SlideShare a Scribd company logo
INTRODUCTION TO RADAR SIGNAL
PROCESSING
Christos Ilioudis
University of Strathclyde
c.Ilioudis@strath.ac.uk
Overview
■ History of Radar
■ Basic Principles
■ Principles of Measurements
■ Coherent and Doppler Processing
■ Waveforms Design and Pulse Compression
■ Closing Remarks
■ Reading Material
History – Before Radar
■ Between the World Wars, parabolic
sound mirrors, were used to provide
early warming;
■ Acoustic mirrors had a limited
effectiveness, and the increasing
speed of aircraft in the 1930s meant
that they would already be too close
to deal with by the time they had been
detected.
■ Radio transmitters had already been
in use for over a decade for
communications.
WW1 - WW2
Top: (L) Bombing during the WW1, (R) “Whisper Dishes”
Bottom: (L) WW2 Bombers, (R) Four-horn acoustic
locator,1930s
History – Radio Detection
Radar was first patented and
■
demonstrated in 1904 by the German
engineer Christian Hülsmeyer;
Watson Watt
■ is generally credited with
initiating what would later be called radar;
In
■ June 17, 1935, a radio-based detection
and ranging was first demonstrated in
Great Britain;
The
■ first Radar system used by the British
comprised 21 stations placed along the
country’s eastern coast.
Left: (T) Christian Hülsmeyer, (B) Watson Watt,
Right: Chain Home coverage map
Today – Radar
■ Modern Radar are very diverse;
– Military Radars;
– Imaging Radars;
– Radar Gun;
– Automotive Radars;
– Civil Aviation Radars;
– Weather Radars;
– Ground Penetrating Radars;
Basic Principles
■ Radar is an acronym for RAdio Detection And
Ranging;
■ An object detection system that transmits
electromagnetic (EM) waves and analyses the
echoes coming from the objects;
■ Why use radar?
– Radar can operate in any weather conditions
(e.g. darkness, fog, rain);
– Radar can perform its function at long and
short ranges;
– Radar can provide measurements in high
accuracy.
Radar vs. optical image, penetration of
clouding, ©Cassidian radar, ©Eurimage,
optical.
Radar Categorisation
Operation:
■
Primary
– : Target monitoring;
Secondary: Transponder on the target (Fig.);
–
Illuminator:
■
Active
– : Uses its transmitter to illuminate the target;
Passive: Exploit illuminators of opportunity (Fig.);
–
Transmission rate:
■
Pulsed
– : Emit separated pulses;
Continuous Wave (CW): Constant transmission (Fig.);
–
Geometry:
■
Monostatic
– : Transmitter and receiver in the same location (Fig. Left);
Bistatic: Transmitter and receiver in separate locations (Fig. Right).
–
Interrogator
Radar
Illuminator
R
T
Monostatic Bistatic
Transponder
Operating Principles
■ The simplest radar operation can be divided into 4 steps:
1. The radar is transmitting an EM pulse;
2. The radar switches to listening mode;
3. The pulse is reflected by a target;
4. The radar receives the echoes from the transmitted pulse.
■ Using various properties of the received echo, the radar can extract parameters
such as the range and velocity of the target
Transmitted pulse
Reflected pulse
Transmitter Receiver
Duplexer
Operating Principles
■ The simplest radar operation can be divided into 4 steps:
1. The radar is transmitting an EM pulse;
2. The radar switches to listening mode;
3. The pulse is reflected by a target;
4. The radar receives the echoes from the transmitted pulse.
■ Using various properties of the received echo, the radar can extract parameters
such as the range and velocity of the target
Transmitted pulse
Reflected pulse
Transmitter Receiver
Duplexer
Operating Principles
■ The simplest radar operation can be divided into 4 steps:
1. The radar is transmitting an EM pulse;
2. The radar switches to listening mode;
3. The pulse is reflected by a target;
4. The radar receives the echoes from the transmitted pulse.
■ Using various properties of the received echo, the radar can extract parameters
such as the range and velocity of the target
Transmitted pulse
Reflected pulse
Transmitter Receiver
Duplexer
Operating Principles
■ The simplest radar operation can be divided into 4 steps:
1. The radar is transmitting an EM pulse;
2. The radar switches to listening mode;
3. The pulse is reflected by a target;
4. The radar receives the echoes from the transmitted pulse.
■ Using various properties of the received echo, the radar can extract parameters
such as the range and velocity of the target
Transmitted pulse
Reflected pulse
Transmitter Receiver
Duplexer
Operating Principles
The simplest radar operation can be divided into
■ 4 steps:
The radar is transmitting an EM pulse;
1.
The radar switches to listening mode;
2.
The pulse is reflected by a target;
3.
The radar receives the echoes from the transmitted pulse
4. .
Using various properties of the received echo, the radar can extract parameters
■
such as the range and velocity of the target
Transmitted pulse
Reflected pulse
Transmitter Receiver
Duplexer
Principles of
Measurements
Radar Equation
■
Distance Determination
■
Range Resolution
■
Direction Determination
■
Pulse Repetition Interval
■
Maximum Unambiguous Ranges
■
Data Matrix and Data Cube
■
Radar Equation
■ The radar equation is referring to the power of
the echo returning to the radar;
𝑃𝑟 =
𝑃𝑡𝐺2𝜆2𝜎
(4𝜋)3𝑅4𝐿
→ 𝑅 =
4 𝑃𝑡𝐺2𝜆2𝜎
(4𝜋)3𝐿 𝑃𝑟
𝑃𝑡 : Transmit power;
𝐺 : Antenna gain;
𝜆 : Radar operating wavelength;
𝜎 : Target radar cross section (RCS);
𝑅 : Range from the radar to the target;
𝐿 : Other losses (system, propagation).
■ Low frequencies are preferable for long-range
radar;
■ Low RCS targets are harder to detect. Top: Expected atmospheric path loss as a function of
frequency;
Bottom: Mazda 6 RCS, Image courtesy of Hasch et al.
Frequency [GHz]
Atmospheric
loss
[dB/Km]
O2 O2 H2O H2O H2O
Distance Determination
■ To determine the distance between the radar and a target, the delay of the echoed
pulse id utilised;
– Given that EM waves travel at 𝒄 = 3 × 108m/s
– If the echo delay is 𝝉, the range of the target is:
𝑹 =
𝜏𝑐
2
Time
Range
Emmision of a pulse at 𝒕 = 𝟎;
Pulse reaches the target at 𝒕 = 𝝉/𝟐;
A part of the pulse is reflected to the radar;
The echo from the target is received at 𝒕 = 𝝉.
Range Resolution
■ The resolution of radar is its ability to
distinguish between targets that are in very
close proximity.
■ The range resolution 𝝆 of a radar is:
𝜌 ≥
𝑐𝑇
2
≈
𝑐
2𝐵
𝑻: Duration of pulse
𝑩: Bandwidth of signal
■ Sorter pulses will have higher bandwidth,
leading to better resolution.
Range resolution issue between targets in close proximity with
each other (T) Two resolved targets; (B) One resolved target.
Red part denoted the overlap between the two echoes
Range
Time
𝐷 > 𝑐𝑇/2
Time
Range
𝐷 < 𝑐𝑇/2
Direction Determination
■ The target’s direction is determined by the directivity of the antenna, which
represents the ability of the antenna to transmit the energy in a particular direction.
■ Both the target’s azimuth and elevation angles can be determined by measuring the
direction in which the antenna is pointing when the echo signal is received.
Azimuth
Elevation
Directional Radiation
Left: Radiation pattern of a Helical Antenna
Right: Illumination in different azimuth and elevation angles using a directional antenna.
Direction Determination (cont.)
■ The antenna can be steered in the desired direction mechanically or electronically.
Example of radar scanning
between two azimuth sectors,
Left: Top view;
Right: Radar indicator;
Direction Determination (cont.)
■ The antenna can be steered in the desired direction mechanically or electronically.
Example of radar scanning
between two azimuth sectors,
Left: Top view;
Right: Radar indicator;
Direction Determination (cont.)
The antenna can be steered in the desired direction
■ mechanically or electronically.
Example of radar scanning
between two azimuth sectors,
Left: Top view;
Right: Radar indicator;
Pulse repetition Interval
■ Pulse Repetition Interval (PRI) is defined as
the time interval between consequent
pulses;
■ Pulse Repetition Frequency (PRF) is given as:
PRF = 1/PRI
■ Duty cycle is defined as the time proportion
of PRI in which the transmission takes place:
Duty Cycle = 𝑇/PRI
■ If the same antenna is used for transition
and reception, the duty cycle gives a
measure of how long the radar is “blind”.
Transmission
Reception
PRI
Time
Maximum Unambiguous Range
■ The maximum unambiguous range defines the maximum distance to locate a target.
𝑅max =
𝑐PRI
2
=
𝑐
2PRF
■ Radar is not able to discriminate between echoes from an older and the current
transmission.
P1 P1,T2
P2
P1,T1
Time
PRI
𝜏2 = Τ
2𝑅2 𝑐
𝜏1 = Τ
2𝑅1 𝑐
Right: Transmitted (dark) and received pulses (light) at the radar in
time, radar confuses the echo from fist pulse to second target
(P1,T2) to an echo from second pulse (P2) and a target at a closer
range (𝑅max − 𝑅2).
T1 T2
𝑅1
𝑅max
𝑅2
Range
𝑅max − 𝑅2
Left: Radar and two real targets (dark), one in (T1) and one out
(T2) of unambiguous range, second target (T2) appears in closer
range (light).
Maximum Unambiguous Range
■ The maximum unambiguous range defines the maximum distance to locate a target.
𝑅max =
𝑐PRI
2
=
𝑐
2PRF
■ Radar is not able to discriminate between echoes from an older and the current
transmission.
Right: Transmitted (dark) and received pulses (light) at the radar in
time, radar confuses the echo from fist pulse to second target
(P1,T2) to an echo from second pulse (P2) and a target at a closer
range (𝑅max − 𝑅2).
T1 T2
𝑅1
𝑅max
𝑅2
Range
𝑅max − 𝑅2
Left: Radar and two real targets (dark), one in (T1) and one out
(T2) of unambiguous range, second target (T2) appears in closer
range (light).
P2,T1
P1 P1,T2
P2
P1,T1
Time
PRI
𝜏1 = Τ
2𝑅1 𝑐
𝜏2 = Τ
2𝑅2 𝑐
Data matrix
Radar returns from each PRI are stored in memory for further processing;
■
Fast Time
■ refers to the different time slots composing a PRI, sampling rate dependent;
Slow Time
■ updates every PRI;
Fast Time
Slow
Time
Example of two targets, one staying in the
same resolution bin (orange) and one
moving in different resolution bins (green);
Top: Data matrix for 10 time resolution
bins and 4 PRI;
Bottom: Radar returns in time;
Time
PRI
PRI
Sampling Interval≈ Τ
1 𝐵
Data matrix
■ Radar returns from each PRI are stored in memory for further processing;
■ Fast Time refers to the different time slots composing a PRI, sampling rate dependent;
■ Slow Time updates every PRI;
Fast Time
Slow
Time
Example of two targets, one staying in the
same resolution bin (orange) and one
moving in different resolution bins (green);
Top: Data matrix for 10 time resolution
bins and 4 PRI;
Bottom: Radar returns in time;
Time
PRI
PRI
Sampling Interval≈ Τ
1 𝐵
Data matrix
■ Radar returns from each PRI are stored in memory for further processing;
■ Fast Time refers to the different time slots composing a PRI, sampling rate dependent;
■ Slow Time updates every PRI;
Fast Time
Slow
Time
Example of two targets, one staying in the
same resolution bin (orange) and one
moving in different resolution bins (green);
Top: Data matrix for 10 time resolution
bins and 4 PRI;
Bottom: Radar returns in time;
Time
PRI
PRI
Sampling Interval≈ Τ
1 𝐵
Data matrix
■ Radar returns from each PRI are stored in memory for further processing;
■ Fast Time refers to the different time slots composing a PRI, sampling rate dependent;
■ Slow Time updates every PRI;
Fast Time
Slow
Time
Example of two targets, one staying in the
same resolution bin (orange) and one
moving in different resolution bins (green);
Top: Data matrix for 10 time resolution
bins and 4 PRI;
Bottom: Radar returns in time;
Time
PRI
PRI
Sampling Interval≈ Τ
1 𝐵
Data matrix
■ Radar returns from each PRI are stored in memory for further processing;
■ Fast Time refers to the different time slots composing a PRI, sampling rate dependent;
■ Slow Time updates every PRI;
Fast Time
Slow
Time
Example of two targets, one staying in the
same resolution bin (orange) and one
moving in different resolution bins (green);
Top: Data matrix for 10 time resolution
bins and 4 PRI;
Bottom: Radar returns in time;
Time
PRI
PRI
Sampling Interval≈ Τ
1 𝐵
Data Cube
■ Data Cube is an extension to Data Matrix including spatial sampling;
■ In cases that the radar uses multiple receiving channels, the data matrices from
each receiver are stacked to form a data cube;
Illustration of a data cube for 𝐿 time samples in
each PRI and 𝑀 PRI in a system composed of 𝑁
receiver channels.
Slow Time
Receiver
Channel
0 𝑀 − 1
𝑁 − 1
Coherent and Doppler
processing.
Spectrum of Continuous Wave Signal;
■
Spectrum of Pulsed Signal;
■
Range
■ -Doppler Maps;
Spectrum of Continuous Wave Signal
■ Consider a continuous wave (CW) radar with
operating frequency 𝑓0;
■ In the presence of a target moving with radial
velocity 𝑢𝑟, due to the Doppler phenomenon,
the echoed signal will be shifted in frequency
by:
𝑓𝐷 =
𝑢𝑟
𝑐
𝑓0
■ Positive Doppler shifts (𝑓𝐷 > 0) indicate that
the target is moving towards the radar, while
negative (𝑓𝐷 < 0) away from it;
𝑓0
−𝑓𝑠/2 𝑓𝑠/2
Stationary radar and moving target scenario: (T) geometry of
the radar target system, (B) frequency observed by the radar
Spectrum of Continuous Wave Signal
Consider a continuous wave (CW) radar with
■
operating frequency 𝑓0;
In the presence of a target moving with
■ radial
velocity 𝑢𝑟, due to the Doppler phenomenon,
the echoed signal will be shifted in frequency
by:
𝑓𝐷 =
𝑢𝑟
𝑐
𝑓0
Positive
■ Doppler shifts (𝑓𝐷 > 0) indicate that
the target is moving towards the radar, while
negative (𝑓𝐷 < 0) away from it;
𝑓0
−𝑓𝑠/2 𝑓𝑠/2
Stationary radar and moving target scenario: (T) geometry of
the radar target system, (B) frequency observed by the radar
Spectrum of Continuous Wave Signal
■ Consider a continuous wave (CW) radar with
operating frequency 𝑓0;
■ In the presence of a target moving with radial
velocity 𝑢𝑟, due to the Doppler phenomenon,
the echoed signal will be shifted in frequency
by:
𝑓𝐷 =
𝑢𝑟
𝑐
𝑓0
■ Positive Doppler shifts (𝑓𝐷 > 0) indicate that
the target is moving towards the radar, while
negative (𝑓𝐷 < 0) away from it;
𝑓0
−𝑓𝑠/2 𝑓𝑠/2
Stationary radar and moving target scenario: (T) geometry of
the radar target system, (B) frequency observed by the radar
Spectrum of Continuous Wave Signal
■ Consider a continuous wave (CW) radar with
operating frequency 𝑓0;
■ In the presence of a target moving with radial
velocity 𝑢𝑟, due to the Doppler phenomenon,
the echoed signal will be shifted in frequency
by:
𝑓𝐷 =
𝑢𝑟
𝑐
𝑓0
■ Positive Doppler shifts (𝑓𝐷 > 0) indicate that
the target is moving towards the radar, while
negative (𝑓𝐷 < 0) away from it;
𝑓0
−𝑓𝑠/2 𝑓𝑠/2
Stationary radar and moving target scenario: (T) geometry of
the radar target system, (B) frequency observed by the radar
Spectrum of Pulsed Signal
■ In most radar systems, the bandwidth of a
single pulse may be a few orders of
magnitude greater than the expected Doppler
frequency shift:
1
𝑇
≫ 𝑓𝐷
■ Echoes from moving targets cannot be
discriminated from stationary clatter in
spectrum;
■ Using consequent pulsed over a coherent
pulse interval (CPI), the single pulse
bandwidth is divided into spectral line of
approximate bandwidth 1/CPI. 1/𝑇 2/𝑇
−1/𝑇
−2/𝑇
PRF
𝑓
𝑇 2𝑇
0
−𝑇
−2𝑇
CPI
𝑡
𝑡
𝑇/2
−𝑇/2
1/𝑇
−1/𝑇
𝑓
FT
FT
Spectrum of Pulsed Signal
■ In most radar systems, the bandwidth of a
single pulse may be a few orders of
magnitude greater than the expected Doppler
frequency shift:
1
𝑇
≫ 𝑓𝐷
■ Echoes from moving targets cannot be
discriminated from stationary clatter in
spectrum;
■ Using consequent pulsed over a coherent
pulse interval (CPI), the single pulse
bandwidth is divided into spectral line of
approximate bandwidth 1/CPI. 1/𝑇 2/𝑇
−1/𝑇
−2/𝑇
PRF
𝑓
𝑇 2𝑇
0
−𝑇
−2𝑇
CPI
𝑡
𝑡
𝑇/2
−𝑇/2
1/𝑇
−1/𝑇
𝑓
FT
FT
Spectrum of Pulsed Signal
In most radar systems, the bandwidth of a
■
single pulse may be a few orders of
magnitude greater than the expected Doppler
frequency shift:
1
𝑇
≫ 𝑓𝐷
Echoes from moving targets
■ cannot be
discriminated from stationary clatter in
spectrum;
Using consequent pulsed over a coherent
■
pulse interval (CPI), the single pulse
bandwidth is divided into spectral line of
approximate bandwidth 1/CPI. 1/𝑇 2/𝑇
−1/𝑇
−2/𝑇
PRF
𝑓
𝑇 2𝑇
0
−𝑇
−2𝑇
CPI
𝑡
𝑡
𝑇/2
−𝑇/2
1/𝑇
−1/𝑇
𝑓
FT
FT
Range-Doppler Maps
In a moving target the
■ phase information appears in each received pulse.
Different returns can be
■ separated in the Doppler domain.
Range
■ -Doppler map is contracting by converting Fast time to Range and Slow time
to Doppler by applying Fourier Transform.
Fast
Time
Slow Time
Range
Doppler
FFT
FFT
FFT
Scenario of 3 targets: two in the same range bin and different velocity (green and orange) and one in different range (blue),
(L) In Data matrix two targets can be separated, (R) In Range-Doppler map all 3 targets can be separated.
CPI
Waveforms Design and
Pulse Compression
■ Noise and Interference
■ Matched Filter
■ Pulse compression
■ Linear Frequency Modulation
■ Ambiguity Function
Noise and Interference
Noise is a random, unwanted signal characterised by statistical properties;
■
Sources of interference can be
■ internal (equipment imperfections) or external (other
RF transmissions), passive (clutter) or active (jammers);
The power ratio between the
■ useful and unwanted signal is defined as signal-to
interfered-plus-noise ratio (SINR):
SINR =
𝑃Signal
𝑃Interfernce + 𝑃Noise
→ SNR =
𝑃Signal
𝑃Noise
Example of a high SNR target (1) and a false detection (2),
the radar is not able to discriminate between interference
and low SNR targets [Principles of Modern Radar - Mark A
Richards].
Sample Number
Amplitude
(dB)
Threshold
1
2
Matched Filter
The knowledge of the transmitted signal is utilised to
■
design a linear filter that maximises the SNR;
In the presence of additive Gaussian noise, the optimum
■
filter is a time reversed version of the transmitted signal
(“matched”);
ℎ 𝑡 = 𝑥∗
(𝜏max − 𝑡)
ℎ(𝑡) : Matched filter of 𝑥(𝑡);
{∙}∗
: Complex conjugate;
𝜏max : Time instant in which the SNR is maximised;
For noise given by
■ 𝒞𝒩 0, 𝜎2 , the maximum SNR is:
SNRmax =
𝐸
𝜎2
𝐸: Energy of the pulse.
The output of the matched filter is the auto
■ -correlation of
the pulse.
Range
Amplitude
Range
Amplitude
Range profile with a target at the red
line (T) before and (B) after matched
filter.
Pulse Compression
Sort pulses provide good resolution but
■ not enough
energy for long distances;
The resolution is (
■ almost) proportional to the
bandwidth;
Using pulse compression
■ long waveforms (high
energy) can achieve the resolution of a short pulse by
increasing their bandwidth through internal
modulation;
A side effect of pulse compression is the rise of
■
undesired sidelobes;
0
Time Delay
Sidelobes
Peak
Sidelobe
Mainlobe
Mainlobe
Width
Mainlobe
Width
0
Time Delay
Matched filter output of (T) an unmodulated square
pulse and (B) a linear frequency modulated pulse.
Linear Frequency Modulation
■ Pulse compression can be achieved using frequency
modulation (FM);
■ Linear FM (LFM) is a very popular choice;
■ LFM achieve high resolution while keeping the H/W
implementation relative simple;
𝑥 𝑡 = 𝑒𝑗𝜋 Τ
𝐵 𝑇 𝑡2
, − 0 ≤ 𝑡 ≤ 𝑇
𝑓 =
𝐵
2𝑇
𝑡 : Instantaneous frequency;
■ LFM suffer from high sidelobe levels (SLL);
■ Using non-linear FM (NLFM) the SLL can be reduced
but are more complex to generate.
B
.
Time
Frequency
𝑇
𝐵
Top: Real part of (L) an unmodulated pulse and
(R) a LFM pulse;
Bottom: Time-Frequency profile of a LFM pulse.
LFM
Ambiguity Function – Definition
■ The ambiguity function (AF) is a 2-D function describing the response of a matched
filter when the signal is received with a delay 𝝉 and a Doppler shift 𝒇𝑫 relative to the
expected:
𝐴 𝜏, 𝑓𝐷 = 𝑥 𝑡 𝑥∗ 𝑡 + 𝜏 𝑒𝑗2𝜋𝑓𝐷𝑡
■ The zero-Doppler cut of the AF is given by the autocorrelation of the pulse:
𝐴 𝜏, 0 = 𝑥 𝑡 𝑥∗ 𝑡 + 𝜏
■ The zero-Delay cut of the AF is given by the Fourier Transform (FT) of the squared
modulus of the pulse:
𝐴 0, 𝑓𝐷 = 𝑥 𝑡 2𝑒𝑗2𝜋𝑓𝐷𝑡
Ambiguity Function – Definition
■ The ambiguity function (AF) is a 2-D function describing the response of a matched
filter when the signal is received with a delay 𝝉 and a Doppler shift 𝒇𝑫 relative to the
expected:
𝐴 𝜏, 𝑓𝐷 = 𝑥 𝑡 𝑥∗ 𝑡 + 𝜏 𝑒𝑗2𝜋𝑓𝐷𝑡
■ The zero-Doppler cut of the AF is given by the autocorrelation of the pulse:
𝐴 𝜏, 0 = 𝑥 𝑡 𝑥∗ 𝑡 + 𝜏
■ The zero-Delay cut of the AF is given by the Fourier Transform (FT) of the squared
modulus of the pulse:
𝐴 0, 𝑓𝐷 = 𝑥 𝑡 2𝑒𝑗2𝜋𝑓𝐷𝑡
Ambiguity Function – Examples
Illustration of the AF for (L) an unmodulated pulse, (R) a LFM.
Time
Doppler shift
Ambiguity Function – Examples
Illustration of the AF for (L) an unmodulated pulse, (R) a LFM.
Time
Doppler shift
Resolution
Ambiguity Function – Examples
Illustration of the AF for (L) an unmodulated pulse, (R) a LFM.
Time
Doppler shift
Side Lobe Levels
Ambiguity Function – Examples
Illustration of the AF for (L) an unmodulated pulse, (R) a LFM.
Time
Doppler shift
Time-Frequency Response
Closing Remarks
Basic radar principles were discussed;
■
Introduction on radar acquisitions and signal
■
processing;
Introduction on pulse compression and waveform
■
design tools;
Reading Material
■ Principles Of Modern Radar: Basic Principles
– Mark A Richards;
■ Radar Signals
– Nadav Levanon;
■ Radar System Analysis and Design Using MATLAB
– Bassem R. Mahafza.
THANK
YOU

More Related Content

PDF
Radar 2009 a 4 radar equation
PPTX
Hspa and hsdpa
PPTX
Concept of Diversity & Fading (wireless communication)
PPT
5 pulse compression waveform
PDF
3 lte mac_rrc(조봉열)
PDF
DSP lab manual
PDF
Tracking Radar
Radar 2009 a 4 radar equation
Hspa and hsdpa
Concept of Diversity & Fading (wireless communication)
5 pulse compression waveform
3 lte mac_rrc(조봉열)
DSP lab manual
Tracking Radar

What's hot (20)

PPT
Broadside array vs end fire array
PPT
MIMO in 15 minutes
PPTX
Eye diagram in Communication
PDF
Radar 2009 a 6 detection of signals in noise
PPT
Matched filter
PDF
Introduction to Radar System & Component Tests
PPS
rf planning
PDF
Lecture notes microwaves
PPTX
Radar Systems- Unit-II : CW and Frequency Modulated Radar
PDF
COMPARISON OF SISO & MIMO TECHNIQUES IN WIRELESS COMMUNICATION
PPT
Components of a Pulse Radar System
PPT
SDH BASICS
PPTX
Digital modulation techniques
PPTX
Convolution codes and turbo codes
PDF
Amplitude modulation, Generation of AM signals
PDF
Horn antenna
PDF
Multi-Funtion Phased Array Radar
PPTX
Optical multiplexers
PPT
Angle modulation
PPTX
WCDMA Based Events
Broadside array vs end fire array
MIMO in 15 minutes
Eye diagram in Communication
Radar 2009 a 6 detection of signals in noise
Matched filter
Introduction to Radar System & Component Tests
rf planning
Lecture notes microwaves
Radar Systems- Unit-II : CW and Frequency Modulated Radar
COMPARISON OF SISO & MIMO TECHNIQUES IN WIRELESS COMMUNICATION
Components of a Pulse Radar System
SDH BASICS
Digital modulation techniques
Convolution codes and turbo codes
Amplitude modulation, Generation of AM signals
Horn antenna
Multi-Funtion Phased Array Radar
Optical multiplexers
Angle modulation
WCDMA Based Events
Ad

Similar to Introduction Radar signal processing.pdf (20)

PPTX
UNIT-1 RADAR -PULSE RADAR OPERATION AND ADVANTAGES
PDF
Principles of RADAR Systems
PPTX
Introduction-to-Radar-Lecture-1-Material.pptx
PPTX
introduction to radar and signal transmission
PDF
Introduction-to-Radar-Lecture-1-Material.pdf
PDF
radarnotes.pdf
PPTX
RADAR SYSTEMS
PPT
chandra shekhar_Unit 2 _Radar_ feb 4 2016
PPT
Radar Lecture 1.ppt in Telecomunication engineering
PPT
PPT
RADAR Basics
PPTX
UNIT-1 PSK -Radar Engineering.pptx
PDF
Radar is a detection system that uses radio waves to determine the range, ang...
PPTX
Fdp radar
PPT
Radar Principles & Systems.ppt
PPTX
UNIT - 1principlea of radar information.pptx
PPTX
Radar system
PDF
introduction to radar system and devices.pdf
DOCX
Introduction to radars
PDF
IARE_RS_PPT_0.pdf
UNIT-1 RADAR -PULSE RADAR OPERATION AND ADVANTAGES
Principles of RADAR Systems
Introduction-to-Radar-Lecture-1-Material.pptx
introduction to radar and signal transmission
Introduction-to-Radar-Lecture-1-Material.pdf
radarnotes.pdf
RADAR SYSTEMS
chandra shekhar_Unit 2 _Radar_ feb 4 2016
Radar Lecture 1.ppt in Telecomunication engineering
RADAR Basics
UNIT-1 PSK -Radar Engineering.pptx
Radar is a detection system that uses radio waves to determine the range, ang...
Fdp radar
Radar Principles & Systems.ppt
UNIT - 1principlea of radar information.pptx
Radar system
introduction to radar system and devices.pdf
Introduction to radars
IARE_RS_PPT_0.pdf
Ad

Recently uploaded (20)

PDF
Digital Logic Computer Design lecture notes
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PPT
Project quality management in manufacturing
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPT
Mechanical Engineering MATERIALS Selection
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
CH1 Production IntroductoryConcepts.pptx
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
Lecture Notes Electrical Wiring System Components
DOCX
573137875-Attendance-Management-System-original
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PPTX
web development for engineering and engineering
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Digital Logic Computer Design lecture notes
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
Project quality management in manufacturing
Embodied AI: Ushering in the Next Era of Intelligent Systems
Mechanical Engineering MATERIALS Selection
bas. eng. economics group 4 presentation 1.pptx
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
CH1 Production IntroductoryConcepts.pptx
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Lecture Notes Electrical Wiring System Components
573137875-Attendance-Management-System-original
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
web development for engineering and engineering
CYBER-CRIMES AND SECURITY A guide to understanding
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx

Introduction Radar signal processing.pdf

  • 1. INTRODUCTION TO RADAR SIGNAL PROCESSING Christos Ilioudis University of Strathclyde c.Ilioudis@strath.ac.uk
  • 2. Overview ■ History of Radar ■ Basic Principles ■ Principles of Measurements ■ Coherent and Doppler Processing ■ Waveforms Design and Pulse Compression ■ Closing Remarks ■ Reading Material
  • 3. History – Before Radar ■ Between the World Wars, parabolic sound mirrors, were used to provide early warming; ■ Acoustic mirrors had a limited effectiveness, and the increasing speed of aircraft in the 1930s meant that they would already be too close to deal with by the time they had been detected. ■ Radio transmitters had already been in use for over a decade for communications. WW1 - WW2 Top: (L) Bombing during the WW1, (R) “Whisper Dishes” Bottom: (L) WW2 Bombers, (R) Four-horn acoustic locator,1930s
  • 4. History – Radio Detection Radar was first patented and ■ demonstrated in 1904 by the German engineer Christian Hülsmeyer; Watson Watt ■ is generally credited with initiating what would later be called radar; In ■ June 17, 1935, a radio-based detection and ranging was first demonstrated in Great Britain; The ■ first Radar system used by the British comprised 21 stations placed along the country’s eastern coast. Left: (T) Christian Hülsmeyer, (B) Watson Watt, Right: Chain Home coverage map
  • 5. Today – Radar ■ Modern Radar are very diverse; – Military Radars; – Imaging Radars; – Radar Gun; – Automotive Radars; – Civil Aviation Radars; – Weather Radars; – Ground Penetrating Radars;
  • 6. Basic Principles ■ Radar is an acronym for RAdio Detection And Ranging; ■ An object detection system that transmits electromagnetic (EM) waves and analyses the echoes coming from the objects; ■ Why use radar? – Radar can operate in any weather conditions (e.g. darkness, fog, rain); – Radar can perform its function at long and short ranges; – Radar can provide measurements in high accuracy. Radar vs. optical image, penetration of clouding, ©Cassidian radar, ©Eurimage, optical.
  • 7. Radar Categorisation Operation: ■ Primary – : Target monitoring; Secondary: Transponder on the target (Fig.); – Illuminator: ■ Active – : Uses its transmitter to illuminate the target; Passive: Exploit illuminators of opportunity (Fig.); – Transmission rate: ■ Pulsed – : Emit separated pulses; Continuous Wave (CW): Constant transmission (Fig.); – Geometry: ■ Monostatic – : Transmitter and receiver in the same location (Fig. Left); Bistatic: Transmitter and receiver in separate locations (Fig. Right). – Interrogator Radar Illuminator R T Monostatic Bistatic Transponder
  • 8. Operating Principles ■ The simplest radar operation can be divided into 4 steps: 1. The radar is transmitting an EM pulse; 2. The radar switches to listening mode; 3. The pulse is reflected by a target; 4. The radar receives the echoes from the transmitted pulse. ■ Using various properties of the received echo, the radar can extract parameters such as the range and velocity of the target Transmitted pulse Reflected pulse Transmitter Receiver Duplexer
  • 9. Operating Principles ■ The simplest radar operation can be divided into 4 steps: 1. The radar is transmitting an EM pulse; 2. The radar switches to listening mode; 3. The pulse is reflected by a target; 4. The radar receives the echoes from the transmitted pulse. ■ Using various properties of the received echo, the radar can extract parameters such as the range and velocity of the target Transmitted pulse Reflected pulse Transmitter Receiver Duplexer
  • 10. Operating Principles ■ The simplest radar operation can be divided into 4 steps: 1. The radar is transmitting an EM pulse; 2. The radar switches to listening mode; 3. The pulse is reflected by a target; 4. The radar receives the echoes from the transmitted pulse. ■ Using various properties of the received echo, the radar can extract parameters such as the range and velocity of the target Transmitted pulse Reflected pulse Transmitter Receiver Duplexer
  • 11. Operating Principles ■ The simplest radar operation can be divided into 4 steps: 1. The radar is transmitting an EM pulse; 2. The radar switches to listening mode; 3. The pulse is reflected by a target; 4. The radar receives the echoes from the transmitted pulse. ■ Using various properties of the received echo, the radar can extract parameters such as the range and velocity of the target Transmitted pulse Reflected pulse Transmitter Receiver Duplexer
  • 12. Operating Principles The simplest radar operation can be divided into ■ 4 steps: The radar is transmitting an EM pulse; 1. The radar switches to listening mode; 2. The pulse is reflected by a target; 3. The radar receives the echoes from the transmitted pulse 4. . Using various properties of the received echo, the radar can extract parameters ■ such as the range and velocity of the target Transmitted pulse Reflected pulse Transmitter Receiver Duplexer
  • 13. Principles of Measurements Radar Equation ■ Distance Determination ■ Range Resolution ■ Direction Determination ■ Pulse Repetition Interval ■ Maximum Unambiguous Ranges ■ Data Matrix and Data Cube ■
  • 14. Radar Equation ■ The radar equation is referring to the power of the echo returning to the radar; 𝑃𝑟 = 𝑃𝑡𝐺2𝜆2𝜎 (4𝜋)3𝑅4𝐿 → 𝑅 = 4 𝑃𝑡𝐺2𝜆2𝜎 (4𝜋)3𝐿 𝑃𝑟 𝑃𝑡 : Transmit power; 𝐺 : Antenna gain; 𝜆 : Radar operating wavelength; 𝜎 : Target radar cross section (RCS); 𝑅 : Range from the radar to the target; 𝐿 : Other losses (system, propagation). ■ Low frequencies are preferable for long-range radar; ■ Low RCS targets are harder to detect. Top: Expected atmospheric path loss as a function of frequency; Bottom: Mazda 6 RCS, Image courtesy of Hasch et al. Frequency [GHz] Atmospheric loss [dB/Km] O2 O2 H2O H2O H2O
  • 15. Distance Determination ■ To determine the distance between the radar and a target, the delay of the echoed pulse id utilised; – Given that EM waves travel at 𝒄 = 3 × 108m/s – If the echo delay is 𝝉, the range of the target is: 𝑹 = 𝜏𝑐 2 Time Range Emmision of a pulse at 𝒕 = 𝟎; Pulse reaches the target at 𝒕 = 𝝉/𝟐; A part of the pulse is reflected to the radar; The echo from the target is received at 𝒕 = 𝝉.
  • 16. Range Resolution ■ The resolution of radar is its ability to distinguish between targets that are in very close proximity. ■ The range resolution 𝝆 of a radar is: 𝜌 ≥ 𝑐𝑇 2 ≈ 𝑐 2𝐵 𝑻: Duration of pulse 𝑩: Bandwidth of signal ■ Sorter pulses will have higher bandwidth, leading to better resolution. Range resolution issue between targets in close proximity with each other (T) Two resolved targets; (B) One resolved target. Red part denoted the overlap between the two echoes Range Time 𝐷 > 𝑐𝑇/2 Time Range 𝐷 < 𝑐𝑇/2
  • 17. Direction Determination ■ The target’s direction is determined by the directivity of the antenna, which represents the ability of the antenna to transmit the energy in a particular direction. ■ Both the target’s azimuth and elevation angles can be determined by measuring the direction in which the antenna is pointing when the echo signal is received. Azimuth Elevation Directional Radiation Left: Radiation pattern of a Helical Antenna Right: Illumination in different azimuth and elevation angles using a directional antenna.
  • 18. Direction Determination (cont.) ■ The antenna can be steered in the desired direction mechanically or electronically. Example of radar scanning between two azimuth sectors, Left: Top view; Right: Radar indicator;
  • 19. Direction Determination (cont.) ■ The antenna can be steered in the desired direction mechanically or electronically. Example of radar scanning between two azimuth sectors, Left: Top view; Right: Radar indicator;
  • 20. Direction Determination (cont.) The antenna can be steered in the desired direction ■ mechanically or electronically. Example of radar scanning between two azimuth sectors, Left: Top view; Right: Radar indicator;
  • 21. Pulse repetition Interval ■ Pulse Repetition Interval (PRI) is defined as the time interval between consequent pulses; ■ Pulse Repetition Frequency (PRF) is given as: PRF = 1/PRI ■ Duty cycle is defined as the time proportion of PRI in which the transmission takes place: Duty Cycle = 𝑇/PRI ■ If the same antenna is used for transition and reception, the duty cycle gives a measure of how long the radar is “blind”. Transmission Reception PRI Time
  • 22. Maximum Unambiguous Range ■ The maximum unambiguous range defines the maximum distance to locate a target. 𝑅max = 𝑐PRI 2 = 𝑐 2PRF ■ Radar is not able to discriminate between echoes from an older and the current transmission. P1 P1,T2 P2 P1,T1 Time PRI 𝜏2 = Τ 2𝑅2 𝑐 𝜏1 = Τ 2𝑅1 𝑐 Right: Transmitted (dark) and received pulses (light) at the radar in time, radar confuses the echo from fist pulse to second target (P1,T2) to an echo from second pulse (P2) and a target at a closer range (𝑅max − 𝑅2). T1 T2 𝑅1 𝑅max 𝑅2 Range 𝑅max − 𝑅2 Left: Radar and two real targets (dark), one in (T1) and one out (T2) of unambiguous range, second target (T2) appears in closer range (light).
  • 23. Maximum Unambiguous Range ■ The maximum unambiguous range defines the maximum distance to locate a target. 𝑅max = 𝑐PRI 2 = 𝑐 2PRF ■ Radar is not able to discriminate between echoes from an older and the current transmission. Right: Transmitted (dark) and received pulses (light) at the radar in time, radar confuses the echo from fist pulse to second target (P1,T2) to an echo from second pulse (P2) and a target at a closer range (𝑅max − 𝑅2). T1 T2 𝑅1 𝑅max 𝑅2 Range 𝑅max − 𝑅2 Left: Radar and two real targets (dark), one in (T1) and one out (T2) of unambiguous range, second target (T2) appears in closer range (light). P2,T1 P1 P1,T2 P2 P1,T1 Time PRI 𝜏1 = Τ 2𝑅1 𝑐 𝜏2 = Τ 2𝑅2 𝑐
  • 24. Data matrix Radar returns from each PRI are stored in memory for further processing; ■ Fast Time ■ refers to the different time slots composing a PRI, sampling rate dependent; Slow Time ■ updates every PRI; Fast Time Slow Time Example of two targets, one staying in the same resolution bin (orange) and one moving in different resolution bins (green); Top: Data matrix for 10 time resolution bins and 4 PRI; Bottom: Radar returns in time; Time PRI PRI Sampling Interval≈ Τ 1 𝐵
  • 25. Data matrix ■ Radar returns from each PRI are stored in memory for further processing; ■ Fast Time refers to the different time slots composing a PRI, sampling rate dependent; ■ Slow Time updates every PRI; Fast Time Slow Time Example of two targets, one staying in the same resolution bin (orange) and one moving in different resolution bins (green); Top: Data matrix for 10 time resolution bins and 4 PRI; Bottom: Radar returns in time; Time PRI PRI Sampling Interval≈ Τ 1 𝐵
  • 26. Data matrix ■ Radar returns from each PRI are stored in memory for further processing; ■ Fast Time refers to the different time slots composing a PRI, sampling rate dependent; ■ Slow Time updates every PRI; Fast Time Slow Time Example of two targets, one staying in the same resolution bin (orange) and one moving in different resolution bins (green); Top: Data matrix for 10 time resolution bins and 4 PRI; Bottom: Radar returns in time; Time PRI PRI Sampling Interval≈ Τ 1 𝐵
  • 27. Data matrix ■ Radar returns from each PRI are stored in memory for further processing; ■ Fast Time refers to the different time slots composing a PRI, sampling rate dependent; ■ Slow Time updates every PRI; Fast Time Slow Time Example of two targets, one staying in the same resolution bin (orange) and one moving in different resolution bins (green); Top: Data matrix for 10 time resolution bins and 4 PRI; Bottom: Radar returns in time; Time PRI PRI Sampling Interval≈ Τ 1 𝐵
  • 28. Data matrix ■ Radar returns from each PRI are stored in memory for further processing; ■ Fast Time refers to the different time slots composing a PRI, sampling rate dependent; ■ Slow Time updates every PRI; Fast Time Slow Time Example of two targets, one staying in the same resolution bin (orange) and one moving in different resolution bins (green); Top: Data matrix for 10 time resolution bins and 4 PRI; Bottom: Radar returns in time; Time PRI PRI Sampling Interval≈ Τ 1 𝐵
  • 29. Data Cube ■ Data Cube is an extension to Data Matrix including spatial sampling; ■ In cases that the radar uses multiple receiving channels, the data matrices from each receiver are stacked to form a data cube; Illustration of a data cube for 𝐿 time samples in each PRI and 𝑀 PRI in a system composed of 𝑁 receiver channels. Slow Time Receiver Channel 0 𝑀 − 1 𝑁 − 1
  • 30. Coherent and Doppler processing. Spectrum of Continuous Wave Signal; ■ Spectrum of Pulsed Signal; ■ Range ■ -Doppler Maps;
  • 31. Spectrum of Continuous Wave Signal ■ Consider a continuous wave (CW) radar with operating frequency 𝑓0; ■ In the presence of a target moving with radial velocity 𝑢𝑟, due to the Doppler phenomenon, the echoed signal will be shifted in frequency by: 𝑓𝐷 = 𝑢𝑟 𝑐 𝑓0 ■ Positive Doppler shifts (𝑓𝐷 > 0) indicate that the target is moving towards the radar, while negative (𝑓𝐷 < 0) away from it; 𝑓0 −𝑓𝑠/2 𝑓𝑠/2 Stationary radar and moving target scenario: (T) geometry of the radar target system, (B) frequency observed by the radar
  • 32. Spectrum of Continuous Wave Signal Consider a continuous wave (CW) radar with ■ operating frequency 𝑓0; In the presence of a target moving with ■ radial velocity 𝑢𝑟, due to the Doppler phenomenon, the echoed signal will be shifted in frequency by: 𝑓𝐷 = 𝑢𝑟 𝑐 𝑓0 Positive ■ Doppler shifts (𝑓𝐷 > 0) indicate that the target is moving towards the radar, while negative (𝑓𝐷 < 0) away from it; 𝑓0 −𝑓𝑠/2 𝑓𝑠/2 Stationary radar and moving target scenario: (T) geometry of the radar target system, (B) frequency observed by the radar
  • 33. Spectrum of Continuous Wave Signal ■ Consider a continuous wave (CW) radar with operating frequency 𝑓0; ■ In the presence of a target moving with radial velocity 𝑢𝑟, due to the Doppler phenomenon, the echoed signal will be shifted in frequency by: 𝑓𝐷 = 𝑢𝑟 𝑐 𝑓0 ■ Positive Doppler shifts (𝑓𝐷 > 0) indicate that the target is moving towards the radar, while negative (𝑓𝐷 < 0) away from it; 𝑓0 −𝑓𝑠/2 𝑓𝑠/2 Stationary radar and moving target scenario: (T) geometry of the radar target system, (B) frequency observed by the radar
  • 34. Spectrum of Continuous Wave Signal ■ Consider a continuous wave (CW) radar with operating frequency 𝑓0; ■ In the presence of a target moving with radial velocity 𝑢𝑟, due to the Doppler phenomenon, the echoed signal will be shifted in frequency by: 𝑓𝐷 = 𝑢𝑟 𝑐 𝑓0 ■ Positive Doppler shifts (𝑓𝐷 > 0) indicate that the target is moving towards the radar, while negative (𝑓𝐷 < 0) away from it; 𝑓0 −𝑓𝑠/2 𝑓𝑠/2 Stationary radar and moving target scenario: (T) geometry of the radar target system, (B) frequency observed by the radar
  • 35. Spectrum of Pulsed Signal ■ In most radar systems, the bandwidth of a single pulse may be a few orders of magnitude greater than the expected Doppler frequency shift: 1 𝑇 ≫ 𝑓𝐷 ■ Echoes from moving targets cannot be discriminated from stationary clatter in spectrum; ■ Using consequent pulsed over a coherent pulse interval (CPI), the single pulse bandwidth is divided into spectral line of approximate bandwidth 1/CPI. 1/𝑇 2/𝑇 −1/𝑇 −2/𝑇 PRF 𝑓 𝑇 2𝑇 0 −𝑇 −2𝑇 CPI 𝑡 𝑡 𝑇/2 −𝑇/2 1/𝑇 −1/𝑇 𝑓 FT FT
  • 36. Spectrum of Pulsed Signal ■ In most radar systems, the bandwidth of a single pulse may be a few orders of magnitude greater than the expected Doppler frequency shift: 1 𝑇 ≫ 𝑓𝐷 ■ Echoes from moving targets cannot be discriminated from stationary clatter in spectrum; ■ Using consequent pulsed over a coherent pulse interval (CPI), the single pulse bandwidth is divided into spectral line of approximate bandwidth 1/CPI. 1/𝑇 2/𝑇 −1/𝑇 −2/𝑇 PRF 𝑓 𝑇 2𝑇 0 −𝑇 −2𝑇 CPI 𝑡 𝑡 𝑇/2 −𝑇/2 1/𝑇 −1/𝑇 𝑓 FT FT
  • 37. Spectrum of Pulsed Signal In most radar systems, the bandwidth of a ■ single pulse may be a few orders of magnitude greater than the expected Doppler frequency shift: 1 𝑇 ≫ 𝑓𝐷 Echoes from moving targets ■ cannot be discriminated from stationary clatter in spectrum; Using consequent pulsed over a coherent ■ pulse interval (CPI), the single pulse bandwidth is divided into spectral line of approximate bandwidth 1/CPI. 1/𝑇 2/𝑇 −1/𝑇 −2/𝑇 PRF 𝑓 𝑇 2𝑇 0 −𝑇 −2𝑇 CPI 𝑡 𝑡 𝑇/2 −𝑇/2 1/𝑇 −1/𝑇 𝑓 FT FT
  • 38. Range-Doppler Maps In a moving target the ■ phase information appears in each received pulse. Different returns can be ■ separated in the Doppler domain. Range ■ -Doppler map is contracting by converting Fast time to Range and Slow time to Doppler by applying Fourier Transform. Fast Time Slow Time Range Doppler FFT FFT FFT Scenario of 3 targets: two in the same range bin and different velocity (green and orange) and one in different range (blue), (L) In Data matrix two targets can be separated, (R) In Range-Doppler map all 3 targets can be separated. CPI
  • 39. Waveforms Design and Pulse Compression ■ Noise and Interference ■ Matched Filter ■ Pulse compression ■ Linear Frequency Modulation ■ Ambiguity Function
  • 40. Noise and Interference Noise is a random, unwanted signal characterised by statistical properties; ■ Sources of interference can be ■ internal (equipment imperfections) or external (other RF transmissions), passive (clutter) or active (jammers); The power ratio between the ■ useful and unwanted signal is defined as signal-to interfered-plus-noise ratio (SINR): SINR = 𝑃Signal 𝑃Interfernce + 𝑃Noise → SNR = 𝑃Signal 𝑃Noise Example of a high SNR target (1) and a false detection (2), the radar is not able to discriminate between interference and low SNR targets [Principles of Modern Radar - Mark A Richards]. Sample Number Amplitude (dB) Threshold 1 2
  • 41. Matched Filter The knowledge of the transmitted signal is utilised to ■ design a linear filter that maximises the SNR; In the presence of additive Gaussian noise, the optimum ■ filter is a time reversed version of the transmitted signal (“matched”); ℎ 𝑡 = 𝑥∗ (𝜏max − 𝑡) ℎ(𝑡) : Matched filter of 𝑥(𝑡); {∙}∗ : Complex conjugate; 𝜏max : Time instant in which the SNR is maximised; For noise given by ■ 𝒞𝒩 0, 𝜎2 , the maximum SNR is: SNRmax = 𝐸 𝜎2 𝐸: Energy of the pulse. The output of the matched filter is the auto ■ -correlation of the pulse. Range Amplitude Range Amplitude Range profile with a target at the red line (T) before and (B) after matched filter.
  • 42. Pulse Compression Sort pulses provide good resolution but ■ not enough energy for long distances; The resolution is ( ■ almost) proportional to the bandwidth; Using pulse compression ■ long waveforms (high energy) can achieve the resolution of a short pulse by increasing their bandwidth through internal modulation; A side effect of pulse compression is the rise of ■ undesired sidelobes; 0 Time Delay Sidelobes Peak Sidelobe Mainlobe Mainlobe Width Mainlobe Width 0 Time Delay Matched filter output of (T) an unmodulated square pulse and (B) a linear frequency modulated pulse.
  • 43. Linear Frequency Modulation ■ Pulse compression can be achieved using frequency modulation (FM); ■ Linear FM (LFM) is a very popular choice; ■ LFM achieve high resolution while keeping the H/W implementation relative simple; 𝑥 𝑡 = 𝑒𝑗𝜋 Τ 𝐵 𝑇 𝑡2 , − 0 ≤ 𝑡 ≤ 𝑇 𝑓 = 𝐵 2𝑇 𝑡 : Instantaneous frequency; ■ LFM suffer from high sidelobe levels (SLL); ■ Using non-linear FM (NLFM) the SLL can be reduced but are more complex to generate. B . Time Frequency 𝑇 𝐵 Top: Real part of (L) an unmodulated pulse and (R) a LFM pulse; Bottom: Time-Frequency profile of a LFM pulse. LFM
  • 44. Ambiguity Function – Definition ■ The ambiguity function (AF) is a 2-D function describing the response of a matched filter when the signal is received with a delay 𝝉 and a Doppler shift 𝒇𝑫 relative to the expected: 𝐴 𝜏, 𝑓𝐷 = 𝑥 𝑡 𝑥∗ 𝑡 + 𝜏 𝑒𝑗2𝜋𝑓𝐷𝑡 ■ The zero-Doppler cut of the AF is given by the autocorrelation of the pulse: 𝐴 𝜏, 0 = 𝑥 𝑡 𝑥∗ 𝑡 + 𝜏 ■ The zero-Delay cut of the AF is given by the Fourier Transform (FT) of the squared modulus of the pulse: 𝐴 0, 𝑓𝐷 = 𝑥 𝑡 2𝑒𝑗2𝜋𝑓𝐷𝑡
  • 45. Ambiguity Function – Definition ■ The ambiguity function (AF) is a 2-D function describing the response of a matched filter when the signal is received with a delay 𝝉 and a Doppler shift 𝒇𝑫 relative to the expected: 𝐴 𝜏, 𝑓𝐷 = 𝑥 𝑡 𝑥∗ 𝑡 + 𝜏 𝑒𝑗2𝜋𝑓𝐷𝑡 ■ The zero-Doppler cut of the AF is given by the autocorrelation of the pulse: 𝐴 𝜏, 0 = 𝑥 𝑡 𝑥∗ 𝑡 + 𝜏 ■ The zero-Delay cut of the AF is given by the Fourier Transform (FT) of the squared modulus of the pulse: 𝐴 0, 𝑓𝐷 = 𝑥 𝑡 2𝑒𝑗2𝜋𝑓𝐷𝑡
  • 46. Ambiguity Function – Examples Illustration of the AF for (L) an unmodulated pulse, (R) a LFM. Time Doppler shift
  • 47. Ambiguity Function – Examples Illustration of the AF for (L) an unmodulated pulse, (R) a LFM. Time Doppler shift Resolution
  • 48. Ambiguity Function – Examples Illustration of the AF for (L) an unmodulated pulse, (R) a LFM. Time Doppler shift Side Lobe Levels
  • 49. Ambiguity Function – Examples Illustration of the AF for (L) an unmodulated pulse, (R) a LFM. Time Doppler shift Time-Frequency Response
  • 50. Closing Remarks Basic radar principles were discussed; ■ Introduction on radar acquisitions and signal ■ processing; Introduction on pulse compression and waveform ■ design tools;
  • 51. Reading Material ■ Principles Of Modern Radar: Basic Principles – Mark A Richards; ■ Radar Signals – Nadav Levanon; ■ Radar System Analysis and Design Using MATLAB – Bassem R. Mahafza.