join us on a journey of knowledge exploration, passion nurturing, and personal growth every day! ebookbell.com