AIM
Academy
Part 1:
Context
 Electronic-Photonic Integration
 Confinement
Part 2:
Passive
Devices
 Waveguides
 Off-Chip Couplers
 Wavelength Division Multiplexing
Part 3:
Active
Devices
 Photodetectors
 Modulators
 Light Sources and Lasers
 Integrating Photonics
AIM
Academy
Active Photonics:
Photodetectors
 Broadband, highly efficiency IR detector
 Bandwidth considerations
 Adaption to size of optical mode
 Low voltage operation
 Si processing, integrated into CMOS process flow
 Integration with ICs
G. Dehlinger et al., IEEE Phot. Tech. Lett.,v.16(11), (2004).
Active Photonics: Photodetectors
AIM
Academy
Photodetector Basics - Absorption
1.55 1.242.07 0.62
λ (μm)
Physics of Semiconductor Devices, by S.M. Sze and K.K. Ng (Wiley-Interscience, 3rd
edition, 2006)
Photodetector Basics - Absorption
AIM
Academy
Ge Epitaxy on Si
Si
Ge Ge epitaxial growth
on Si at 550C
Si
Ge
Ge Epitaxy on Si
AIM
Academy
H.C. Luan, D.R. Lim, K.K. Lee, K.M. Chen, J.G. Sandland, K. Wada and L.C.
Kimerling,
APL, v.75(19), pp.2909-2911 (1999).
L. Colace, G. Masini, G. Assanto, H.C. Luan, K. Wada and L.C. Kimerling,
APL, v.76(10), pp.1231-1233 (2000).
J. Liu, J. Michel, W. Giziewicz, D. Pan, K. Wada, D. D. Cannon, S.
Jongthammanurak, D. T. Danielson, L. C. Kimerling, J. Chen, F. O. Ilday, F. X.
Kartner, and J. Yasaitis, Appl. Phys. Lett. 87, 103501 (2005).
Ge-on-Si Photodetector
 2-step UHV-CVD + cyclic thermal annealing
 780-900C anneal
 10 TDD: 2.3107
cm-2
 2.3106
cm-2
 increases hole mobility
Ge-on-Si Photodetector
AIM
Academy
Waveguide-integrated
Photodetector
Waveguide - Photodetector Integration
Performance Gain
10
2
10
3
10
4
0
10
20
30
40
50
60
70
80
(Bandwidth)x(Quantumefficiency)(GHz)
Detector Size (mm2
)
d=0.5μm
5mm20mm
Q.E: 90%
Discrete, free-space
Photodetectors
RC time limitTransit time
limit
RC time limit
d=2.0μm
J. Michel, J. F. Liu, L.C. Kimerling, , Nat. Photonics 4, 527 (2010)
Waveguide - Photodetector Integration
AIM
Academy
7
Ge-directly-on-Si Photodetector
Waveguide Integration
IMEC EPIXFAB Platform IME Singapore Platform
A. Novak, Optics Express 21, 28387 (2013)
AIM
Academy
Monolithic germanium/silicon avalanche photodiodes
Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid,
A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers,
A. Beling, D. C. McIntosh, X. Zheng, J. C. Campbell, Nat. Photonics 3, 59 (2009)
Measured 3-dB bandwidth versus gain of 30-mm-diameter germanium/silicon APDs at a
wavelength of 1,300 nm. The coloured symbols are measured bandwidths from four
devices. The blue line is the calculated bandwidth assuming carrier transit time and RC
time constant are the limiting factors for the device bandwidth. The black line is a
calculated result considering the avalanche build-up effect13 with keff ¼ 0.08. The
corresponding gain–bandwidth product is 340 GHz, which fits the measured values. BW,
bandwidth.
AIM
Academy
Active Photonics:
Modulators
 Compact, integrated, Si-compatible
 Low power consumption
J. Liu, S. Jongthammanurak, D. Pan, J. Michel and L.C. Kimerling
Silicon Microphotonics
Sandia Si ring
Active Photonics: Modulators
AIM
Academy
Modulator Principles
 Physical Principles
 Thermo-optical Effect
Change the refractive index of Si by heating.
 Plasma Dispersion Effect
Change the refractive index of Si by carrier injection in a diode structure or carrier accumulation in a MOS structure.
 Electric Field Effect
- Franz-Keldysh Effect in Bulk GeSi
Change the absorption or refractive index of GeSi by electric field.
- Quantum Confined Stark Effect in Ge/GeSi Quantum Wells
Change the absorption or refractive index of Ge Q-wells by electric field.
 Basic Device Structures
 Mach-Zehnder Interferometers
Interferes two beams of light with different phases. Phase shift achieved by changing the refractive
index.
 Ring Modulators
Change the resonance frequency of a ring by varying its refractive index, thereby controlling the coupling
of light from an adjacent waveguide.
 Electro-absorption Modulators
Light passes through an active material whose absorption can be changed by varying the applied electric field
 Plasmonic Modulators
Modulator Principles
AIM
Academy
Mach Zehnder Modulator
 Phase delay in lower arm
causes interference
 Large device size due to
small effect
 Length 0.5-3mm
Mach Zehnder Modulator
AIM
Academy
MOS-Enhanced Mach Zehnder Modulator
 FET design: rapid injection and extraction of
free carriers
 Phase delay due to n from plasma
dispersion
 Large device size due to small effect: MZ-arm
length 1-3mm
 > 15 dB Mod. Depth @ 3 V
 Up to 30Gbps
A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N.
Izhaky, and M. Paniccia, Optics Express 16, 660 (2007)
MOS-Enhanced Mach Zehnder Modulator
AIM
Academy
Microring Modulators
1.5 Gbit/s using RZ pattern
 Power consumption of >50fJ/bit
 Less than 0.3V and µA current needed for
complete modulation in DC
 In AC, 3.3Vpp and 1mA current were used
 Expected theoretical bandwidth limit
>10Gb/s
Diameter = 12μm
Width = 450nm
Gap = 200nm
M. Lipson, “Switching light on a silicon chip,” Opt. Mat., v.27, pp.731-739 (2005).
Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, “Micrometre-scale silicon electro-
optic modulator,” Nature, v.435, pp.325-327 (2005).
P. Dong et al., “Low Vpp, ultralow-energy, compact, high-speed silicon electro-
optic modulator”, Optics Express, Vol 17 No 25 (2009)
Microring Modulators
AIM
Academy
Low Power Si Ring Modulators
W.A. Zortman, M. R. Watts, D. C. Trotter, R. W. Young and A. L. Lentine, “Low-Power High-Speed Silicon Microdisk Modulators,“ OSA / CLEO/QELS 2010 CThJ4
Low Power Si Ring Modulators
AIM
Academy
Plasmonic Modulators
 Plasmonic mode concentrates optical field within
nm thin film
 Optical absorption of thin film can be tuned by
carrier injection
 Length of 3l
 Power consumption of <50fJ/bit expected
 Expected theoretical bandwidth limit >300Gb/s
V.J. Sorger, N.D. Lanzillotti-Kimura,R.-M. Ma, X. Zhang” Ultra-compact silicon nanophotonic modulator with
broadband response.” Nanophotonics 1, 17-22 (2012).
Plasmonic Modulators
AIM
Academy
Electro Absorption Modulator
Quantum Confined Stark Effect
 Weak EO effect in Si
 mm-scale MZ modulator, Q ring resonator
 Stark Effect: l100-400 mm, V1 V, Q=0
 Observe QCSE: Ge/SiGe type I confinement and strong direct
gap absorption
 comparable to III-Vs (t<ps, mod. rate >50GHz)
 Exciton peak 80 meV above Ge Ec

- 36 meV strain shift
- 56 meV quantum confinement
 Clear shift of exciton peak with 5 V: /6 @ l=1.46 mm
Y.-H. Kuo, Y.K. Lee, Y. Ge, S. Ren, J.E. Roth, T.I. Kamins, D.A.B. Miller and J.S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,"
Nature, v.437, pp.1334-1336 (2005).
Electro Absorption Modulator
AIM
Academy
Electro Absorption Modulator
Franz-Keldysh Effect in GeSi
 Linear electro-optic effect
 n(E), (E)
 Ge-on-Si: comparable to InP
 Strong F-K effect
 strain reduces separation between Eg

and Eg
L
 F-K regime in low absorption background
 Expected mod. depth: 10dB @ >30GHz
 Experimental mod. depth: 10dB
 Experimental bandwidth: 1.2 GHz
 Ultra low power consumption: 25 pJ/bit
J.F. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, ”Waveguide-
integrated, ultra-low energy GeSi electro-absorption modulators,” Nature Photonics 2, 433 (June 2008)
Electro Absorption Modulator
AIM
Academy
 Si ridge waveguide – low loss
 strain reduces separation
between Eg

and Eg
L
 F-K regime in low
absorption background
 Mod. depth: 4-7.5dB @ >30GHz
 Max. experimental mod.
depth: 7.5dB
 Low power consumption: 100
fJ/bit
N.-N. Feng et al., ” 30GHz Ge electro-absorption modulator integrated with 3μm silicon-on-insulator
waveguide,” Optics Express 72, 7062 (April 2011)
Electro Absorption Modulator
Franz-Keldysh Effect in GeSi
Electro Absorption Modulator
AIM
Academy
Modulator Comparison
Modulator
Type
Footprint Power
Consumption
Wavelengths
Range
Applications
Si Mach
Zehnder
> 500 mm2
> 10pJ/bit large, tunable Active Optical
Cable, Telecom
Si Ring
modulator
< 10 mm2 > 5fJ/bit (w/o
heating)
single
wavelength
Telecom, On-
chip Integration
Ge EA
modulator
< 10 mm2 25fJ/bit ~ 15nm range On-chip
Integration
Plasmonic
modulator
2.5 mm2 < 50fJ/bit large, ~ 1mm On-chip
Integration
Modulator Comparison
AIM
Academy
Active Photonics:
Light Sources and Lasers
 IR light source: SOI waveguides
 Laser: DWDM, sub-mm structures interferometric structures
 III-V monolithic integration
 Si hybrid laser
 Ge laser
 Frequency comb based light sources
K. Vahala et al., APL, v.84(7), (2004).
J. Bowers et al., IEEE Phot. Tech. Lett., v.18(10), (2006).
20
Active Photonics:
Light Sources and Lasers
AIM
Academy
Monolithic Integration of III-V laser on SiGe/Si
 Long RT CW-lifetime GaAs laser: 4 hrs
 pre-growth CMP of SiGe graded layer
 TDD=2x106
cm-2
 λ=858 nm, d=0.4, Jth=269 A/cm2
 InGaAs laser
 λ=890 nm, d=0.26, Jth=700 A/cm2
M.E. Groenert, E.A. Fitzgerald et al., “Monolithic integration of room-temperature cw GaAs/AlGaAs
lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys., v.93(1), pp.362-367
(2003).
M.E. Groenert, E.A. Fitzgerald et al., “Improved room-temperature
continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs lasers fabricated on Si substrates
via relaxed graded GexSi1-x buffer layers,” J. Vac. Sci. Tech. B, v.21(3), pp.1064-1069 (2003).
misfit
dislocation
Monolithic Integration
AIM
Academy
 Si waveguide bonded to AlGaInAs QWs
 SOI ridge waveguide, SiO2/Ta2O5 facet mirror
 Overlap: Si=0.6-9, QWs=0.01-0.06
 Hybrid integration: zero alignment tolerance
 Bonding: low T oxygen plasma-assisted wafer bonding
 T=250 °C tolerate Thermal Expansion Mismatch
 <5 nm reactive oxide layer
 Endures dicing, facet polishing
CW lasing (l=1568 nm)
 Optical Pumping
 Pth=23 mW, Pmax=4.5 mW
 Electrical Injection
 Ithres=65 mA, Pmax=1.8 mW, eff=0.13
H. Park, J.E. Bowers et al, Opt. Exp., v.13(23),pp.9460-9464 (2005).
A.W. Fang, J.E. Bowers et all., IEEE Phot. Tech. Lett., v. 18(10), pp.1143-1145 (2006).
A.W. Fang, J.E. Bowers et al., Opt. Exp., v.14(20), pp.9203-9210 (2006).
A.W. Fang, J.E. Bowers et al., Matls. Today, v.10(7-8), pp.28-35 (2007).
Hybrid Integration of III-V laser on SiGe/Si
Hybrid Integration
AIM
Academy
Germanium Laser
 Ge-on-Si for Si integration
 High n-doping required
 Demonstrated lasing from 1520 to 1700 nm
with electrical pumping
 Demonstrated 8mW laser peak power at
1620nm
J.F. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, J. Michel, “A Ge-on-Si laser
operating at room temperature” Optics Lett. 35 (2010)
R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L.C. Kimerling, and
J. Michel, “An electrically pumped Germanium laser”, Opt. Exp. 20, 11316 (2012)
L-I curve at 300K
Germanium Laser
AIM
Academy
QW and QD Lasers on Silicon
 GaAs directly grown on Si
 InGaAs QW with n and p
contact
 Current emission wavelength
between 800nm and 1100nm
 Electroluminescence
demonstrated
 Optically pumped lasing
reported
L. C. Chuang et al., “InGaAs QW Nanopillar Light Emitting Diodes
Monolithically Grown on a Si Substrate,“ OSA/CLEO/QELS 2010 CMFF6
InGaAs Nanopillar QW Laser InAs QD Laser
Alan Y. Liu et al., “High performance continuous wave 1.3 mm quantum
dot lasers on silicon“ APPLIED PHYSICS LETTERS 104, 041104 (2014)
QW and QD Lasers on Silicon
AIM
Academy
Frequency Comb Generation
T. Herr, et al., NP, 145, 2014 & K. Saha, et al., OE, 1335, 2013
Frequency Comb Generation
AIM
Academy
Near IR Comb Generation
using SiN
Nanophotonic Optical Parametric Oscillator
• SiN
• CMOS-compatible material
• n~2, on-chip, high confinement
waveguides
• Very low propagation losses (0.1 dB/cm)
• Broad transparency window
• n2 ~ 2x10-19
(cm2
/W), γ ~ 1 W-1
m-1
• Source with many independent
wavelengths in the C-band
• Suitable for use in Si network-on-chip
• Flexible pump wavelength: visible to IR
J. S. Levy, A. Gondarenko, et al., “CMOS-compatible multiple-wavelength oscillator for
on-chip optical interconnects,” Nature Photonics., v.4(1), pp. 37-40 (2010).
Near IR Comb Generation using SiN
AIM
Academy Book Recommendation
Handbook of Silicon Photonics
CRC Press
Series in Optics and Optoelectronics
Published: April 26, 2013 by Taylor & Francis
Editor(s): Laurent Vivien, Lorenzo Pavesi

More Related Content

PDF
Epitaxy Growth Equipment for More Than Moore Devices Technology and Market Tr...
PPT
Semiconductor lasers
PPTX
PLASMONICS
PPT
Implantation srim trim
PDF
LEDs Basics: LED Fundamentals
PPTX
Epitaxy techniques
PPTX
Epitaxy, Epitaxial Growth--ABU SYED KUET
PPTX
Ion Beam Lithography.pptx
Epitaxy Growth Equipment for More Than Moore Devices Technology and Market Tr...
Semiconductor lasers
PLASMONICS
Implantation srim trim
LEDs Basics: LED Fundamentals
Epitaxy techniques
Epitaxy, Epitaxial Growth--ABU SYED KUET
Ion Beam Lithography.pptx

What's hot (20)

PPTX
Organic LED's
PDF
solid state batteries
PPTX
Industrial Laser Applications
PPT
Solar cell
PDF
GaAs Wafer and Epiwafer Market: RF, Photonics, LED, Display and PV Applicatio...
PPTX
Chemical vapor deposition (cvd)
PPTX
Ion implantation
PPT
ION IMPLANTATION
PPTX
Etching, Diffusion, Ion Implantation--ABU SYED KUET
PDF
Electrocatalysts for fuel cells
PPTX
Thin film techniques
PPTX
OLED full PPT
PPTX
PPTX
Opto Electronics
PDF
Magneto optic devices
PPTX
Graphene by ISMAIL ALSARHI
PPTX
PHOTONIC DEVICES INTRODUCTION
PPT
proton exchange membrane fuel cell
PPTX
Wide bandgap semiconductor
PPTX
Epitaxial Crystal Growth: Methods & Analysis
Organic LED's
solid state batteries
Industrial Laser Applications
Solar cell
GaAs Wafer and Epiwafer Market: RF, Photonics, LED, Display and PV Applicatio...
Chemical vapor deposition (cvd)
Ion implantation
ION IMPLANTATION
Etching, Diffusion, Ion Implantation--ABU SYED KUET
Electrocatalysts for fuel cells
Thin film techniques
OLED full PPT
Opto Electronics
Magneto optic devices
Graphene by ISMAIL ALSARHI
PHOTONIC DEVICES INTRODUCTION
proton exchange membrane fuel cell
Wide bandgap semiconductor
Epitaxial Crystal Growth: Methods & Analysis
Ad

Similar to ISP part 3 (20)

PDF
Ijarcet vol-2-issue-2-330-336
PDF
A Frequency Quadrupling Optical mm-Wave.pdf
PDF
Experimental Study for the Different Methods of Generating Millimeter Waves
PPTX
ISP part 2
PDF
Analysis of Circular Patch Antenna Embeded on Silicon Substrate
PDF
opsahu advanced communication lab 6 sem.file r.k.r govt poly janjgir
PDF
JingLi_Resume
PDF
Frequency Dependent Characteristics of OGMOSFET
PPT
Ippen nes osa 9-15-11
PPTX
Isp module slides 093016
PDF
Ldb Convergenze Parallele_sorba_01
PPT
All optical circuits and for digital logic
PDF
Trends in High Performance Operation of Electro Absorption Integrated Laser M...
PDF
IRJET- Design of a Slow Light Propagating Waveguide based on Electromagnetica...
PPTX
Sound Energy
PDF
wireless power transfer
PPT
Femtosecond Machining
PPTX
Fiber lasers and optoelectronic devices based on few layers of graphene - Luc...
PDF
The Approach on Influence of Biasing Circuit in Wideband Low Noise Amplifier ...
PPT
Anl Optical
Ijarcet vol-2-issue-2-330-336
A Frequency Quadrupling Optical mm-Wave.pdf
Experimental Study for the Different Methods of Generating Millimeter Waves
ISP part 2
Analysis of Circular Patch Antenna Embeded on Silicon Substrate
opsahu advanced communication lab 6 sem.file r.k.r govt poly janjgir
JingLi_Resume
Frequency Dependent Characteristics of OGMOSFET
Ippen nes osa 9-15-11
Isp module slides 093016
Ldb Convergenze Parallele_sorba_01
All optical circuits and for digital logic
Trends in High Performance Operation of Electro Absorption Integrated Laser M...
IRJET- Design of a Slow Light Propagating Waveguide based on Electromagnetica...
Sound Energy
wireless power transfer
Femtosecond Machining
Fiber lasers and optoelectronic devices based on few layers of graphene - Luc...
The Approach on Influence of Biasing Circuit in Wideband Low Noise Amplifier ...
Anl Optical
Ad

Recently uploaded (20)

PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PPTX
Computer Architecture Input Output Memory.pptx
PDF
Hazard Identification & Risk Assessment .pdf
PDF
HVAC Specification 2024 according to central public works department
PDF
Trump Administration's workforce development strategy
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PPTX
Virtual and Augmented Reality in Current Scenario
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PPTX
History, Philosophy and sociology of education (1).pptx
PDF
Weekly quiz Compilation Jan -July 25.pdf
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
My India Quiz Book_20210205121199924.pdf
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Computer Architecture Input Output Memory.pptx
Hazard Identification & Risk Assessment .pdf
HVAC Specification 2024 according to central public works department
Trump Administration's workforce development strategy
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Virtual and Augmented Reality in Current Scenario
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
History, Philosophy and sociology of education (1).pptx
Weekly quiz Compilation Jan -July 25.pdf
Share_Module_2_Power_conflict_and_negotiation.pptx
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
B.Sc. DS Unit 2 Software Engineering.pptx
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
My India Quiz Book_20210205121199924.pdf
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
FORM 1 BIOLOGY MIND MAPS and their schemes
ChatGPT for Dummies - Pam Baker Ccesa007.pdf

ISP part 3

  • 1. AIM Academy Part 1: Context  Electronic-Photonic Integration  Confinement Part 2: Passive Devices  Waveguides  Off-Chip Couplers  Wavelength Division Multiplexing Part 3: Active Devices  Photodetectors  Modulators  Light Sources and Lasers  Integrating Photonics
  • 2. AIM Academy Active Photonics: Photodetectors  Broadband, highly efficiency IR detector  Bandwidth considerations  Adaption to size of optical mode  Low voltage operation  Si processing, integrated into CMOS process flow  Integration with ICs G. Dehlinger et al., IEEE Phot. Tech. Lett.,v.16(11), (2004). Active Photonics: Photodetectors
  • 3. AIM Academy Photodetector Basics - Absorption 1.55 1.242.07 0.62 λ (μm) Physics of Semiconductor Devices, by S.M. Sze and K.K. Ng (Wiley-Interscience, 3rd edition, 2006) Photodetector Basics - Absorption
  • 4. AIM Academy Ge Epitaxy on Si Si Ge Ge epitaxial growth on Si at 550C Si Ge Ge Epitaxy on Si
  • 5. AIM Academy H.C. Luan, D.R. Lim, K.K. Lee, K.M. Chen, J.G. Sandland, K. Wada and L.C. Kimerling, APL, v.75(19), pp.2909-2911 (1999). L. Colace, G. Masini, G. Assanto, H.C. Luan, K. Wada and L.C. Kimerling, APL, v.76(10), pp.1231-1233 (2000). J. Liu, J. Michel, W. Giziewicz, D. Pan, K. Wada, D. D. Cannon, S. Jongthammanurak, D. T. Danielson, L. C. Kimerling, J. Chen, F. O. Ilday, F. X. Kartner, and J. Yasaitis, Appl. Phys. Lett. 87, 103501 (2005). Ge-on-Si Photodetector  2-step UHV-CVD + cyclic thermal annealing  780-900C anneal  10 TDD: 2.3107 cm-2  2.3106 cm-2  increases hole mobility Ge-on-Si Photodetector
  • 6. AIM Academy Waveguide-integrated Photodetector Waveguide - Photodetector Integration Performance Gain 10 2 10 3 10 4 0 10 20 30 40 50 60 70 80 (Bandwidth)x(Quantumefficiency)(GHz) Detector Size (mm2 ) d=0.5μm 5mm20mm Q.E: 90% Discrete, free-space Photodetectors RC time limitTransit time limit RC time limit d=2.0μm J. Michel, J. F. Liu, L.C. Kimerling, , Nat. Photonics 4, 527 (2010) Waveguide - Photodetector Integration
  • 7. AIM Academy 7 Ge-directly-on-Si Photodetector Waveguide Integration IMEC EPIXFAB Platform IME Singapore Platform A. Novak, Optics Express 21, 28387 (2013)
  • 8. AIM Academy Monolithic germanium/silicon avalanche photodiodes Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, J. C. Campbell, Nat. Photonics 3, 59 (2009) Measured 3-dB bandwidth versus gain of 30-mm-diameter germanium/silicon APDs at a wavelength of 1,300 nm. The coloured symbols are measured bandwidths from four devices. The blue line is the calculated bandwidth assuming carrier transit time and RC time constant are the limiting factors for the device bandwidth. The black line is a calculated result considering the avalanche build-up effect13 with keff ¼ 0.08. The corresponding gain–bandwidth product is 340 GHz, which fits the measured values. BW, bandwidth.
  • 9. AIM Academy Active Photonics: Modulators  Compact, integrated, Si-compatible  Low power consumption J. Liu, S. Jongthammanurak, D. Pan, J. Michel and L.C. Kimerling Silicon Microphotonics Sandia Si ring Active Photonics: Modulators
  • 10. AIM Academy Modulator Principles  Physical Principles  Thermo-optical Effect Change the refractive index of Si by heating.  Plasma Dispersion Effect Change the refractive index of Si by carrier injection in a diode structure or carrier accumulation in a MOS structure.  Electric Field Effect - Franz-Keldysh Effect in Bulk GeSi Change the absorption or refractive index of GeSi by electric field. - Quantum Confined Stark Effect in Ge/GeSi Quantum Wells Change the absorption or refractive index of Ge Q-wells by electric field.  Basic Device Structures  Mach-Zehnder Interferometers Interferes two beams of light with different phases. Phase shift achieved by changing the refractive index.  Ring Modulators Change the resonance frequency of a ring by varying its refractive index, thereby controlling the coupling of light from an adjacent waveguide.  Electro-absorption Modulators Light passes through an active material whose absorption can be changed by varying the applied electric field  Plasmonic Modulators Modulator Principles
  • 11. AIM Academy Mach Zehnder Modulator  Phase delay in lower arm causes interference  Large device size due to small effect  Length 0.5-3mm Mach Zehnder Modulator
  • 12. AIM Academy MOS-Enhanced Mach Zehnder Modulator  FET design: rapid injection and extraction of free carriers  Phase delay due to n from plasma dispersion  Large device size due to small effect: MZ-arm length 1-3mm  > 15 dB Mod. Depth @ 3 V  Up to 30Gbps A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, Optics Express 16, 660 (2007) MOS-Enhanced Mach Zehnder Modulator
  • 13. AIM Academy Microring Modulators 1.5 Gbit/s using RZ pattern  Power consumption of >50fJ/bit  Less than 0.3V and µA current needed for complete modulation in DC  In AC, 3.3Vpp and 1mA current were used  Expected theoretical bandwidth limit >10Gb/s Diameter = 12μm Width = 450nm Gap = 200nm M. Lipson, “Switching light on a silicon chip,” Opt. Mat., v.27, pp.731-739 (2005). Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, “Micrometre-scale silicon electro- optic modulator,” Nature, v.435, pp.325-327 (2005). P. Dong et al., “Low Vpp, ultralow-energy, compact, high-speed silicon electro- optic modulator”, Optics Express, Vol 17 No 25 (2009) Microring Modulators
  • 14. AIM Academy Low Power Si Ring Modulators W.A. Zortman, M. R. Watts, D. C. Trotter, R. W. Young and A. L. Lentine, “Low-Power High-Speed Silicon Microdisk Modulators,“ OSA / CLEO/QELS 2010 CThJ4 Low Power Si Ring Modulators
  • 15. AIM Academy Plasmonic Modulators  Plasmonic mode concentrates optical field within nm thin film  Optical absorption of thin film can be tuned by carrier injection  Length of 3l  Power consumption of <50fJ/bit expected  Expected theoretical bandwidth limit >300Gb/s V.J. Sorger, N.D. Lanzillotti-Kimura,R.-M. Ma, X. Zhang” Ultra-compact silicon nanophotonic modulator with broadband response.” Nanophotonics 1, 17-22 (2012). Plasmonic Modulators
  • 16. AIM Academy Electro Absorption Modulator Quantum Confined Stark Effect  Weak EO effect in Si  mm-scale MZ modulator, Q ring resonator  Stark Effect: l100-400 mm, V1 V, Q=0  Observe QCSE: Ge/SiGe type I confinement and strong direct gap absorption  comparable to III-Vs (t<ps, mod. rate >50GHz)  Exciton peak 80 meV above Ge Ec  - 36 meV strain shift - 56 meV quantum confinement  Clear shift of exciton peak with 5 V: /6 @ l=1.46 mm Y.-H. Kuo, Y.K. Lee, Y. Ge, S. Ren, J.E. Roth, T.I. Kamins, D.A.B. Miller and J.S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature, v.437, pp.1334-1336 (2005). Electro Absorption Modulator
  • 17. AIM Academy Electro Absorption Modulator Franz-Keldysh Effect in GeSi  Linear electro-optic effect  n(E), (E)  Ge-on-Si: comparable to InP  Strong F-K effect  strain reduces separation between Eg  and Eg L  F-K regime in low absorption background  Expected mod. depth: 10dB @ >30GHz  Experimental mod. depth: 10dB  Experimental bandwidth: 1.2 GHz  Ultra low power consumption: 25 pJ/bit J.F. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, ”Waveguide- integrated, ultra-low energy GeSi electro-absorption modulators,” Nature Photonics 2, 433 (June 2008) Electro Absorption Modulator
  • 18. AIM Academy  Si ridge waveguide – low loss  strain reduces separation between Eg  and Eg L  F-K regime in low absorption background  Mod. depth: 4-7.5dB @ >30GHz  Max. experimental mod. depth: 7.5dB  Low power consumption: 100 fJ/bit N.-N. Feng et al., ” 30GHz Ge electro-absorption modulator integrated with 3μm silicon-on-insulator waveguide,” Optics Express 72, 7062 (April 2011) Electro Absorption Modulator Franz-Keldysh Effect in GeSi Electro Absorption Modulator
  • 19. AIM Academy Modulator Comparison Modulator Type Footprint Power Consumption Wavelengths Range Applications Si Mach Zehnder > 500 mm2 > 10pJ/bit large, tunable Active Optical Cable, Telecom Si Ring modulator < 10 mm2 > 5fJ/bit (w/o heating) single wavelength Telecom, On- chip Integration Ge EA modulator < 10 mm2 25fJ/bit ~ 15nm range On-chip Integration Plasmonic modulator 2.5 mm2 < 50fJ/bit large, ~ 1mm On-chip Integration Modulator Comparison
  • 20. AIM Academy Active Photonics: Light Sources and Lasers  IR light source: SOI waveguides  Laser: DWDM, sub-mm structures interferometric structures  III-V monolithic integration  Si hybrid laser  Ge laser  Frequency comb based light sources K. Vahala et al., APL, v.84(7), (2004). J. Bowers et al., IEEE Phot. Tech. Lett., v.18(10), (2006). 20 Active Photonics: Light Sources and Lasers
  • 21. AIM Academy Monolithic Integration of III-V laser on SiGe/Si  Long RT CW-lifetime GaAs laser: 4 hrs  pre-growth CMP of SiGe graded layer  TDD=2x106 cm-2  λ=858 nm, d=0.4, Jth=269 A/cm2  InGaAs laser  λ=890 nm, d=0.26, Jth=700 A/cm2 M.E. Groenert, E.A. Fitzgerald et al., “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys., v.93(1), pp.362-367 (2003). M.E. Groenert, E.A. Fitzgerald et al., “Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs lasers fabricated on Si substrates via relaxed graded GexSi1-x buffer layers,” J. Vac. Sci. Tech. B, v.21(3), pp.1064-1069 (2003). misfit dislocation Monolithic Integration
  • 22. AIM Academy  Si waveguide bonded to AlGaInAs QWs  SOI ridge waveguide, SiO2/Ta2O5 facet mirror  Overlap: Si=0.6-9, QWs=0.01-0.06  Hybrid integration: zero alignment tolerance  Bonding: low T oxygen plasma-assisted wafer bonding  T=250 °C tolerate Thermal Expansion Mismatch  <5 nm reactive oxide layer  Endures dicing, facet polishing CW lasing (l=1568 nm)  Optical Pumping  Pth=23 mW, Pmax=4.5 mW  Electrical Injection  Ithres=65 mA, Pmax=1.8 mW, eff=0.13 H. Park, J.E. Bowers et al, Opt. Exp., v.13(23),pp.9460-9464 (2005). A.W. Fang, J.E. Bowers et all., IEEE Phot. Tech. Lett., v. 18(10), pp.1143-1145 (2006). A.W. Fang, J.E. Bowers et al., Opt. Exp., v.14(20), pp.9203-9210 (2006). A.W. Fang, J.E. Bowers et al., Matls. Today, v.10(7-8), pp.28-35 (2007). Hybrid Integration of III-V laser on SiGe/Si Hybrid Integration
  • 23. AIM Academy Germanium Laser  Ge-on-Si for Si integration  High n-doping required  Demonstrated lasing from 1520 to 1700 nm with electrical pumping  Demonstrated 8mW laser peak power at 1620nm J.F. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, J. Michel, “A Ge-on-Si laser operating at room temperature” Optics Lett. 35 (2010) R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L.C. Kimerling, and J. Michel, “An electrically pumped Germanium laser”, Opt. Exp. 20, 11316 (2012) L-I curve at 300K Germanium Laser
  • 24. AIM Academy QW and QD Lasers on Silicon  GaAs directly grown on Si  InGaAs QW with n and p contact  Current emission wavelength between 800nm and 1100nm  Electroluminescence demonstrated  Optically pumped lasing reported L. C. Chuang et al., “InGaAs QW Nanopillar Light Emitting Diodes Monolithically Grown on a Si Substrate,“ OSA/CLEO/QELS 2010 CMFF6 InGaAs Nanopillar QW Laser InAs QD Laser Alan Y. Liu et al., “High performance continuous wave 1.3 mm quantum dot lasers on silicon“ APPLIED PHYSICS LETTERS 104, 041104 (2014) QW and QD Lasers on Silicon
  • 25. AIM Academy Frequency Comb Generation T. Herr, et al., NP, 145, 2014 & K. Saha, et al., OE, 1335, 2013 Frequency Comb Generation
  • 26. AIM Academy Near IR Comb Generation using SiN Nanophotonic Optical Parametric Oscillator • SiN • CMOS-compatible material • n~2, on-chip, high confinement waveguides • Very low propagation losses (0.1 dB/cm) • Broad transparency window • n2 ~ 2x10-19 (cm2 /W), γ ~ 1 W-1 m-1 • Source with many independent wavelengths in the C-band • Suitable for use in Si network-on-chip • Flexible pump wavelength: visible to IR J. S. Levy, A. Gondarenko, et al., “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photonics., v.4(1), pp. 37-40 (2010). Near IR Comb Generation using SiN
  • 27. AIM Academy Book Recommendation Handbook of Silicon Photonics CRC Press Series in Optics and Optoelectronics Published: April 26, 2013 by Taylor & Francis Editor(s): Laurent Vivien, Lorenzo Pavesi