Integration by Parts
dx
dv
u
dx
du
v
dx
dy


If ,
uv
y  where u and v are
both functions of x.
Substituting for y,
x
x
x
dx
x
x
d
cos
1
sin
)
sin
(




e.g. If ,
x
x
y sin

We develop the formula by considering how to
differentiate products.
dx
dv
u
dx
du
v
dx
uv
d



)
(
Integration by Parts
dx
x
x
dx
x
x
x

 
 cos
sin
sin
x
x
x
dx
x
x
d
cos
1
sin
)
sin
(




So,
Integrating this equation, we get
dx
x
x
dx
x
dx
dx
x
x
d


 
 cos
sin
)
sin
(
The l.h.s. is just the integral of a derivative, so,
since integration is the reverse of differentiation,
we get
Can you see what this has to do with integrating a
product?
Integration by Parts
dx
x
x
dx
x
x
x

 
 cos
sin
sin
Here’s the product . . .
if we rearrange, we get
dx
x
x
x
dx
x
x

 
 sin
sin
cos
The function in the integral on the l.h.s. . . .
. . . is a product, but the one on the r.h.s. . . .
is a simple function that we can integrate easily.
Integration by Parts
dx
x
x
dx
x
x
x

 
 cos
sin
sin
Here’s the product . . .
if we rearrange, we get
dx
x
x
x
dx
x
x

 
 sin
sin
cos
C
x
x
x 


 )
cos
(
sin
C
x
x
x 

 cos
sin
We need to turn this method ( called integration by
parts ) into a formula.
So, we’ve integrated !
x
x cos
Integration by Parts
Integrating:


 
 dx
dx
dv
u
dx
dx
du
v
dx
dx
uv
d )
(

 
 dx
dx
dv
u
dx
dx
du
v
uv

 
 dx
dx
du
v
uv
dx
dx
dv
u
dx
dv
u
dx
du
v
dx
uv
d


)
(
x
x
x
dx
x
x
d
cos
sin
)
sin
(


dx
x
x
dx
x
dx
dx
x
x
d


 
 cos
sin
)
sin
(
Rearranging:
Simplifying the l.h.s.:
 

 dx
x
x
dx
x
x
x cos
sin
sin

 
 dx
x
x
x
dx
x
x sin
sin
cos
Generalisation
Example
Integration by Parts
SUMMARY

 
 dx
dx
du
v
uv
dx
dx
dv
u
To integrate some products we can use the formula
Integration by Parts
Integration by Parts
dx
du
to get . . .

 
 dx
dx
du
v
uv
dx
dx
dv
u
Using this formula means that we differentiate one
factor, u
So,
Integration by Parts
So,

 
 dx
dx
du
v
uv
dx
dx
dv
u
and integrate the other ,
dx
dv
to get v
Using this formula means that we differentiate one
factor, u
dx
du
to get . . .
Integration by Parts
So,

 
 dx
dx
du
v
uv
dx
dx
dv
u
e.g. 1 Find
 dx
x
x sin
2
x
u 2
 x
dx
dv
sin

and
2

dx
du x
v cos


differentiate
integrate
and integrate the other ,
dx
dv
to get v
Using this formula means that we differentiate one
factor, u
dx
du
to get . . .
Having substituted in the formula, notice that the
1st term, uv, is completed but the 2nd term still
needs to be integrated.
( +C comes later )
Integration by Parts
)
cos
(
2 x
x     dx
x 2
)
cos
(
We can now substitute into the formula
So,
x
u 2

2

dx
du x
v cos


differentiate integrate
x
dx
dv
sin

and
u
dx
dv u v v
dx
du

 
 dx
dx
du
v
uv
dx
dx
dv
u

 dx
x
xsin
2
Integration by Parts
C
So,

 
 dx
dx
du
v
uv
dx
dx
dv
u
)
cos
(
2 x
x     dx
x 2
)
cos
(

x
sin
2
x
u 2

2

dx
du x
v cos


differentiate integrate
We can now substitute into the formula
x
dx
dv
sin

and

 dx
x
cos
2
x
x cos
2


The 2nd term needs integrating


 x
x cos
2

 dx
x
xsin
2
Integration by Parts

 
 dx
dx
du
v
uv
dx
dx
dv
u








2
)
(
2x
e
x   
 







dx
e x
1
2
2
x
u 
1

dx
du
differentiate integrate
x
e
dx
dv 2

and
dx
e
xe x
x



2
2
2
2
e.g. 2 Find
 dx
xe x
2
Solution:

v
2
2x
e
C
e
xe x
x



4
2
2
2

 dx
xe x
2
So,
This is a compound function,
so we must be careful.
Integration by Parts
Exercises
Find
 dx
xe x
1.
 dx
x
x 3
cos
2.
dx
e
xe x
x


C
e
xe x
x




 dx
x
x 3
cos
2. dx
x
x
x








3
3
sin
3
3
sin
)
(
C
x
x
x



9
3
cos
3
3
sin
1.
Solutions:

 dx
xe x
Integration by Parts
Definite Integration by Parts
With a definite integral it’s often easier to do the
indefinite integral and insert the limits at the end.


1
0
dx
xex
 dx
xe x
dx
e
xe x
x



 1
0
x
x
e
xe 

C
e
xe x
x



   
0
0
1
1
0
1 e
e
e
e 



   
1
0 

 1

We’ll use the question in the exercise you have just
done to illustrate.
Integration by Parts
Integration by parts cannot be used for every product.
Using Integration by Parts
It works if
 we can integrate one factor of the product,
 the integral on the r.h.s. is easier* than the
one we started with.
* There is an exception but you need to learn the
general rule.
Integration by Parts
Solution:
What’s a possible problem?
Can you see what to do?
If we let and , we will need to
differentiate and integrate x.
x
u ln
 x
dx
dv

x
ln
ANS: We can’t integrate .
x
ln
x
ln
Tip: Whenever appears in an integration by
parts we choose to let it equal u.

 
 dx
dx
du
v
uv
dx
dx
dv
u
e.g. 3 Find  dx
x
x ln
Integration by Parts

 
 dx
dx
du
v
uv
dx
dx
dv
u
So, x
u ln
 x
dx
dv

x
dx
du 1

2
2
x
v 

  dx
x
x ln x
x
ln
2
2

  dx
x
x 1
2
2
The r.h.s. integral still seems to be a product!
BUT . . .



 x
x
dx
x
x ln
2
ln
2
4
2
x
C

x cancels.
e.g. 3 Find  dx
x
x ln
differentiate integrate
So, 

 x
x
dx
x
x ln
2
ln
2
 dx
x
2
Integration by Parts
e.g. 4 dx
e
x x


2
Solution:

 
 dx
dx
du
v
uv
dx
dx
dv
u
Let 2
x
u 
x
e
dx
dv 

x
dx
du
2
 x
e
v 











 dx
xe
e
x
dx
e
x x
x
x
2
2
2








 dx
xe
e
x
dx
e
x x
x
x
2
2
2
2
2
1 I
e
x
I x


 
The integral on the r.h.s. is still a product but using
the method again will give us a simple function.
We write
and
1
I 2
I
Integration by Parts
e.g. 4 dx
e
x x


2
Solution:
2

dx
du x
e
v 


2
2
1 I
e
x
I x


 

2
I
So, 
  x
xe
2 

 dx
e x
2

  x
xe
2 

dx
e x
2

C
e
xe x
x


 

2
2

Substitute in ( 1 )
. . . . . ( 1 )
x
x
e
x
dx
e
x 




2
2
Let x
u 2
 x
e
dx
dv 

and


 dx
xe
I x
2
2
C
e
xe x
x


 

2
2
Integration by Parts

 
 dx
dx
du
v
uv
dx
dx
dv
u
Solution:
It doesn’t look as though integration by parts will
help since neither function in the product gets easier
when we differentiate it.
e.g. 5 Find  dx
x
e x
sin
However, there’s something special about the 2
functions that means the method does work.
Example
Integration by Parts

 
 dx
dx
du
v
uv
dx
dx
dv
u
x
e
u  x
dx
dv
sin

x
e
dx
du
 x
v cos


e.g. 5 Find  dx
x
e x
sin

  dx
x
e x
sin 
 x
e x
cos  dx
x
e x
cos


 x
e x
cos  dx
x
e x
cos
Solution:
We write this as: 2
1 cos I
x
e
I x



Integration by Parts

 
 dx
dx
du
v
uv
dx
dx
dv
u
x
e
u  x
dx
dv
cos

x
e
dx
du
 x
v sin

e.g. 5 Find  dx
x
e x
sin

x
e x
sin  dx
x
e x
sin

 dx
x
e
I x
sin
1
where
So, 2
1 cos I
x
e
I x



and 
 dx
x
e
I x
cos
2
We next use integration by parts for I2

 dx
x
e x
cos
1
2 sin I
x
e
I x



Integration by Parts

 
 dx
dx
du
v
uv
dx
dx
dv
u
x
e
u  x
dx
dv
cos

x
e
dx
du
 x
v sin

e.g. 5 Find  dx
x
e x
sin

 dx
x
e
I x
sin
1

x
e x
sin  dx
x
e x
sin
So,
where
2
1 cos I
x
e
I x



and 
 dx
x
e
I x
cos
2
We next use integration by parts for I2

 dx
x
e x
cos
1
2 sin I
x
e
I x



Integration by Parts

 
 dx
dx
du
v
uv
dx
dx
dv
u
e.g. 5 Find  dx
x
e x
sin
So, 2
1 cos I
x
e
I x



2 equations, 2 unknowns ( I1 and I2 ) !
Substituting for I2 in ( 1)
. . . . . ( 1 )
. . . . . ( 2 )


 x
e
I x
cos
1
2
I 1
sin I
x
e x


Integration by Parts

 
 dx
dx
du
v
uv
dx
dx
dv
u
e.g. 5 Find  dx
x
e x
sin
So, 2
1 cos I
x
e
I x



2 equations, 2 unknowns ( I1 and I2 ) !
Substituting for I2 in ( 1)
. . . . . ( 1 )
. . . . . ( 2 )


 x
e
I x
cos
1 1
sin I
x
e x

2
I 1
sin I
x
e x


Integration by Parts

 
 dx
dx
du
v
uv
dx
dx
dv
u
e.g. 5 Find  dx
x
e x
sin
So, 2
1 cos I
x
e
I x



2 equations, 2 unknowns ( I1 and I2 ) !
Substituting for I2 in ( 1)
. . . . . ( 1 )
. . . . . ( 2 )


 x
e
I x
cos
1
x
e
x
e
I x
x
sin
cos
2 1 



2
sin
cos
1
x
e
x
e
I
x
x



 C

1
sin I
x
e x

2
I 1
sin I
x
e x


Integration by Parts
Exercises
2.
dx
x
x sin
2

( Hint: Although 2. is not a product it can be turned
into one by writing the function as . )
x
ln
1
1. dx
x

2
1
ln
Integration by Parts
Solutions:
dx
x
x sin
2

1.
x
dx
du
2
 x
v cos


2
x
u  x
dx
dv
sin

and
Let
1
I



 dx
x
x
x
x
I cos
2
cos
2
1




 dx
x
x
x
x
I cos
2
cos
2
1
2
I
2

dx
du
x
v sin




 dx
x
x
x
I sin
2
sin
2
2
C
x
x
x 

 cos
2
sin
2
C
x
x
x
x
x
dx
x
x 




  cos
2
sin
2
cos
sin 2
2
x
u 2
 x
dx
dv
cos

and
Let
For I2:
. . . . . ( 1 )
Subs. in ( 1 )
Integration by Parts
2.
x
dx
du 1
 x
v 
x
u ln
 1

dx
dv
and
Let


  dx
x
ln
1 
x
x ln dx
x
x
 
1

 x
x ln dx
1
C
x
x
x 

 ln
This is an important
application of
integration by parts
dx
x

2
1
ln dx
x
 

2
1
ln
1
dx
x

2
1
ln
So,  2
1
ln x
x
x 

   
1
1
ln
1
2
2
ln
2 



1
2
ln
2 


More Related Content

PPT
11365.integral 2
PPT
integration by parts
PDF
Calculus 08 techniques_of_integration
PPT
Techniques of Integration ppt.ppt
PPTX
14 formulas from integration by parts x
PDF
Integral Calculus Anti Derivatives reviewer
DOCX
Integration - Mathematics - UoZ
PPTX
15 integrals of trig products-i-x
11365.integral 2
integration by parts
Calculus 08 techniques_of_integration
Techniques of Integration ppt.ppt
14 formulas from integration by parts x
Integral Calculus Anti Derivatives reviewer
Integration - Mathematics - UoZ
15 integrals of trig products-i-x

Similar to Integration by parts to solve it clearly (20)

PDF
Math lecture 10 (Introduction to Integration)
PPTX
differentiol equation.pptx
PPT
Integration by parts
PDF
lemh201 (1).pdfvjsbdkkdjfkfjfkffkrnfkfvfkrjof
PDF
Integration techniques
PDF
Matematicas FINANCIERAS CIFF dob.pdf
PPTX
Intigrations
PDF
PDF
13 1 basics_integration
PPTX
Integration by parts
DOCX
20230411 Discussion of Integration by Substitution.docx
PDF
The Table Method for Derivatives
PPTX
Integration
PPT
adfadfadfadfaTechniquesofIntegrationOLD (2).ppt
PDF
Generating functions (albert r. meyer)
PPTX
Integral calculus
PPTX
Integral calculus
PPT
Mba admission in india
PPTX
The chain rule
 
PDF
Integration by Parts, Part 1
Math lecture 10 (Introduction to Integration)
differentiol equation.pptx
Integration by parts
lemh201 (1).pdfvjsbdkkdjfkfjfkffkrnfkfvfkrjof
Integration techniques
Matematicas FINANCIERAS CIFF dob.pdf
Intigrations
13 1 basics_integration
Integration by parts
20230411 Discussion of Integration by Substitution.docx
The Table Method for Derivatives
Integration
adfadfadfadfaTechniquesofIntegrationOLD (2).ppt
Generating functions (albert r. meyer)
Integral calculus
Integral calculus
Mba admission in india
The chain rule
 
Integration by Parts, Part 1
Ad

Recently uploaded (20)

PPTX
Module 8- Technological and Communication Skills.pptx
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PDF
August -2025_Top10 Read_Articles_ijait.pdf
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PDF
Prof. Dr. KAYIHURA A. SILAS MUNYANEZA, PhD..pdf
PDF
Design of Material Handling Equipment Lecture Note
PPTX
PRASUNET_20240614003_231416_0000[1].pptx
PDF
Soil Improvement Techniques Note - Rabbi
PPTX
Chemical Technological Processes, Feasibility Study and Chemical Process Indu...
PDF
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
PPTX
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
PPTX
Principal presentation for NAAC (1).pptx
PPTX
Amdahl’s law is explained in the above power point presentations
PPTX
Management Information system : MIS-e-Business Systems.pptx
PPTX
ai_satellite_crop_management_20250815030350.pptx
PPTX
mechattonicsand iotwith sensor and actuator
PDF
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf
PPTX
wireless networks, mobile computing.pptx
PDF
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
PDF
Applications of Equal_Area_Criterion.pdf
Module 8- Technological and Communication Skills.pptx
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
August -2025_Top10 Read_Articles_ijait.pdf
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
Prof. Dr. KAYIHURA A. SILAS MUNYANEZA, PhD..pdf
Design of Material Handling Equipment Lecture Note
PRASUNET_20240614003_231416_0000[1].pptx
Soil Improvement Techniques Note - Rabbi
Chemical Technological Processes, Feasibility Study and Chemical Process Indu...
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
Principal presentation for NAAC (1).pptx
Amdahl’s law is explained in the above power point presentations
Management Information system : MIS-e-Business Systems.pptx
ai_satellite_crop_management_20250815030350.pptx
mechattonicsand iotwith sensor and actuator
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf
wireless networks, mobile computing.pptx
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
Applications of Equal_Area_Criterion.pdf
Ad

Integration by parts to solve it clearly

  • 1. Integration by Parts dx dv u dx du v dx dy   If , uv y  where u and v are both functions of x. Substituting for y, x x x dx x x d cos 1 sin ) sin (     e.g. If , x x y sin  We develop the formula by considering how to differentiate products. dx dv u dx du v dx uv d    ) (
  • 2. Integration by Parts dx x x dx x x x     cos sin sin x x x dx x x d cos 1 sin ) sin (     So, Integrating this equation, we get dx x x dx x dx dx x x d      cos sin ) sin ( The l.h.s. is just the integral of a derivative, so, since integration is the reverse of differentiation, we get Can you see what this has to do with integrating a product?
  • 3. Integration by Parts dx x x dx x x x     cos sin sin Here’s the product . . . if we rearrange, we get dx x x x dx x x     sin sin cos The function in the integral on the l.h.s. . . . . . . is a product, but the one on the r.h.s. . . . is a simple function that we can integrate easily.
  • 4. Integration by Parts dx x x dx x x x     cos sin sin Here’s the product . . . if we rearrange, we get dx x x x dx x x     sin sin cos C x x x     ) cos ( sin C x x x    cos sin We need to turn this method ( called integration by parts ) into a formula. So, we’ve integrated ! x x cos
  • 5. Integration by Parts Integrating:      dx dx dv u dx dx du v dx dx uv d ) (     dx dx dv u dx dx du v uv     dx dx du v uv dx dx dv u dx dv u dx du v dx uv d   ) ( x x x dx x x d cos sin ) sin (   dx x x dx x dx dx x x d      cos sin ) sin ( Rearranging: Simplifying the l.h.s.:     dx x x dx x x x cos sin sin     dx x x x dx x x sin sin cos Generalisation Example
  • 6. Integration by Parts SUMMARY     dx dx du v uv dx dx dv u To integrate some products we can use the formula Integration by Parts
  • 7. Integration by Parts dx du to get . . .     dx dx du v uv dx dx dv u Using this formula means that we differentiate one factor, u So,
  • 8. Integration by Parts So,     dx dx du v uv dx dx dv u and integrate the other , dx dv to get v Using this formula means that we differentiate one factor, u dx du to get . . .
  • 9. Integration by Parts So,     dx dx du v uv dx dx dv u e.g. 1 Find  dx x x sin 2 x u 2  x dx dv sin  and 2  dx du x v cos   differentiate integrate and integrate the other , dx dv to get v Using this formula means that we differentiate one factor, u dx du to get . . . Having substituted in the formula, notice that the 1st term, uv, is completed but the 2nd term still needs to be integrated. ( +C comes later )
  • 10. Integration by Parts ) cos ( 2 x x     dx x 2 ) cos ( We can now substitute into the formula So, x u 2  2  dx du x v cos   differentiate integrate x dx dv sin  and u dx dv u v v dx du     dx dx du v uv dx dx dv u   dx x xsin 2
  • 11. Integration by Parts C So,     dx dx du v uv dx dx dv u ) cos ( 2 x x     dx x 2 ) cos (  x sin 2 x u 2  2  dx du x v cos   differentiate integrate We can now substitute into the formula x dx dv sin  and   dx x cos 2 x x cos 2   The 2nd term needs integrating    x x cos 2   dx x xsin 2
  • 12. Integration by Parts     dx dx du v uv dx dx dv u         2 ) ( 2x e x             dx e x 1 2 2 x u  1  dx du differentiate integrate x e dx dv 2  and dx e xe x x    2 2 2 2 e.g. 2 Find  dx xe x 2 Solution:  v 2 2x e C e xe x x    4 2 2 2   dx xe x 2 So, This is a compound function, so we must be careful.
  • 13. Integration by Parts Exercises Find  dx xe x 1.  dx x x 3 cos 2. dx e xe x x   C e xe x x      dx x x 3 cos 2. dx x x x         3 3 sin 3 3 sin ) ( C x x x    9 3 cos 3 3 sin 1. Solutions:   dx xe x
  • 14. Integration by Parts Definite Integration by Parts With a definite integral it’s often easier to do the indefinite integral and insert the limits at the end.   1 0 dx xex  dx xe x dx e xe x x     1 0 x x e xe   C e xe x x        0 0 1 1 0 1 e e e e         1 0    1  We’ll use the question in the exercise you have just done to illustrate.
  • 15. Integration by Parts Integration by parts cannot be used for every product. Using Integration by Parts It works if  we can integrate one factor of the product,  the integral on the r.h.s. is easier* than the one we started with. * There is an exception but you need to learn the general rule.
  • 16. Integration by Parts Solution: What’s a possible problem? Can you see what to do? If we let and , we will need to differentiate and integrate x. x u ln  x dx dv  x ln ANS: We can’t integrate . x ln x ln Tip: Whenever appears in an integration by parts we choose to let it equal u.     dx dx du v uv dx dx dv u e.g. 3 Find  dx x x ln
  • 17. Integration by Parts     dx dx du v uv dx dx dv u So, x u ln  x dx dv  x dx du 1  2 2 x v     dx x x ln x x ln 2 2    dx x x 1 2 2 The r.h.s. integral still seems to be a product! BUT . . .     x x dx x x ln 2 ln 2 4 2 x C  x cancels. e.g. 3 Find  dx x x ln differentiate integrate So,    x x dx x x ln 2 ln 2  dx x 2
  • 18. Integration by Parts e.g. 4 dx e x x   2 Solution:     dx dx du v uv dx dx dv u Let 2 x u  x e dx dv   x dx du 2  x e v              dx xe e x dx e x x x x 2 2 2          dx xe e x dx e x x x x 2 2 2 2 2 1 I e x I x     The integral on the r.h.s. is still a product but using the method again will give us a simple function. We write and 1 I 2 I
  • 19. Integration by Parts e.g. 4 dx e x x   2 Solution: 2  dx du x e v    2 2 1 I e x I x      2 I So,    x xe 2    dx e x 2    x xe 2   dx e x 2  C e xe x x      2 2  Substitute in ( 1 ) . . . . . ( 1 ) x x e x dx e x      2 2 Let x u 2  x e dx dv   and    dx xe I x 2 2 C e xe x x      2 2
  • 20. Integration by Parts     dx dx du v uv dx dx dv u Solution: It doesn’t look as though integration by parts will help since neither function in the product gets easier when we differentiate it. e.g. 5 Find  dx x e x sin However, there’s something special about the 2 functions that means the method does work. Example
  • 21. Integration by Parts     dx dx du v uv dx dx dv u x e u  x dx dv sin  x e dx du  x v cos   e.g. 5 Find  dx x e x sin    dx x e x sin   x e x cos  dx x e x cos    x e x cos  dx x e x cos Solution: We write this as: 2 1 cos I x e I x   
  • 22. Integration by Parts     dx dx du v uv dx dx dv u x e u  x dx dv cos  x e dx du  x v sin  e.g. 5 Find  dx x e x sin  x e x sin  dx x e x sin   dx x e I x sin 1 where So, 2 1 cos I x e I x    and   dx x e I x cos 2 We next use integration by parts for I2   dx x e x cos 1 2 sin I x e I x   
  • 23. Integration by Parts     dx dx du v uv dx dx dv u x e u  x dx dv cos  x e dx du  x v sin  e.g. 5 Find  dx x e x sin   dx x e I x sin 1  x e x sin  dx x e x sin So, where 2 1 cos I x e I x    and   dx x e I x cos 2 We next use integration by parts for I2   dx x e x cos 1 2 sin I x e I x   
  • 24. Integration by Parts     dx dx du v uv dx dx dv u e.g. 5 Find  dx x e x sin So, 2 1 cos I x e I x    2 equations, 2 unknowns ( I1 and I2 ) ! Substituting for I2 in ( 1) . . . . . ( 1 ) . . . . . ( 2 )    x e I x cos 1 2 I 1 sin I x e x  
  • 25. Integration by Parts     dx dx du v uv dx dx dv u e.g. 5 Find  dx x e x sin So, 2 1 cos I x e I x    2 equations, 2 unknowns ( I1 and I2 ) ! Substituting for I2 in ( 1) . . . . . ( 1 ) . . . . . ( 2 )    x e I x cos 1 1 sin I x e x  2 I 1 sin I x e x  
  • 26. Integration by Parts     dx dx du v uv dx dx dv u e.g. 5 Find  dx x e x sin So, 2 1 cos I x e I x    2 equations, 2 unknowns ( I1 and I2 ) ! Substituting for I2 in ( 1) . . . . . ( 1 ) . . . . . ( 2 )    x e I x cos 1 x e x e I x x sin cos 2 1     2 sin cos 1 x e x e I x x     C  1 sin I x e x  2 I 1 sin I x e x  
  • 27. Integration by Parts Exercises 2. dx x x sin 2  ( Hint: Although 2. is not a product it can be turned into one by writing the function as . ) x ln 1 1. dx x  2 1 ln
  • 28. Integration by Parts Solutions: dx x x sin 2  1. x dx du 2  x v cos   2 x u  x dx dv sin  and Let 1 I     dx x x x x I cos 2 cos 2 1      dx x x x x I cos 2 cos 2 1 2 I 2  dx du x v sin      dx x x x I sin 2 sin 2 2 C x x x    cos 2 sin 2 C x x x x x dx x x        cos 2 sin 2 cos sin 2 2 x u 2  x dx dv cos  and Let For I2: . . . . . ( 1 ) Subs. in ( 1 )
  • 29. Integration by Parts 2. x dx du 1  x v  x u ln  1  dx dv and Let     dx x ln 1  x x ln dx x x   1   x x ln dx 1 C x x x    ln This is an important application of integration by parts dx x  2 1 ln dx x    2 1 ln 1 dx x  2 1 ln So,  2 1 ln x x x       1 1 ln 1 2 2 ln 2     1 2 ln 2  