This document discusses using Cobweb clustering and Gradient Boosting techniques to detect spam on Twitter. Cobweb clustering creates a classification tree to predict attributes of new objects by summarizing the attribute distributions of existing nodes. Gradient Boosting is an ensemble method that uses multiple weak learners (decision trees) to create a stronger predictive model. The paper aims to combine these techniques to create an enhanced spam detection system. It also reviews several existing approaches for Twitter spam detection using techniques like Hidden Markov Models, Random Forests, and asynchronous link-based algorithms.