SlideShare a Scribd company logo
Introduction to Data
Visualization
Overview, Benefits, Types, and Tools
Introduction
• Data visualization is the representation of information and data using charts, graphs, maps, and other
visual tools.
• Helps to understand patterns, trends, or outliers in a dataset.
• Presents data in an accessible manner for audiences without technical knowledge.
• Example: Health agency providing a map of vaccinated regions.
Meaning
• Process of representing data visually using graphs, charts, or maps.
• Communicates complex information intuitively.
• Helps identify trends, patterns, and outliers in large datasets.
• Delivers visual reporting on performance, operations, or statistics.
Steps for Data Visualization
• Be clear on the question.
• Know your data and start with basic visualizations.
• Identify messages of the visualization.
• Choose the right chart type.
• Use color, size, scale, shapes, and labels to direct attention.
Benefits of Data Visualization
• Storytelling: Colors and patterns bring stories within data to life.
• Accessibility: Easy-to-understand for various audiences.
• Visualize relationships: Easier to spot patterns in data.
• Exploration: Encourages exploration and actionable decisions.
Characteristics of Effective
Graphical Visuals
• Shows data clearly in an understandable manner.
• Encourages comparison between data pieces.
• Integrates statistical and verbal descriptions.
• Grabs interest and focuses the mind.
• Identifies areas needing attention and improvement.
• Tells a story efficiently, quicker than text.
Tools for Visualizing Data
• Tableau
• Google Charts
• Dundas BI
• Power BI
• Jupyter
• Infogram
• Chart Blocks
• D3.js
• Fusion Charts
• Grafana
Types of Data Visualization
• Bar charts
• Line charts
• Scatter plots
• Pie charts
• Heat maps
• Table
• Chart or graph
• Gantt chart
• Geospatial visualization
• Dashboard
Detailed Visualizations
• Line Graph: Shows trends, projections, and growth over time.
• Bar Graph: Compares values across categories.
• Pie Chart: Shows numerical proportions.
• Table: Lists metrics by importance.
• Funnel: Tracks customer stages.
• Number Visualization: Highlights one key metric.
• Pipeline: Tracks leads and KPIs.
• Progress Bar: Shows progress towards a goal.
• Gauge: Shows progress and maximum value.
• Compare Visualization: Compares two metrics.
Categories of Data Visualization
• Numerical Data (Quantitative)
• - Continuous Data: Measurable values (e.g., height).
• - Discrete Data: Countable values (e.g., number of cars).
• Categorical Data (Qualitative)
• - Binary Data: Yes/No classification.
• - Nominal Data: Categories without order.
• - Ordinal Data: Categories with order.
Summary
• Data visualization turns data into understandable visuals.
• Improves decision-making and engagement.
• Various tools and techniques suit different needs.
• Choosing the right visualization type is key.

More Related Content

PPTX
Unit III.pptx
PPTX
Introduction to Data science and understanding the basics
PPTX
Data Visualization & Analytics.pptx
PPTX
Data Visualization.pptx
PPTX
Data visualization is the representation of data through use of common graphi...
PPTX
data_visualization_ppt (1).pptx.........
PPTX
Making abstract data visible
PPTX
ODS Data_Visualization_Presentation.pptx
Unit III.pptx
Introduction to Data science and understanding the basics
Data Visualization & Analytics.pptx
Data Visualization.pptx
Data visualization is the representation of data through use of common graphi...
data_visualization_ppt (1).pptx.........
Making abstract data visible
ODS Data_Visualization_Presentation.pptx

Similar to Introduction_to_Data_Visualization for financial analytics (20)

PPTX
Data Visualization1.pptx
PDF
Data Visualization in Data Science
PPTX
Data Visualization
PDF
Data visualization in a Nutshell
PPTX
1 Fundamentals_of_Data_Visualization.pptx
PPTX
Data visualization.pptx
PPTX
Data Visulalization
PDF
GIS Geographical Information System Basics.pdf
PPTX
Data-Visualization an Introduction of statistics
PPTX
Data Visualization
PPTX
Data Visualization Power Point Presentations
PPTX
Data visualization in Data Science.pptx
PPTX
Chapter IV -Presentation of Data.pptx
PPTX
Visualization Idioms with D3.js
PPTX
2 Advanced_Data_Visualization_Techniques.pptx
PPTX
Now you see it
PDF
Visualization topic of big data analytics
PPTX
Data visualisation
PPTX
Big data visualization
PPTX
TABLEAU TRENDS IN BIG DATA LIBRAARIES.pptx
Data Visualization1.pptx
Data Visualization in Data Science
Data Visualization
Data visualization in a Nutshell
1 Fundamentals_of_Data_Visualization.pptx
Data visualization.pptx
Data Visulalization
GIS Geographical Information System Basics.pdf
Data-Visualization an Introduction of statistics
Data Visualization
Data Visualization Power Point Presentations
Data visualization in Data Science.pptx
Chapter IV -Presentation of Data.pptx
Visualization Idioms with D3.js
2 Advanced_Data_Visualization_Techniques.pptx
Now you see it
Visualization topic of big data analytics
Data visualisation
Big data visualization
TABLEAU TRENDS IN BIG DATA LIBRAARIES.pptx
Ad

Recently uploaded (20)

PPTX
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
PPTX
IBA_Chapter_11_Slides_Final_Accessible.pptx
PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
PPTX
Pilar Kemerdekaan dan Identi Bangsa.pptx
PDF
Optimise Shopper Experiences with a Strong Data Estate.pdf
PDF
annual-report-2024-2025 original latest.
PPTX
Acceptance and paychological effects of mandatory extra coach I classes.pptx
PDF
Data Engineering Interview Questions & Answers Batch Processing (Spark, Hadoo...
PPTX
Introduction to Inferential Statistics.pptx
PPTX
QUANTUM_COMPUTING_AND_ITS_POTENTIAL_APPLICATIONS[2].pptx
PPTX
Leprosy and NLEP programme community medicine
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
PPTX
sac 451hinhgsgshssjsjsjheegdggeegegdggddgeg.pptx
PPTX
STERILIZATION AND DISINFECTION-1.ppthhhbx
PPTX
A Complete Guide to Streamlining Business Processes
PPTX
modul_python (1).pptx for professional and student
PPTX
CYBER SECURITY the Next Warefare Tactics
PDF
Jean-Georges Perrin - Spark in Action, Second Edition (2020, Manning Publicat...
PPTX
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
PPTX
IMPACT OF LANDSLIDE.....................
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
IBA_Chapter_11_Slides_Final_Accessible.pptx
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
Pilar Kemerdekaan dan Identi Bangsa.pptx
Optimise Shopper Experiences with a Strong Data Estate.pdf
annual-report-2024-2025 original latest.
Acceptance and paychological effects of mandatory extra coach I classes.pptx
Data Engineering Interview Questions & Answers Batch Processing (Spark, Hadoo...
Introduction to Inferential Statistics.pptx
QUANTUM_COMPUTING_AND_ITS_POTENTIAL_APPLICATIONS[2].pptx
Leprosy and NLEP programme community medicine
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
sac 451hinhgsgshssjsjsjheegdggeegegdggddgeg.pptx
STERILIZATION AND DISINFECTION-1.ppthhhbx
A Complete Guide to Streamlining Business Processes
modul_python (1).pptx for professional and student
CYBER SECURITY the Next Warefare Tactics
Jean-Georges Perrin - Spark in Action, Second Edition (2020, Manning Publicat...
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
IMPACT OF LANDSLIDE.....................
Ad

Introduction_to_Data_Visualization for financial analytics

  • 1. Introduction to Data Visualization Overview, Benefits, Types, and Tools
  • 2. Introduction • Data visualization is the representation of information and data using charts, graphs, maps, and other visual tools. • Helps to understand patterns, trends, or outliers in a dataset. • Presents data in an accessible manner for audiences without technical knowledge. • Example: Health agency providing a map of vaccinated regions.
  • 3. Meaning • Process of representing data visually using graphs, charts, or maps. • Communicates complex information intuitively. • Helps identify trends, patterns, and outliers in large datasets. • Delivers visual reporting on performance, operations, or statistics.
  • 4. Steps for Data Visualization • Be clear on the question. • Know your data and start with basic visualizations. • Identify messages of the visualization. • Choose the right chart type. • Use color, size, scale, shapes, and labels to direct attention.
  • 5. Benefits of Data Visualization • Storytelling: Colors and patterns bring stories within data to life. • Accessibility: Easy-to-understand for various audiences. • Visualize relationships: Easier to spot patterns in data. • Exploration: Encourages exploration and actionable decisions.
  • 6. Characteristics of Effective Graphical Visuals • Shows data clearly in an understandable manner. • Encourages comparison between data pieces. • Integrates statistical and verbal descriptions. • Grabs interest and focuses the mind. • Identifies areas needing attention and improvement. • Tells a story efficiently, quicker than text.
  • 7. Tools for Visualizing Data • Tableau • Google Charts • Dundas BI • Power BI • Jupyter • Infogram • Chart Blocks • D3.js • Fusion Charts • Grafana
  • 8. Types of Data Visualization • Bar charts • Line charts • Scatter plots • Pie charts • Heat maps • Table • Chart or graph • Gantt chart • Geospatial visualization • Dashboard
  • 9. Detailed Visualizations • Line Graph: Shows trends, projections, and growth over time. • Bar Graph: Compares values across categories. • Pie Chart: Shows numerical proportions. • Table: Lists metrics by importance. • Funnel: Tracks customer stages. • Number Visualization: Highlights one key metric. • Pipeline: Tracks leads and KPIs. • Progress Bar: Shows progress towards a goal. • Gauge: Shows progress and maximum value. • Compare Visualization: Compares two metrics.
  • 10. Categories of Data Visualization • Numerical Data (Quantitative) • - Continuous Data: Measurable values (e.g., height). • - Discrete Data: Countable values (e.g., number of cars). • Categorical Data (Qualitative) • - Binary Data: Yes/No classification. • - Nominal Data: Categories without order. • - Ordinal Data: Categories with order.
  • 11. Summary • Data visualization turns data into understandable visuals. • Improves decision-making and engagement. • Various tools and techniques suit different needs. • Choosing the right visualization type is key.