This document provides a syllabus for an introduction to artificial intelligence course. It outlines 14 topics that will be covered in the class, including what AI is, the mathematics behind it like probability and linear algebra, search techniques, constraint satisfaction problems, probabilistic reasoning, Bayesian networks, graphical models, neural networks, machine learning, planning, knowledge representation, reinforcement learning, logic in AI, and genetic algorithms. It also lists the course requirements, which include exams, homework, and a group project to simulate predators and prey.