SlideShare a Scribd company logo
2
Most read
3
Most read
5
Most read
www.mathportal.org

Integration Formulas
1. Common Integrals
Indefinite Integral
Method of substitution

∫ f ( g ( x)) g ′( x)dx = ∫ f (u )du
Integration by parts

∫

f ( x) g ′( x)dx = f ( x) g ( x) − ∫ g ( x) f ′( x)dx

Integrals of Rational and Irrational Functions
n
∫ x dx =

x n +1
+C
n +1

1

∫ x dx = ln x + C
∫ c dx = cx + C
∫ xdx =

x2
+C
2

x3
+C
3
1
1
∫ x2 dx = − x + C
2
∫ x dx =

∫

xdx =
1

∫1+ x

∫

2

2x x
+C
3

dx = arctan x + C

1
1 − x2

dx = arcsin x + C

Integrals of Trigonometric Functions

∫ sin x dx = − cos x + C
∫ cos x dx = sin x + C
∫ tan x dx = ln sec x + C
∫ sec x dx = ln tan x + sec x + C
1
( x − sin x cos x ) + C
2
1
2
∫ cos x dx = 2 ( x + sin x cos x ) + C

∫ sin

2

∫ tan
∫ sec

x dx =

2

x dx = tan x − x + C

2

x dx = tan x + C

Integrals of Exponential and Logarithmic Functions

∫ ln x dx = x ln x − x + C
n
∫ x ln x dx =

∫e

x

x n +1
x n +1
ln x −
+C
2
n +1
( n + 1)

dx = e x + C

x
∫ b dx =

bx
+C
ln b

∫ sinh x dx = cosh x + C
∫ cosh x dx = sinh x + C
www.mathportal.org
2. Integrals of Rational Functions
Integrals involving ax + b

( ax + b )n + 1
∫ ( ax + b ) dx = a ( n + 1)
n

1

( for n ≠ −1)

1

∫ ax + b dx = a ln ax + b
∫ x ( ax + b )

n

a ( n + 1) x − b

dx =
a

x

x

2

( n + 1)( n + 2 )

( ax + b )n+1

( for n ≠ −1, n ≠ −2 )

b

∫ ax + b dx = a − a 2 ln ax + b
x

b

1

∫ ( ax + b )2 dx = a 2 ( ax + b ) + a 2 ln ax + b
a (1 − n ) x − b

x

∫ ( ax + b )n dx = a 2 ( n − 1)( n − 2)( ax + b )n−1

( for n ≠ −1, n ≠ −2 )

2

x2
1  ( ax + b )

dx = 3
− 2b ( ax + b ) + b 2 ln ax + b 
∫ ax + b

2
a 



x2

∫ ( ax + b )2
x2

∫ ( ax + b )3
x2

∫ ( ax + b ) n

1 
b2 
dx = 3  ax + b − 2b ln ax + b −

ax + b 
a 


dx =

1 
2b
b2
 ln ax + b +
−
ax + b 2 ( ax + b )2
a3 


dx =

3−n
2− n
1−n
2b ( a + b )
b2 ( ax + b )
1  ( ax + b )
−
+
−
n−3
n−2
n −1
a3 


1

1

∫ x ( ax + b ) dx = − b ln
1

ax + b
x

1

a

∫ x 2 ( ax + b ) dx = − bx + b2 ln
1

∫ x 2 ( ax + b )2

ax + b
x


1
1
2
ax + b
dx = − a  2
+ 2 − 3 ln
 b ( a + xb ) ab x b
x


Integrals involving ax2 + bx + c
1

1

x

∫ x 2 + a 2 dx = a arctg a

a−x
1
 2a ln a + x

∫ x2 − a 2 dx =  1 x − a
 ln
 2a x + a

1






for x < a
for x > a











( for n ≠ 1, 2,3)
www.mathportal.org

2
2ax + b

arctan

2
4ac − b 2
 4ac − b

1
2
2ax + b − b 2 − 4 ac

dx = 
ln
∫ ax 2 + bx + c
 b 2 − 4ac 2 ax + b + b 2 − 4ac

− 2
 2ax + b

x

1

∫ ax 2 + bx + c dx = 2a ln ax

2

+ bx + c −

for 4ac − b 2 > 0
for 4ac − b 2 < 0
for 4ac − b 2 = 0

b
dx
∫ ax 2 + bx + c
2a

m
2an − bm
2ax + b
2
arctan
for 4ac − b 2 > 0
 ln ax + bx + c +
2
2
2a
a 4ac − b
4ac − b

m
mx + n
2an − bm
2ax + b

2
2
∫ ax 2 + bx + c dx =  2a ln ax + bx + c + a b2 − 4ac arctanh b2 − 4ac for 4ac − b < 0

m
2an − bm
 ln ax 2 + bx + c −
for 4ac − b 2 = 0
a ( 2 ax + b )
 2a


∫

1

( ax

∫x

2

+ bx + c

)

n

1

( ax

2

+ bx + c

)

dx =

2ax + b

( n − 1) ( 4ac − b2 )( ax 2 + bx + c )

dx =

n−1

+

( 2 n − 3 ) 2a
1
dx
2 ∫
( n − 1) ( 4ac − b ) ( ax 2 + bx + c )n−1

1
x2
b
1
ln 2
− ∫ 2
dx
2c ax + bx + c 2c ax + bx + c

3. Integrals of Exponential Functions
cx
∫ xe dx =

ecx
c2

( cx − 1)

 x2 2x 2 
x 2 ecx dx = ecx 
∫
 c − c 2 + c3 




∫x

n cx

e dx =

1 n cx n n −1 cx
x e − ∫ x e dx
c
c
i

∞ cx
( )
ecx
dx = ln x + ∑
∫ x
i =1 i ⋅ i !

∫e

cx

ln xdx =

1 cx
e ln x + Ei ( cx )
c

cx
∫ e sin bxdx =
cx
∫ e cos bxdx =
cx
n
∫ e sin xdx =

ecx
c 2 + b2

( c sin bx − b cos bx )

ecx
c 2 + b2

( c cos bx + b sin bx )

ecx sin n −1 x
2

c +n

2

( c sin x − n cos bx ) +

n ( n − 1)
2

c +n

2

∫e

cx

sin n −2 dx
www.mathportal.org
4. Integrals of Logarithmic Functions

∫ ln cxdx = x ln cx − x
b

∫ ln(ax + b)dx = x ln(ax + b) − x + a ln(ax + b)
2

2

∫ ( ln x ) dx = x ( ln x ) − 2 x ln x + 2 x
n
n
n −1
∫ ( ln cx ) dx = x ( ln cx ) − n∫ ( ln cx ) dx
i

∞ ln x
( )
dx
= ln ln x + ln x + ∑
∫ ln x
n =2 i ⋅ i !

dx

∫ ( ln x )n

=−

x

( n − 1)( ln x )

n −1

+

1
dx
n − 1 ∫ ( ln x )n −1

 ln x
1
x m ln xdx = x m +1 
−
∫
 m + 1 ( m + 1) 2


∫ x ( ln x )
m

∫

( ln x )n
x

n

dx =

dx =

x m+1 ( ln x )

n

m +1

−

( ln x )n+1

)

( for m ≠ 1)

n
n −1
m
∫ x ( ln x ) dx
m +1

2

ln x n
ln x n
( for n ≠ 0 )
∫ x dx = 2n
ln x
ln x
1
∫ xm dx = − ( m − 1) xm−1 − ( m − 1)2 xm−1

∫

( ln x )n
xm

( for m ≠ 1)

( ln x )n
( ln x )n−1
n
dx = −
+
dx
( m − 1) x m−1 m − 1 ∫ x m

dx

∫ x ln x = ln ln x
∞

dx

∫ xn ln x = ln ln x + ∑ ( −1)
i =1
dx

∫ x ( ln x )n
∫ ln ( x

2

=−

i

( n − 1)i ( ln x )i
i ⋅ i!

1

( for n ≠ 1)

( n − 1)( ln x )n−1

)

(

)

+ a 2 dx = x ln x 2 + a 2 − 2 x + 2a tan −1
x

∫ sin ( ln x ) dx = 2 ( sin ( ln x ) − cos ( ln x ) )
x

( for m ≠ 1)

( for n ≠ 1)

n +1

(






( for n ≠ 1)

∫ cos ( ln x ) dx = 2 ( sin ( ln x ) + cos ( ln x ) )

x
a

( for m ≠ 1)
www.mathportal.org
5. Integrals of Trig. Functions

∫ sin xdx = − cos x
∫ cos xdx = − sin x

cos x

x 1
− sin 2 x
2 4
x 1
2
∫ cos xdx = 2 + 4 sin 2 x
1
3
3
∫ sin xdx = 3 cos x − cos x
1 3
3
∫ cos xdx = sin x − 3 sin x

∫ sin

2

xdx =

dx

cos 2 x
x
∫ sin x dx = ln tan 2 + cos x

∫ cot

2

xdx = − cot x − x

dx

∫ sin x cos x = ln tan x
dx

x

1

π

∫ sin 2 x cos x = − sin x + ln tan  2 + 4 


dx

1

x

x

∫ sin x cos2 x = cos x + ln tan 2

x

∫ sin 2 x cos2 x = tan x − cot x

∫ sin x xdx = ln tan 2
dx

1

∫ sin 2 x dx = − sin x

dx

π

∫ cos x xdx = ln tan  2 + 4 


dx
∫ sin 2 x xdx = − cot x
dx
∫ cos2 x xdx = tan x

sin( m + n) x sin( m − n) x
+
2( m − n)

∫sin mxsin nxdx = − 2( m+ n)

cos ( m + n) x cos ( m − n) x
−
2( m − n)

∫sin mxcos nxdx = − 2( m + n)

sin ( m + n) x sin ( m − n) x
+
2( m − n)

dx
cos x
1
x
∫ sin 3 x = − 2sin 2 x + 2 ln tan 2

∫ cos mxcos nxdx = 2( m + n)

dx
sin x
1
x π
∫ cos3 x = 2 cos2 x + 2 ln tan  2 + 4 



n
∫ sin x cos xdx = −

1
∫ sin x cos xdx = − 4 cos 2 x
1 3
2
∫ sin x cos xdx = 3 sin x
1
2
3
∫ sin x cos xdx = − 3 cos x
x 1
2
2
∫ sin x cos xdx = 8 − 32 sin 4 x

n
∫ sin x cos xdx =

∫ tan xdx = − ln cos x
sin x
1
dx =
2
cos x
x

∫ cos

sin 2 x
x π 
∫ cos x dx = ln tan  2 + 4  − sin x



∫ tan xdx = tan x − x
∫ cot xdx = ln sin x
2

cos n +1 x
n +1

sin n +1 x
n +1

∫ arcsin xdx = x arcsin x +

1 − x2

∫ arccos xdx = x arccos x −

1 − x2
1

∫ arctan xdx = x arctan x − 2 ln ( x
1

2

∫ arc cot xdx = x arc cot x + 2 ln ( x

2

)

+1

)

+1

m2 ≠ n2
m2 ≠ n2
m2 ≠ n2

More Related Content

PPTX
Differential equations
PDF
Lesson 16: Inverse Trigonometric Functions (slides)
PPTX
DIFFERENTIATION
PDF
Higher Order Differential Equation
PPTX
Complex Numbers
PPTX
Homogeneous Linear Differential Equations
PPTX
Integration by partial fraction
PDF
Differential equations
Lesson 16: Inverse Trigonometric Functions (slides)
DIFFERENTIATION
Higher Order Differential Equation
Complex Numbers
Homogeneous Linear Differential Equations
Integration by partial fraction

What's hot (20)

PPTX
Rules of integration
PPSX
Complex number
PPT
Differentiation
PPT
Introduction to differentiation
PPTX
Newton's forward & backward interpolation
PPTX
Matrices ppt
PPTX
Gaussian elimination method & homogeneous linear equation
PPTX
Gauss jordan
PDF
LINEAR DIFFERENTIAL EQUATION & BERNOULLI`S EQUATION
PPTX
Laplace Transformation & Its Application
PPTX
Limits and continuity powerpoint
PPTX
partial fractions calculus integration
PPT
PPT of Improper Integrals IMPROPER INTEGRAL
PDF
Succesive differntiation
PPTX
Trapezoidal rule
PPT
Integral Calculus
PPTX
Newton’s Forward & backward interpolation
PPT
complex variable PPT ( SEM 2 / CH -2 / GTU)
PPTX
Inverse Matrix & Determinants
PPTX
the inverse of the matrix
Rules of integration
Complex number
Differentiation
Introduction to differentiation
Newton's forward & backward interpolation
Matrices ppt
Gaussian elimination method & homogeneous linear equation
Gauss jordan
LINEAR DIFFERENTIAL EQUATION & BERNOULLI`S EQUATION
Laplace Transformation & Its Application
Limits and continuity powerpoint
partial fractions calculus integration
PPT of Improper Integrals IMPROPER INTEGRAL
Succesive differntiation
Trapezoidal rule
Integral Calculus
Newton’s Forward & backward interpolation
complex variable PPT ( SEM 2 / CH -2 / GTU)
Inverse Matrix & Determinants
the inverse of the matrix
Ad

Viewers also liked (13)

PPT
11365.integral 2
PDF
Integration formulas
PDF
Integral table for electomagnetic
PDF
Integration
PDF
Integration Formulas
PDF
Lesson 30: Integration by Parts
PPTX
Integration by parts
PPT
Integration By Parts Tutorial & Example- Calculus 2
PPTX
Numerical integration
PPT
Integration
PDF
Integral calculus
PPTX
Integration
11365.integral 2
Integration formulas
Integral table for electomagnetic
Integration
Integration Formulas
Lesson 30: Integration by Parts
Integration by parts
Integration By Parts Tutorial & Example- Calculus 2
Numerical integration
Integration
Integral calculus
Integration
Ad

More from Krishna Gali (20)

DOCX
Chemistry polycet study material
PDF
14. Statistics
PDF
13. Probability
PDF
12.applications of trigonometry
PDF
11.trigonometry
PDF
10.mensuration
PDF
9.tangents and secants to a circle
PDF
8.similar triangles
PDF
7.co ordinate geometry
PDF
6.progressions
PDF
5.quadratic equations
PDF
4.pair of linear equations in two variables
PDF
3.polynomials
PDF
2.sets
PDF
1.real numbers
PDF
Chapter 12 physics
PDF
Chapter 11 physics
PDF
Chapter 7 physics
PDF
refraction of light at curved surfaces
PDF
Chapter 5 physics
Chemistry polycet study material
14. Statistics
13. Probability
12.applications of trigonometry
11.trigonometry
10.mensuration
9.tangents and secants to a circle
8.similar triangles
7.co ordinate geometry
6.progressions
5.quadratic equations
4.pair of linear equations in two variables
3.polynomials
2.sets
1.real numbers
Chapter 12 physics
Chapter 11 physics
Chapter 7 physics
refraction of light at curved surfaces
Chapter 5 physics

Recently uploaded (9)

PDF
15 AUG 2025 PS 15 AUG 2025 PS 15 AUG 2025 PS
PPTX
Presentation on chemistry class 11 and class 12
PPTX
Madison dsfnsd dslsf sada;sdmas;ds;dls.pptx
PDF
Cold positive punishment of the student سزادانی ئەرێنی ساردی قوتابی.pdf
PPTX
Tahfidz Qur’an TIMING tampa musik bagian 2.pptx
PDF
levelling full chapter with examples and questions
PDF
فورمولر عمومی مضمون فزیک برای همه انجنیران
PDF
5.PDFsxcc c fvfvfv fvfvwCCDSDcvvcrdcfrwcwecwdcfwe
PDF
Materi seni rupa untuk sekolah dasar materi tentang seni rupa
15 AUG 2025 PS 15 AUG 2025 PS 15 AUG 2025 PS
Presentation on chemistry class 11 and class 12
Madison dsfnsd dslsf sada;sdmas;ds;dls.pptx
Cold positive punishment of the student سزادانی ئەرێنی ساردی قوتابی.pdf
Tahfidz Qur’an TIMING tampa musik bagian 2.pptx
levelling full chapter with examples and questions
فورمولر عمومی مضمون فزیک برای همه انجنیران
5.PDFsxcc c fvfvfv fvfvwCCDSDcvvcrdcfrwcwecwdcfwe
Materi seni rupa untuk sekolah dasar materi tentang seni rupa

Integration formulas

  • 1. www.mathportal.org Integration Formulas 1. Common Integrals Indefinite Integral Method of substitution ∫ f ( g ( x)) g ′( x)dx = ∫ f (u )du Integration by parts ∫ f ( x) g ′( x)dx = f ( x) g ( x) − ∫ g ( x) f ′( x)dx Integrals of Rational and Irrational Functions n ∫ x dx = x n +1 +C n +1 1 ∫ x dx = ln x + C ∫ c dx = cx + C ∫ xdx = x2 +C 2 x3 +C 3 1 1 ∫ x2 dx = − x + C 2 ∫ x dx = ∫ xdx = 1 ∫1+ x ∫ 2 2x x +C 3 dx = arctan x + C 1 1 − x2 dx = arcsin x + C Integrals of Trigonometric Functions ∫ sin x dx = − cos x + C ∫ cos x dx = sin x + C ∫ tan x dx = ln sec x + C ∫ sec x dx = ln tan x + sec x + C 1 ( x − sin x cos x ) + C 2 1 2 ∫ cos x dx = 2 ( x + sin x cos x ) + C ∫ sin 2 ∫ tan ∫ sec x dx = 2 x dx = tan x − x + C 2 x dx = tan x + C Integrals of Exponential and Logarithmic Functions ∫ ln x dx = x ln x − x + C n ∫ x ln x dx = ∫e x x n +1 x n +1 ln x − +C 2 n +1 ( n + 1) dx = e x + C x ∫ b dx = bx +C ln b ∫ sinh x dx = cosh x + C ∫ cosh x dx = sinh x + C
  • 2. www.mathportal.org 2. Integrals of Rational Functions Integrals involving ax + b ( ax + b )n + 1 ∫ ( ax + b ) dx = a ( n + 1) n 1 ( for n ≠ −1) 1 ∫ ax + b dx = a ln ax + b ∫ x ( ax + b ) n a ( n + 1) x − b dx = a x x 2 ( n + 1)( n + 2 ) ( ax + b )n+1 ( for n ≠ −1, n ≠ −2 ) b ∫ ax + b dx = a − a 2 ln ax + b x b 1 ∫ ( ax + b )2 dx = a 2 ( ax + b ) + a 2 ln ax + b a (1 − n ) x − b x ∫ ( ax + b )n dx = a 2 ( n − 1)( n − 2)( ax + b )n−1 ( for n ≠ −1, n ≠ −2 ) 2  x2 1  ( ax + b )  dx = 3 − 2b ( ax + b ) + b 2 ln ax + b  ∫ ax + b  2 a    x2 ∫ ( ax + b )2 x2 ∫ ( ax + b )3 x2 ∫ ( ax + b ) n 1  b2  dx = 3  ax + b − 2b ln ax + b −  ax + b  a    dx = 1  2b b2  ln ax + b + − ax + b 2 ( ax + b )2 a3   dx = 3−n 2− n 1−n 2b ( a + b ) b2 ( ax + b ) 1  ( ax + b ) − + − n−3 n−2 n −1 a3   1 1 ∫ x ( ax + b ) dx = − b ln 1 ax + b x 1 a ∫ x 2 ( ax + b ) dx = − bx + b2 ln 1 ∫ x 2 ( ax + b )2 ax + b x  1 1 2 ax + b dx = − a  2 + 2 − 3 ln  b ( a + xb ) ab x b x  Integrals involving ax2 + bx + c 1 1 x ∫ x 2 + a 2 dx = a arctg a a−x 1  2a ln a + x  ∫ x2 − a 2 dx =  1 x − a  ln  2a x + a  1     for x < a for x > a         ( for n ≠ 1, 2,3)
  • 3. www.mathportal.org 2 2ax + b  arctan  2 4ac − b 2  4ac − b  1 2 2ax + b − b 2 − 4 ac  dx =  ln ∫ ax 2 + bx + c  b 2 − 4ac 2 ax + b + b 2 − 4ac  − 2  2ax + b  x 1 ∫ ax 2 + bx + c dx = 2a ln ax 2 + bx + c − for 4ac − b 2 > 0 for 4ac − b 2 < 0 for 4ac − b 2 = 0 b dx ∫ ax 2 + bx + c 2a m 2an − bm 2ax + b 2 arctan for 4ac − b 2 > 0  ln ax + bx + c + 2 2 2a a 4ac − b 4ac − b  m mx + n 2an − bm 2ax + b  2 2 ∫ ax 2 + bx + c dx =  2a ln ax + bx + c + a b2 − 4ac arctanh b2 − 4ac for 4ac − b < 0  m 2an − bm  ln ax 2 + bx + c − for 4ac − b 2 = 0 a ( 2 ax + b )  2a  ∫ 1 ( ax ∫x 2 + bx + c ) n 1 ( ax 2 + bx + c ) dx = 2ax + b ( n − 1) ( 4ac − b2 )( ax 2 + bx + c ) dx = n−1 + ( 2 n − 3 ) 2a 1 dx 2 ∫ ( n − 1) ( 4ac − b ) ( ax 2 + bx + c )n−1 1 x2 b 1 ln 2 − ∫ 2 dx 2c ax + bx + c 2c ax + bx + c 3. Integrals of Exponential Functions cx ∫ xe dx = ecx c2 ( cx − 1)  x2 2x 2  x 2 ecx dx = ecx  ∫  c − c 2 + c3     ∫x n cx e dx = 1 n cx n n −1 cx x e − ∫ x e dx c c i ∞ cx ( ) ecx dx = ln x + ∑ ∫ x i =1 i ⋅ i ! ∫e cx ln xdx = 1 cx e ln x + Ei ( cx ) c cx ∫ e sin bxdx = cx ∫ e cos bxdx = cx n ∫ e sin xdx = ecx c 2 + b2 ( c sin bx − b cos bx ) ecx c 2 + b2 ( c cos bx + b sin bx ) ecx sin n −1 x 2 c +n 2 ( c sin x − n cos bx ) + n ( n − 1) 2 c +n 2 ∫e cx sin n −2 dx
  • 4. www.mathportal.org 4. Integrals of Logarithmic Functions ∫ ln cxdx = x ln cx − x b ∫ ln(ax + b)dx = x ln(ax + b) − x + a ln(ax + b) 2 2 ∫ ( ln x ) dx = x ( ln x ) − 2 x ln x + 2 x n n n −1 ∫ ( ln cx ) dx = x ( ln cx ) − n∫ ( ln cx ) dx i ∞ ln x ( ) dx = ln ln x + ln x + ∑ ∫ ln x n =2 i ⋅ i ! dx ∫ ( ln x )n =− x ( n − 1)( ln x ) n −1 + 1 dx n − 1 ∫ ( ln x )n −1  ln x 1 x m ln xdx = x m +1  − ∫  m + 1 ( m + 1) 2  ∫ x ( ln x ) m ∫ ( ln x )n x n dx = dx = x m+1 ( ln x ) n m +1 − ( ln x )n+1 ) ( for m ≠ 1) n n −1 m ∫ x ( ln x ) dx m +1 2 ln x n ln x n ( for n ≠ 0 ) ∫ x dx = 2n ln x ln x 1 ∫ xm dx = − ( m − 1) xm−1 − ( m − 1)2 xm−1 ∫ ( ln x )n xm ( for m ≠ 1) ( ln x )n ( ln x )n−1 n dx = − + dx ( m − 1) x m−1 m − 1 ∫ x m dx ∫ x ln x = ln ln x ∞ dx ∫ xn ln x = ln ln x + ∑ ( −1) i =1 dx ∫ x ( ln x )n ∫ ln ( x 2 =− i ( n − 1)i ( ln x )i i ⋅ i! 1 ( for n ≠ 1) ( n − 1)( ln x )n−1 ) ( ) + a 2 dx = x ln x 2 + a 2 − 2 x + 2a tan −1 x ∫ sin ( ln x ) dx = 2 ( sin ( ln x ) − cos ( ln x ) ) x ( for m ≠ 1) ( for n ≠ 1) n +1 (     ( for n ≠ 1) ∫ cos ( ln x ) dx = 2 ( sin ( ln x ) + cos ( ln x ) ) x a ( for m ≠ 1)
  • 5. www.mathportal.org 5. Integrals of Trig. Functions ∫ sin xdx = − cos x ∫ cos xdx = − sin x cos x x 1 − sin 2 x 2 4 x 1 2 ∫ cos xdx = 2 + 4 sin 2 x 1 3 3 ∫ sin xdx = 3 cos x − cos x 1 3 3 ∫ cos xdx = sin x − 3 sin x ∫ sin 2 xdx = dx cos 2 x x ∫ sin x dx = ln tan 2 + cos x ∫ cot 2 xdx = − cot x − x dx ∫ sin x cos x = ln tan x dx x 1 π ∫ sin 2 x cos x = − sin x + ln tan  2 + 4    dx 1 x x ∫ sin x cos2 x = cos x + ln tan 2 x ∫ sin 2 x cos2 x = tan x − cot x ∫ sin x xdx = ln tan 2 dx 1 ∫ sin 2 x dx = − sin x dx π ∫ cos x xdx = ln tan  2 + 4    dx ∫ sin 2 x xdx = − cot x dx ∫ cos2 x xdx = tan x sin( m + n) x sin( m − n) x + 2( m − n) ∫sin mxsin nxdx = − 2( m+ n) cos ( m + n) x cos ( m − n) x − 2( m − n) ∫sin mxcos nxdx = − 2( m + n) sin ( m + n) x sin ( m − n) x + 2( m − n) dx cos x 1 x ∫ sin 3 x = − 2sin 2 x + 2 ln tan 2 ∫ cos mxcos nxdx = 2( m + n) dx sin x 1 x π ∫ cos3 x = 2 cos2 x + 2 ln tan  2 + 4    n ∫ sin x cos xdx = − 1 ∫ sin x cos xdx = − 4 cos 2 x 1 3 2 ∫ sin x cos xdx = 3 sin x 1 2 3 ∫ sin x cos xdx = − 3 cos x x 1 2 2 ∫ sin x cos xdx = 8 − 32 sin 4 x n ∫ sin x cos xdx = ∫ tan xdx = − ln cos x sin x 1 dx = 2 cos x x ∫ cos sin 2 x x π  ∫ cos x dx = ln tan  2 + 4  − sin x   ∫ tan xdx = tan x − x ∫ cot xdx = ln sin x 2 cos n +1 x n +1 sin n +1 x n +1 ∫ arcsin xdx = x arcsin x + 1 − x2 ∫ arccos xdx = x arccos x − 1 − x2 1 ∫ arctan xdx = x arctan x − 2 ln ( x 1 2 ∫ arc cot xdx = x arc cot x + 2 ln ( x 2 ) +1 ) +1 m2 ≠ n2 m2 ≠ n2 m2 ≠ n2