SlideShare a Scribd company logo
Integrals - Class 12 Mathematics
Based on Latest CBSE Syllabus
Simple Explanation with Examples
and Important Questions
Introduction to Integrals
• Integration is the reverse process of
differentiation.
• It helps in finding the area under curves and
solving differential equations.
Indefinite Integrals
• An indefinite integral has no limits and
represents a family of functions.
• Example:
• ∫x dx = (x²/2) + C
Integration as Inverse of Differentiation
• If f'(x) = g(x), then ∫g(x) dx = f(x) + C.
• Example:
• Since d/dx (sin x) = cos x,
• ∫cos x dx = sin x + C
Geometrical Interpretation of Indefinite Integral
• It represents a family of curves obtained by
shifting the graph of an antiderivative
vertically.
• Used to find area under curves.
Properties of Indefinite Integrals
• 1. ∫[f(x) + g(x)] dx = ∫f(x) dx + ∫g(x) dx
• 2. ∫k*f(x) dx = k * ∫f(x) dx
Some Standard Integrals
• ∫1 dx = x + C
• ∫x^n dx = x^(n+1)/(n+1) + C (n ≠ -1)
• ∫e^x dx = e^x + C
• ∫1/x dx = ln|x| + C
Methods of Integration
• 1. Substitution Method
• 2. Integration by Parts
• 3. Partial Fractions
• Example (Substitution):
• ∫2x * √(1 + x²) dx
• Let 1 + x² = t
Integration by Substitution
• Replace part of the integrand with a variable
to simplify.
• Example:
• ∫x * cos(x²) dx
• Let x² = t dx = dt/2x
⇒
Integration Using Partial Fractions
• Used for rational functions.
• Example:
• ∫(2x+3)/[(x+1)(x+2)] dx
Integration by Parts
• Formula: ∫u*v dx = u∫v dx − ∫(du/dx * ∫v dx) dx
• Use ILATE to choose u (Inverse, Log, Algebraic,
Trig, Expo).
Definite Integrals
• Has limits a and b. Represents exact area.
• Example:
• ∫₀¹ x² dx = [x³/3]₀¹ = (1/3) - 0 = 1/3
Fundamental Theorem of Calculus
• It links the concept of differentiation and
integration.
• If F is antiderivative of f, then:
• ∫_a^b f(x) dx = F(b) - F(a)
Properties of Definite Integrals
• 1. ∫_a^a f(x) dx = 0
• 2. ∫_a^b f(x) dx = -∫_b^a f(x) dx
• 3. ∫_a^b f(x) dx = ∫_a^b f(a + b - x) dx
Evaluation of Definite Integrals by Substitution
• Use substitution with limits adjustment.
• Example:
• ∫₀⁴ x / √(1 + x²) dx
• Let 1 + x² = t
Important Formulae of Integrals
• Standard Integrals:
• ∫xⁿ dx = xⁿ⁺¹ / (n+1) + C, where n ≠ -1
• ∫1/x dx = ln|x| + C
• ∫eˣ dx = eˣ + C
• ∫aˣ dx = aˣ / ln(a) + C, a > 0, a ≠ 1
• ∫sin x dx = -cos x + C
• ∫cos x dx = sin x + C
• ∫sec²x dx = tan x + C

More Related Content

PPTX
Indefinite Integrals, types of integration
PDF
Integral calculus
PDF
BCA_MATHEMATICS-I_Unit-V
PDF
instegration basic notes of class 12th h
PPTX
Lecture for Week4 integral calculus.pptx
PPTX
Ch 5 integration
PPTX
PPT CHAPTER 7 AND 8 MATkdj,fsmHS 12.pptx
Indefinite Integrals, types of integration
Integral calculus
BCA_MATHEMATICS-I_Unit-V
instegration basic notes of class 12th h
Lecture for Week4 integral calculus.pptx
Ch 5 integration
PPT CHAPTER 7 AND 8 MATkdj,fsmHS 12.pptx

Similar to Integrals_Class12_Maths Power Point Presentation (20)

PDF
integration in maths pdf mathematics integration
PDF
lemh201 (1).pdfvjsbdkkdjfkfjfkffkrnfkfvfkrjof
PPTX
Ch 5-integration-part-1
PPTX
Integration presentation
DOCX
Integration - Mathematics - UoZ
DOCX
Pure mathematics, integration, rule 1,2,3,4,5
PPTX
Integral Calculus
PDF
01 Integration 1.pdf presentation for undergrad
PPT
adfadfadfadfaTechniquesofIntegrationOLD (2).ppt
PDF
1543 integration in mathematics b
PDF
13 1 basics_integration
DOCX
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
PDF
Mathematics notes and formula for class 12 chapter 7. integrals
PPTX
Basic rules of integration, important rules of integration
PPTX
Integration by Parts & by Partial Fractions
PPT
Integration
PPTX
Integral calculus
PPTX
Integral calculus
integration in maths pdf mathematics integration
lemh201 (1).pdfvjsbdkkdjfkfjfkffkrnfkfvfkrjof
Ch 5-integration-part-1
Integration presentation
Integration - Mathematics - UoZ
Pure mathematics, integration, rule 1,2,3,4,5
Integral Calculus
01 Integration 1.pdf presentation for undergrad
adfadfadfadfaTechniquesofIntegrationOLD (2).ppt
1543 integration in mathematics b
13 1 basics_integration
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
Mathematics notes and formula for class 12 chapter 7. integrals
Basic rules of integration, important rules of integration
Integration by Parts & by Partial Fractions
Integration
Integral calculus
Integral calculus
Ad

Recently uploaded (20)

PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Computing-Curriculum for Schools in Ghana
PDF
1_English_Language_Set_2.pdf probationary
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PDF
advance database management system book.pdf
PDF
Indian roads congress 037 - 2012 Flexible pavement
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
Trump Administration's workforce development strategy
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PPTX
Lesson notes of climatology university.
PPTX
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
Complications of Minimal Access Surgery at WLH
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
LDMMIA Reiki Yoga Finals Review Spring Summer
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
Final Presentation General Medicine 03-08-2024.pptx
Computing-Curriculum for Schools in Ghana
1_English_Language_Set_2.pdf probationary
Chinmaya Tiranga quiz Grand Finale.pdf
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
advance database management system book.pdf
Indian roads congress 037 - 2012 Flexible pavement
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
Trump Administration's workforce development strategy
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
Lesson notes of climatology university.
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Complications of Minimal Access Surgery at WLH
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
Ad

Integrals_Class12_Maths Power Point Presentation

  • 1. Integrals - Class 12 Mathematics Based on Latest CBSE Syllabus Simple Explanation with Examples and Important Questions
  • 2. Introduction to Integrals • Integration is the reverse process of differentiation. • It helps in finding the area under curves and solving differential equations.
  • 3. Indefinite Integrals • An indefinite integral has no limits and represents a family of functions. • Example: • ∫x dx = (x²/2) + C
  • 4. Integration as Inverse of Differentiation • If f'(x) = g(x), then ∫g(x) dx = f(x) + C. • Example: • Since d/dx (sin x) = cos x, • ∫cos x dx = sin x + C
  • 5. Geometrical Interpretation of Indefinite Integral • It represents a family of curves obtained by shifting the graph of an antiderivative vertically. • Used to find area under curves.
  • 6. Properties of Indefinite Integrals • 1. ∫[f(x) + g(x)] dx = ∫f(x) dx + ∫g(x) dx • 2. ∫k*f(x) dx = k * ∫f(x) dx
  • 7. Some Standard Integrals • ∫1 dx = x + C • ∫x^n dx = x^(n+1)/(n+1) + C (n ≠ -1) • ∫e^x dx = e^x + C • ∫1/x dx = ln|x| + C
  • 8. Methods of Integration • 1. Substitution Method • 2. Integration by Parts • 3. Partial Fractions • Example (Substitution): • ∫2x * √(1 + x²) dx • Let 1 + x² = t
  • 9. Integration by Substitution • Replace part of the integrand with a variable to simplify. • Example: • ∫x * cos(x²) dx • Let x² = t dx = dt/2x ⇒
  • 10. Integration Using Partial Fractions • Used for rational functions. • Example: • ∫(2x+3)/[(x+1)(x+2)] dx
  • 11. Integration by Parts • Formula: ∫u*v dx = u∫v dx − ∫(du/dx * ∫v dx) dx • Use ILATE to choose u (Inverse, Log, Algebraic, Trig, Expo).
  • 12. Definite Integrals • Has limits a and b. Represents exact area. • Example: • ∫₀¹ x² dx = [x³/3]₀¹ = (1/3) - 0 = 1/3
  • 13. Fundamental Theorem of Calculus • It links the concept of differentiation and integration. • If F is antiderivative of f, then: • ∫_a^b f(x) dx = F(b) - F(a)
  • 14. Properties of Definite Integrals • 1. ∫_a^a f(x) dx = 0 • 2. ∫_a^b f(x) dx = -∫_b^a f(x) dx • 3. ∫_a^b f(x) dx = ∫_a^b f(a + b - x) dx
  • 15. Evaluation of Definite Integrals by Substitution • Use substitution with limits adjustment. • Example: • ∫₀⁴ x / √(1 + x²) dx • Let 1 + x² = t
  • 16. Important Formulae of Integrals • Standard Integrals: • ∫xⁿ dx = xⁿ⁺¹ / (n+1) + C, where n ≠ -1 • ∫1/x dx = ln|x| + C • ∫eˣ dx = eˣ + C • ∫aˣ dx = aˣ / ln(a) + C, a > 0, a ≠ 1 • ∫sin x dx = -cos x + C • ∫cos x dx = sin x + C • ∫sec²x dx = tan x + C