SlideShare a Scribd company logo
2
Most read
4
Most read
Integral Calculus Formula Sheet 
Derivative Rules: 
  0
d
c
dx
     1n nd
x nx
dx

    
 sin cos
d
x x
dx

 sec sec tan
d
x x x
dx

  2
tan sec
d
x x
dx
  
 cos sin
d
x x
dx
 
 csc csc cot
d
x x x
dx
 
  2
cot csc
d
x x
dx
   
  lnx xd
a a a
dx

 x xd
e e
dx
  
     
d d
cf x c f x
dx dx
           
d d d
f x g x f x g x
dx dx dx
  
 f g f g f g       2
f g fgf
g g
    
 
 
         
d
f g x f g x g x
dx
 
Properties of Integrals: 
( ) ( )kf u du k f u du   ( ) ( ) ( ) ( )f u g u du f u du g u du    
( ) 0
a
a
f x dx    ( ) ( )
b a
a b
f x dx f x dx    
( ) ( ) ( )
c b c
a a b
f x dx f x dx f x dx     
1
( )
b
ave
a
f f x dx
b a

   
0
( ) 2 ( )
a a
a
f x dx f x dx

   if f(x) is even  ( ) 0
a
a
f x dx

  if f(x) is odd 
( )
( )
( ( )) ( ) ( )
f bb
a f a
g f x f x dx g u du     udv uv vdu    
 
Integration Rules: 
du u C 
1
1
n
n u
u du C
n

 

ln
du
u C
u
 
u u
e du e C 
1
ln
u u
a du a C
a
   
sin cosu du u C  
cos sinu du u C 
2
sec tanu du u C 
2
csc cotu u C  
csc cot cscu u du u C  
sec tan secu u du u C   
2 2
1
arctan
du u
C
a u a a
 
  
  

2 2
arcsin
du u
C
aa u
 
  
 

2 2
1
sec
udu
arc C
a au u a
 
  
  

 
 
Fundamental Theorem of Calculus: 
     '  
x
a
d
F x f t dt f x
dx
 where   f t  is a continuous function on [a, x]. 
      
b
a
f x dx F b F a , where F(x) is any antiderivative of f(x). 
 
Riemann Sums: 
1 1
n n
i i
i i
ca c a
 
 
1 1 1
n n n
i i i i
i i i
a b a b
  
      
1
( ) lim ( )
b n
n
ia
f x dx f a i x x


   
n
ab
x

  
1
1
n
i
n


1
( 1)
2
n
i
n n
i



2
1
( 1)(2 1)
6
n
i
n n n
i

 

2
3
1
( 1)
2
n
i
n n
i

 
  
 

   height of th rectangle width of th rectangle
i
i i
Right Endpoint Rule:
 



n
i
n
ab
n
ab
n
i
iafxxiaf
1
)()(
1
)()()()(
Left Endpoint Rule:
( ) ( )
1 1
( ( 1) )( ) ( ) ( ( 1) )
n n
b a b a
n n
i i
f a i x x f a i 
 
       
Midpoint Rule:
   ( 1) ( ) ( 1) ( )
2 2
1 1
( )( ) ( ) ( )
n n
i i b a i i b a
n n
i i
f a x x f a     
 
     
 
Net Change: 
Displacement:  ( )
b
a
v x dx   Distance Traveled:  ( )
b
a
v x dx  
0
( ) (0) ( )
t
s t s v x dx    
0
( ) (0) ( )
t
Q t Q Q x dx  
 
Trig Formulas: 
 2 1
2sin ( ) 1 cos(2 )x x   
sin
tan
cos
x
x
x
  
1
sec
cos
x
x
  
cos( ) cos( )x x    2 2
sin ( ) cos ( ) 1x x 
 2 1
2cos ( ) 1 cos(2 )x x   
cos
cot
sin
x
x
x
  
1
csc
sin
x
x
  
sin( ) sin( )x x     2 2
tan ( ) 1 sec ( )x x 
 
Geometry Fomulas: 
Area of a Square: 
2
A s  
Area of a Triangle: 
1
2A bh  
Area of an 
Equilateral Trangle:
23
4A s  
Area of a Circle: 
2
A r  
Area of a 
Rectangle: 
A bh  
   
Areas and Volumes: 
Area in terms of x (vertical rectangles): 
( )
b
a
top bottom dx  
Area in terms of y (horizontal rectangles): 
( )
d
c
right left dy  
General Volumes by Slicing: 
Given: Base and shape of Cross‐sections 
( )
b
a
V A x dx   if slices are vertical 
( )
d
c
V A y dy   if slices are horizontal 
 
Disk Method: 
For volumes of revolution laying on the axis with 
slices perpendicular to the axis 
 
2
( )
b
a
V R x dx   if slices are vertical 
 
2
( )
d
c
V R y dy   if slices are horizontal 
Washer Method: 
For volumes of revolution not laying on the axis with 
slices perpendicular to the axis 
   
2 2
( ) ( )
b
a
V R x r x dx    if slices are vertical 
   
2 2
( ) ( )
d
c
V R y r y dy    if slices are horizontal 
Shell Method: 
For volumes of revolution with slices parallel to the 
axis 
2
b
a
V rhdx   if slices are vertical 
2
d
c
V rhdy   if slices are horizontal 
 
Physical Applications: 
Physics Formulas  Associated Calculus Problems 
Mass: 
Mass = Density * Volume      (for 3‐D objects) 
Mass = Density * Area           (for 2‐D objects) 
Mass = Density * Length       (for 1‐D objects) 
Mass of a one‐dimensional object with variable linear 
density: 
( ) ( )
b b
distancea a
Mass linear density dx x dx    
 
Work: 
Work = Force * Distance 
Work = Mass * Gravity * Distance   
Work = Volume * Density * Gravity * Distance 
Work to stretch or compress a spring (force varies): 

'
( ) ( )
b b b
Hooke s Lawa a a
for springs
Work force dx F x dx kx dx      
Work to lift liquid: 
( )( )( )( )
9.8* * ( )*( ) ( )
d
c volume
d
c
Work gravity density distance areaof a slice dy
W A y a y dy inmetric

 



Force/Pressure: 
Force = Pressure * Area 
Pressure = Density * Gravity * Depth 
Force of water pressure on a vertical surface: 
( )( )( )( )
9.8* *( )* ( ) ( )
d
c area
d
c
Force gravity density depth width dy
F a y w y dy inmetric

 



 
 
Integration by Parts: 
 
Knowing which function to call u and which to call dv takes some practice.  Here is a general guide: 
    u    Inverse Trig Function   (
1
sin ,arccos ,x x
etc ) 
        Logarithmic Functions   ( log3 ,ln( 1),x x  etc ) 
        Algebraic Functions   (
3
, 5,1/ ,x x x etc) 
        Trig Functions     (sin(5 ),tan( ),x x etc ) 
    dv    Exponential Functions   (
3 3
,5 ,x x
e etc ) 
Functions that appear at the top of the list are more like to be u, functions at the bottom of the list are more like to be dv. 
 
Trig Integrals: 
Integrals involving sin(x) and cos(x):  Integrals involving sec(x) and tan(x): 
1. If the power of the sine is odd and positive: 
Goal:   cosu x  
i. Save a  sin( )du x dx    
ii. Convert the remaining factors to 
cos( )x (using  2 2
sin 1 cosx x  .)   
1. If the power of   sec( )x is even and positive:  
Goal: tanu x  
i. Save a 
2
sec ( )du x dx    
ii. Convert the remaining factors to 
tan( )x  (using 
2 2
sec 1 tanx x  .)   
2. If the power of the cosine is odd and positive:
Goal: sinu x  
i. Save a  cos( )du x dx  
ii. Convert the remaining factors to 
sin( )x (using  2 2
cos 1 sinx x  .)   
2. If the power of  tan( )x is odd and positive: 
Goal: sec( )u x  
i. Save a  sec( ) tan( )du x x dx  
ii. Convert the remaining factors to 
sec( )x  (using 
2 2
sec 1 tanx x  .)   
3. If both sin( )x  and  cos( )x have even powers: 
Use the half angle identities:  
i.  2 1
2
sin ( ) 1 cos(2 )x x                
ii.  2 1
2
cos ( ) 1 cos(2 )x x   
 If there are no sec(x) factors and the power of 
tan(x) is even and positive, use 
2 2
sec 1 tanx x 
to convert one 
2
tan x to 
2
sec x  
 Rules for sec(x) and tan(x) also work for csc(x) and 
cot(x) with appropriate negative signs
If nothing else works, convert everything to sines and cosines. 
 
Trig Substitution: 
Expression  Substitution  Domain  Simplification 
2 2
a u   sinu a   
2 2
 
     2 2
cosa u a    
2 2
a u   tanu a   
2 2
 
     2 2
seca u a    
2 2
u a   secu a    0 ,
2

       2 2
tanu a a    
 
 
Partial Fractions: 
Linear factors:  Irreducible quadratic factors:
2 1
1 1 1 1 1
( )
...
( ) ( ) ( ) ( ) ( )m m m
P x A B Y Z
x r x r x r x r x r
    
    
 
2 2 2 2 2 1 2
1 1 1 1 1
( )
...
( ) ( ) ( ) ( ) ( )m m m
P x Ax B Cx D Wx X Yx Z
x r x r x r x r x r
   
    
    
 
If the fraction has multiple factors in the denominator, we just add the decompositions.
 

More Related Content

PPTX
Uses Of Calculus is Computer Science
PPTX
Calculus in real life (Differentiation and integration )
PDF
Class 11 Motion in a straight line Study material in pdf
PDF
2.5. Father Returning Home-Critical Appreciation.pdf.pdf
PPTX
Applications of matrices in Real\Daily life
PPTX
Application of real life in calculus
PDF
equivalence and countability
PDF
Functions and its Applications in Mathematics
Uses Of Calculus is Computer Science
Calculus in real life (Differentiation and integration )
Class 11 Motion in a straight line Study material in pdf
2.5. Father Returning Home-Critical Appreciation.pdf.pdf
Applications of matrices in Real\Daily life
Application of real life in calculus
equivalence and countability
Functions and its Applications in Mathematics

Similar to Integral calculus formula sheet 0 (20)

PDF
Lecture -Earthquake Engineering (2).pdf
PDF
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
PDF
Crib Sheet AP Calculus AB and BC exams
PDF
Spm add-maths-formula-list-form4-091022090639-phpapp01
PDF
Additional Mathematics form 4 (formula)
PDF
Spm add-maths-formula-list-form4-091022090639-phpapp01
PPT
Differential calculus
PDF
Higher formal homeworks unit 1
PDF
Common derivatives integrals
PDF
Common derivatives integrals
PDF
deveratives integrals
PDF
Engineering Mathematics 2 questions & answers
PDF
Engineering Mathematics 2 questions & answers(2)
PDF
IIT Jam math 2016 solutions BY Trajectoryeducation
DOCX
Banco de preguntas para el ap
PPTX
Integrating factors found by inspection
PDF
2.1 Calculus 2.formulas.pdf.pdf
PPTX
differentiol equation.pptx
PDF
Integration techniques
PDF
Chapter 1 (math 1)
Lecture -Earthquake Engineering (2).pdf
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
Crib Sheet AP Calculus AB and BC exams
Spm add-maths-formula-list-form4-091022090639-phpapp01
Additional Mathematics form 4 (formula)
Spm add-maths-formula-list-form4-091022090639-phpapp01
Differential calculus
Higher formal homeworks unit 1
Common derivatives integrals
Common derivatives integrals
deveratives integrals
Engineering Mathematics 2 questions & answers
Engineering Mathematics 2 questions & answers(2)
IIT Jam math 2016 solutions BY Trajectoryeducation
Banco de preguntas para el ap
Integrating factors found by inspection
2.1 Calculus 2.formulas.pdf.pdf
differentiol equation.pptx
Integration techniques
Chapter 1 (math 1)
Ad

Recently uploaded (20)

PPTX
Substance Disorders- part different drugs change body
PDF
BET Eukaryotic signal Transduction BET Eukaryotic signal Transduction.pdf
PPTX
Introcution to Microbes Burton's Biology for the Health
PPT
6.1 High Risk New Born. Padetric health ppt
PPTX
BIOMOLECULES PPT........................
PDF
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
PDF
Unit 5 Preparations, Reactions, Properties and Isomersim of Organic Compounds...
PPTX
gene cloning powerpoint for general biology 2
PPTX
Welcome-grrewfefweg-students-of-2024.pptx
PPTX
A powerpoint on colorectal cancer with brief background
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PDF
GROUP 2 ORIGINAL PPT. pdf Hhfiwhwifhww0ojuwoadwsfjofjwsofjw
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PDF
Communicating Health Policies to Diverse Populations (www.kiu.ac.ug)
PDF
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
PPTX
ap-psych-ch-1-introduction-to-psychology-presentation.pptx
PDF
S2 SOIL BY TR. OKION.pdf based on the new lower secondary curriculum
PPTX
Lesson-1-Introduction-to-the-Study-of-Chemistry.pptx
PDF
Placing the Near-Earth Object Impact Probability in Context
PDF
Science Form five needed shit SCIENEce so
Substance Disorders- part different drugs change body
BET Eukaryotic signal Transduction BET Eukaryotic signal Transduction.pdf
Introcution to Microbes Burton's Biology for the Health
6.1 High Risk New Born. Padetric health ppt
BIOMOLECULES PPT........................
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
Unit 5 Preparations, Reactions, Properties and Isomersim of Organic Compounds...
gene cloning powerpoint for general biology 2
Welcome-grrewfefweg-students-of-2024.pptx
A powerpoint on colorectal cancer with brief background
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
GROUP 2 ORIGINAL PPT. pdf Hhfiwhwifhww0ojuwoadwsfjofjwsofjw
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
Communicating Health Policies to Diverse Populations (www.kiu.ac.ug)
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
ap-psych-ch-1-introduction-to-psychology-presentation.pptx
S2 SOIL BY TR. OKION.pdf based on the new lower secondary curriculum
Lesson-1-Introduction-to-the-Study-of-Chemistry.pptx
Placing the Near-Earth Object Impact Probability in Context
Science Form five needed shit SCIENEce so
Ad

Integral calculus formula sheet 0

  • 1. Integral Calculus Formula Sheet  Derivative Rules:    0 d c dx      1n nd x nx dx        sin cos d x x dx   sec sec tan d x x x dx    2 tan sec d x x dx     cos sin d x x dx    csc csc cot d x x x dx     2 cot csc d x x dx       lnx xd a a a dx   x xd e e dx          d d cf x c f x dx dx             d d d f x g x f x g x dx dx dx     f g f g f g       2 f g fgf g g                    d f g x f g x g x dx   Properties of Integrals:  ( ) ( )kf u du k f u du   ( ) ( ) ( ) ( )f u g u du f u du g u du     ( ) 0 a a f x dx    ( ) ( ) b a a b f x dx f x dx     ( ) ( ) ( ) c b c a a b f x dx f x dx f x dx      1 ( ) b ave a f f x dx b a      0 ( ) 2 ( ) a a a f x dx f x dx     if f(x) is even  ( ) 0 a a f x dx    if f(x) is odd  ( ) ( ) ( ( )) ( ) ( ) f bb a f a g f x f x dx g u du     udv uv vdu       Integration Rules:  du u C  1 1 n n u u du C n     ln du u C u   u u e du e C  1 ln u u a du a C a     sin cosu du u C   cos sinu du u C  2 sec tanu du u C  2 csc cotu u C   csc cot cscu u du u C   sec tan secu u du u C    2 2 1 arctan du u C a u a a          2 2 arcsin du u C aa u         2 2 1 sec udu arc C a au u a             
  • 2. Fundamental Theorem of Calculus:       '   x a d F x f t dt f x dx  where   f t  is a continuous function on [a, x].         b a f x dx F b F a , where F(x) is any antiderivative of f(x).    Riemann Sums:  1 1 n n i i i i ca c a     1 1 1 n n n i i i i i i i a b a b           1 ( ) lim ( ) b n n ia f x dx f a i x x       n ab x     1 1 n i n   1 ( 1) 2 n i n n i    2 1 ( 1)(2 1) 6 n i n n n i     2 3 1 ( 1) 2 n i n n i             height of th rectangle width of th rectangle i i i Right Endpoint Rule:      n i n ab n ab n i iafxxiaf 1 )()( 1 )()()()( Left Endpoint Rule: ( ) ( ) 1 1 ( ( 1) )( ) ( ) ( ( 1) ) n n b a b a n n i i f a i x x f a i            Midpoint Rule:    ( 1) ( ) ( 1) ( ) 2 2 1 1 ( )( ) ( ) ( ) n n i i b a i i b a n n i i f a x x f a                Net Change:  Displacement:  ( ) b a v x dx   Distance Traveled:  ( ) b a v x dx   0 ( ) (0) ( ) t s t s v x dx     0 ( ) (0) ( ) t Q t Q Q x dx     Trig Formulas:   2 1 2sin ( ) 1 cos(2 )x x    sin tan cos x x x    1 sec cos x x    cos( ) cos( )x x    2 2 sin ( ) cos ( ) 1x x   2 1 2cos ( ) 1 cos(2 )x x    cos cot sin x x x    1 csc sin x x    sin( ) sin( )x x     2 2 tan ( ) 1 sec ( )x x    Geometry Fomulas:  Area of a Square:  2 A s   Area of a Triangle:  1 2A bh   Area of an  Equilateral Trangle: 23 4A s   Area of a Circle:  2 A r   Area of a  Rectangle:  A bh      
  • 3. Areas and Volumes:  Area in terms of x (vertical rectangles):  ( ) b a top bottom dx   Area in terms of y (horizontal rectangles):  ( ) d c right left dy   General Volumes by Slicing:  Given: Base and shape of Cross‐sections  ( ) b a V A x dx   if slices are vertical  ( ) d c V A y dy   if slices are horizontal    Disk Method:  For volumes of revolution laying on the axis with  slices perpendicular to the axis    2 ( ) b a V R x dx   if slices are vertical    2 ( ) d c V R y dy   if slices are horizontal  Washer Method:  For volumes of revolution not laying on the axis with  slices perpendicular to the axis      2 2 ( ) ( ) b a V R x r x dx    if slices are vertical      2 2 ( ) ( ) d c V R y r y dy    if slices are horizontal  Shell Method:  For volumes of revolution with slices parallel to the  axis  2 b a V rhdx   if slices are vertical  2 d c V rhdy   if slices are horizontal    Physical Applications:  Physics Formulas  Associated Calculus Problems  Mass:  Mass = Density * Volume      (for 3‐D objects)  Mass = Density * Area           (for 2‐D objects)  Mass = Density * Length       (for 1‐D objects)  Mass of a one‐dimensional object with variable linear  density:  ( ) ( ) b b distancea a Mass linear density dx x dx       Work:  Work = Force * Distance  Work = Mass * Gravity * Distance    Work = Volume * Density * Gravity * Distance  Work to stretch or compress a spring (force varies):   ' ( ) ( ) b b b Hooke s Lawa a a for springs Work force dx F x dx kx dx       Work to lift liquid:  ( )( )( )( ) 9.8* * ( )*( ) ( ) d c volume d c Work gravity density distance areaof a slice dy W A y a y dy inmetric       Force/Pressure:  Force = Pressure * Area  Pressure = Density * Gravity * Depth  Force of water pressure on a vertical surface:  ( )( )( )( ) 9.8* *( )* ( ) ( ) d c area d c Force gravity density depth width dy F a y w y dy inmetric          
  • 4. Integration by Parts:    Knowing which function to call u and which to call dv takes some practice.  Here is a general guide:      u    Inverse Trig Function   ( 1 sin ,arccos ,x x etc )          Logarithmic Functions   ( log3 ,ln( 1),x x  etc )          Algebraic Functions   ( 3 , 5,1/ ,x x x etc)          Trig Functions     (sin(5 ),tan( ),x x etc )      dv    Exponential Functions   ( 3 3 ,5 ,x x e etc )  Functions that appear at the top of the list are more like to be u, functions at the bottom of the list are more like to be dv.    Trig Integrals:  Integrals involving sin(x) and cos(x):  Integrals involving sec(x) and tan(x):  1. If the power of the sine is odd and positive:  Goal:   cosu x   i. Save a  sin( )du x dx     ii. Convert the remaining factors to  cos( )x (using  2 2 sin 1 cosx x  .)    1. If the power of   sec( )x is even and positive:   Goal: tanu x   i. Save a  2 sec ( )du x dx     ii. Convert the remaining factors to  tan( )x  (using  2 2 sec 1 tanx x  .)    2. If the power of the cosine is odd and positive: Goal: sinu x   i. Save a  cos( )du x dx   ii. Convert the remaining factors to  sin( )x (using  2 2 cos 1 sinx x  .)    2. If the power of  tan( )x is odd and positive:  Goal: sec( )u x   i. Save a  sec( ) tan( )du x x dx   ii. Convert the remaining factors to  sec( )x  (using  2 2 sec 1 tanx x  .)    3. If both sin( )x  and  cos( )x have even powers:  Use the half angle identities:   i.  2 1 2 sin ( ) 1 cos(2 )x x                 ii.  2 1 2 cos ( ) 1 cos(2 )x x     If there are no sec(x) factors and the power of  tan(x) is even and positive, use  2 2 sec 1 tanx x  to convert one  2 tan x to  2 sec x    Rules for sec(x) and tan(x) also work for csc(x) and  cot(x) with appropriate negative signs If nothing else works, convert everything to sines and cosines.    Trig Substitution:  Expression  Substitution  Domain  Simplification  2 2 a u   sinu a    2 2        2 2 cosa u a     2 2 a u   tanu a    2 2        2 2 seca u a     2 2 u a   secu a    0 , 2         2 2 tanu a a         Partial Fractions:  Linear factors:  Irreducible quadratic factors: 2 1 1 1 1 1 1 ( ) ... ( ) ( ) ( ) ( ) ( )m m m P x A B Y Z x r x r x r x r x r             2 2 2 2 2 1 2 1 1 1 1 1 ( ) ... ( ) ( ) ( ) ( ) ( )m m m P x Ax B Cx D Wx X Yx Z x r x r x r x r x r                 If the fraction has multiple factors in the denominator, we just add the decompositions.