This document describes a system for facial emotion detection using convolutional neural networks. The system uses Haar cascade classifiers to detect faces in images and then applies a convolutional neural network to recognize seven basic emotions (happiness, sadness, anger, fear, disgust, surprise, contempt) from facial expressions. The convolutional neural network architecture includes convolutional layers to extract features, ReLU layers for non-linearity, pooling layers for dimensionality reduction, and fully connected layers for emotion classification. The system is described as having potential applications in security systems, driver monitoring systems, and other real-time emotion detection use cases.