SlideShare a Scribd company logo
»«
!" #$
!"# $ %&' # ' () #* +, -. ,/
0, 1 2 1+ 3 $4 5 & , 6 * 78 9 :.
http://CFD.iut.ac.ir
1-
! " #$ % &% '( ) "* " &% &
+ , - $ ./ 01 $ ( ( % 23 ' ( 4 % ')$"6
7/89 : $ . % &$ ; < * = >. ? . @((, 2B.(
. # * 3 ,.& 8 2 (<0B# * B7 .( D 4 ? E " B
8 $ . ? F . DG/ *$ < , >H * .) * % &I < J-
.
$ $ K< , L2 '–M <*ND L 1.*% &+ ,
I$ % O > *% &CFD6 : 0< *$ $ $ !PD I$ND Q % &.
. ! % R ;: <0B# * :E S( " < & <0B# . & % 6 T.L2 9
U <D<0B# L V K W @KB.: N7 3*# * = $ K<0B# 4 @ %
CFDF&.
2-
* 1 7/8 X K P<0B# % &!.%$ .) * 4 (
%$. @(&.G #!< %$ % &3 , ( . B & 8 = % &
2 $ Y 1 * Z[E1K ? %$ = !& % &@H(.* ? H * % ; B J
. F.3# * :EB.
 0 ] D % 4 2 ( :* < % L H 6) ^ < <
B.F T ^[ . D . V % ; B <D $ B ! $ 7 * < .B..
! $ 7 L 7 * _ - $H.<0B# * D :E 3B.4
. B % J*N?B1D[.
1
Turbulence
UL
UL
N?B1-E: .%I 8H *
$ L ) X <0B# * 7 .' )>= L b & . D NB.c*
F ; < : G/ $ .0(d $X *#! : " B.
)1(
* <D. F &H e ' $ 4 ;: & 8 $ ; < % &<0B# L
&< %< & % '.* & 8 "3 $[% 8- f * <- 4 <0B# % &2
<0B#
<0J9 : = > ' $ $ B3
* 8&.
1 < = L bB < J % % &"% 8- f % < D&J 4 @ !
. D $ "L D P <H % Vd L 1.* E: 4 i 4 = j %
3 * < . . B W <0B#$.Vd * B k / 3 fb 0 : G @ l
D $ . D "LB.
J G8 ( <J @ <0B# %4
$ < J %n B&.* J eD% &
* ; < .B % &8- f <0B# % 6) "B.8 ) E * <
% " B% W E <?f % &o 'Q ; < * ; $ B 8 <J @ % ;B.3
% p @ % 8) %nN:< <?f $ 4f % &%n 8# *# B5
J.
2
Eddy
3
Length scale
4
Vortex stretching
5
Energy cascade
Uu (t)
( )u U u t= +
. D 9 : 3 <?fB . @( ; & r <0B# *B.(
% 3 <?f# 7/8 . 9 &7/8 = > $( )..9 : 3&)( >1/0
01/0M $ <&$ D10@ &*<0B# % &(. ! . @( L V.N :
G NL 1 @( % &" J. D B X %n ? E3 % % &D %n $ $
N ) -B.
% * <-3K & ^[ <J @ % &).(< $ ; < * # 3 % W G $ E $ .
*B.4f 9 : N @( b 0 N% "3 & GB , * ". N:<% &
< & 3K & <0B# * <?f.
3-! "#–$ % &#
L & 8 3 Y[<-% . D eD <0B# $ # %= > 9 : ' $ $ &
. <0B# *.4* *1/0<1/0N B "2 ( <0B# * 4 <
%&3 %10100?)B U <D " B < $ ?%109
1012
= ! < ! E:
9 :! & v Q = > % &.w < 3 <')10L 1 @ &* . 2 S( " J
$ D % W100$ ?! ! : V.)B%# * ! :<( ( ( <0B500000% x
& -10x ' ( <' ) *CrayB.
% . D % K , . ;: ) * $* % &< J ? % &L ) B
$ L2 ' ! :< ND %* % * < $ M <N?8 2 ( <0B# ^[ % &
@ ./ I < J < $ .&.
= L [> < ) % B$ 3 1 3<0B# % &
.G , 3 ($* % & L V.0< </)B -* JCFD[> 6 T
3 K EX W * _ -B). ^[jG $ ; < % & 8 $ ; < % &; < % &(3
; < * _ - %$ <0B# L B 8<T eD L V G/!.
)
)
*
4-(%) !
; < <* . 1 - kL 7E)3-2(o '!.
)2(
*#:#p @/<B%:<J @H%y= K<@
& 88.L )KN:<*/<y B.. [K.; <B.
* . 1 -$ . * < $F ; < 0(d z P L 7 # *H< 0(d $
*. 01 *# ; < :. J.P <* < $ G/ ' 3
$^ 1$ !YSD3 "!!L 3 K' O)>o
01.#.
)3(
* 8/ * k L [>X ; < S6
# . L.
)4(
< S0(d : X ;. % &| $ . &# f " - %4 # *
$<0B# L . 9 D)} ! w .7
(. J ? <?( 4 $.%n
8))D $(E K<0B# k)3-5(3 'B.
)5(
K<0B# L B8) %n$X ; < * .L 7E)6(;)B.
)6(
6
Root mean square (RMS)
7
Hot wire
0
1
( )
t
t dt
t
=
5t5t
( )t( ) ( )t t= +
t= +
0
1
( ) 0
t
t dt
t
= =
( )
0.5
22
0
1
( )
t
rms dt
t
= =
k
2 2 21
( )
2
k u v w= + +
TIrefU
0.5 0.5
2 2 21 2
( )
3 3
ref ref
u v w k
TI
U U
+ +
= =
V G %<0B# L; < * %$$ $ K< , L2 ' "-* % * @ & M <
!. V . @( S,!.1 % 8/ 3< *$ + , ; $ % D 3-
.L 7</ = ' O)>3 @! J.
4-1-+!,-
= D! & -L2 '. DL<0B#W! &.I$<" P
NF@N W0<B.
<L2 '%<%(%'<%; <y$[<%!.K#3 >
&( '; <J%N! $#.<)(33<3<?+ f$%%
L2 '(%W" B3$%%; <*#%•7/8*@W& -.
.L2 '%? F<%; <& €J.
4-2-.(&% /# 0,-
0•( 'K< ,)7(B.
)7(
( ')7(%:(%*<0B#@W..+ f; <% J•( ')7(•( ' ! F
1 DL 1E)8(# & -.
)8(
SK%<%(%:; <y$[:"$@0<3 W; <% J
("! & -
)9(
%4*!S,P#B•( ')9(L 1& -#.
)10(
( ) 0i
i
u
t x
+ =
( ) 0i
i
u
t x
+ =
( ) ( ) 0i i
i i
u u
t x x
+ + =
9 =0
0i
i
u
x
=
3-4-3-.(1% )2# 0,-
* &>!L2 '<%4*!S,•< ? $. VL 1)11(B.
)11(
( ')11(!&%L#$!&%L<0B#)<'B.3? (%4*" <0B#& H<%
< $%.$8‚< $*B.
= D! & -•( '<6 D<%; <*! F.W*)12(
)12(
•( ')11(! & -
)13(
%•( ')13($@=; <% J3 >3( '! & -
)14(
.ƒf•( ')14(2 '= ?Bo </*J.•( 'K< ,! LS,
B.3
)15(
Q$!*$%01B3 >•( ')15(.#%$ " <P#
)16(
•( '<%*<0B#L 1*J
2
( )i i i
j i
j i j j
u u p u
u B
t x x x x
µ+ = +
i i i
p p p
u u u
= +
= +
2
( ) ( ) ( ) ( )
( )i i i i i i
j j i
j i j j
u u u u p p u u
u u B
t x x x x
µ
+ + + +
+ + = +
2
i i i i
j j i
j j i j j
u u u p u
u u B
t x x x x x
µ+ + = +
0
j
j
u
x
=
j i
i j i j
j j j
u u
u u u u
x x x
+ =
j
i
j
u
u
x
j i
i j i j
j j j
u u
u u u u
x x x
+ =
)17(
0L$•( '<)17(•( '<<%(%"Q* B-#..' •( '
B3 "D[E1^GK<0B#G(.
L$ 0L2 '*#<0B#@;:eD3 &B.>3"„ (? @
4GB? "KV= ))<(B"I! ?3..•( '<
)? F%$!(.ƒfN:<B..38$3M<
B.
.( D"L2 '… :! D*L2<0B#)':%" <$n%(L 7*-
B.
:%<
:%
:%n%
< ,*y. &L D..36)3N?B0<Bn%8)K<0B#
G"! &)<B< J8.
L2 'D[E1^L2 '8
RANS$3 Q2 'v 1$† &Q.* #$
^ D%#8..3? ($3L2 'N ?84K<<9
&.)''L2 PG
'L2 '.(•ETE-*3"L2 'M,; < #J%"$•< ) &10
Z EB-
..
8
Reynolds Average Novier Stockes
9
Closed set
10
Correlation
i i i
j i i j
j i j j
u u p u
u B u u
t x x x x
µ+ = +
i j9u u
i i i
j i i i j
j i j j
u u p u
u B x u u
t x x x x
µ+ = +
0j
j
u
x
=
( ) ( )p j p j
j j j
T T T
C u C u T
t x x x
+ =
Ak
K< ) &3L.
K< ) &3L.$
K= :<<<%$M?'(..3D[E1^G(11
<0J-
B.K= :<x( <#)n = :<%(<%$M?'(..3D[E1^D B
<0B#12
<0JB.
G(* '4G$%=N$‡/8yV<%K<0B#$%
**; <B.
%D"*8%K<0B#$& B%K<0B#<J @:*#B$
S(:*#::<0B#*!8fB ,.Y &(%L" <0B#
3 'FN )WG("B<0B#$D B<0B#0<k )*:<%
@<%*; <$‡-2* J&%*; <B.
%LyB6GBP<*.; <•0(kK<0B#•E)18(
w<& -B.
)18(
@• D• 2U@()• D$ P(• :D"y8%(<J @8%
U@(B.
Q G L )E)19(B ‡/8 # <- . B <B N e0.Q G GB #
B P <B G $ !F W GB.
11
Reynolds stress tensor
12
Turbulent Heat flux
i ju u
ju T
i ju uix
p j9C u Tix
minla ar turbulent
du
u v
dy
µ= + =
9u v
du
µ
dy
)19(
G 3<0B# Q % &G "( % &B.*G <0B# % &% % &
& 01 o( / 8 &. L X N B * f " <B8%
B
)20(
0(d 3 ; $ ;;) K ? . o </ % &B.G = D% &01 o( / <0B# B
G : ^2 ' $ B< & p @ - <0B# * 4 U@( % &.
k : 3 <8"$. ? @#; < . % J P# "
* 8&. K<0B# (.I@H( k B X > . L $ . D = D-
B.ˆ$ $@ 4 @ K<0B#( # * f " B0(d ^$#.N?B2
& 8L $SP ; < j D : 3 BB.
N?B2-K<0B# _ - $ ; < . X%2%$%J ./ 0101 8 *
u v
u w
v w
2 2 2
xx yy zzD =-9u D =-9v D =-9w
xy xy
xz z x
yz yz
u v
u w
v w
= =
= =
= =
2
u2
v2
w
2
u
<W$ "./ 01 %$ % 28/0<8" BN 01 . K<0B# _ -.
X ; < S :)rms(^ ) : P % < kB* 8 "* <- &
ˆ$ $@ ^[ $ 1 K<0B#B.
4-4-3)40!,-
K<0B#,%*.•E $8%B)J%.(P" Jf &G
B< W" BK<0B#*@B& -.3 'GB%L<0B#D$3
= DJ)+ ,B">*$3<BE%%GB*3<BM 2
&$%$4* ("=X.*$*.$#.GBL 1)21(
*J.
)21(
%3 'yG(L 1v 1$.I$8 ,;) B*
y3G<0B#*.; <B.
B$%0 </%.* $#GBL<0B#FB.v 8&4
! & -.- ,.
5-(,-6
*& 1=2FB&4%! n&%_ -$<DD%_ -
**)<'$O W" BY &F=% &2"•)yGk :o </
*B.
5-1-.70#!& &#Boussinesq Eddy-Viscosity
•E4• ,3N1B.0(&%8%(6 <J%.
; <" B'
)22(
y/E
ijD
min ( )
i j
ij ijla ar ijturbulent i j
j i
u u
u u
x x
µ= + = +
i j9u u
i j9u u
2
2
3
i j t ij iju u S kµ=
*#rG$ ; <;•Eo 'B
<)(<.B•E)22(N?B!S,•( '4".3? (N?BN3( '
N BL V!S,%*BL 1)23(& -.
)23(
Y[-( ?( < ? $4. 1 -=.E%! :<$K< $B%* @
K<0B#*$*.$S(< '*$. 'W.("2$G/
%*..
+ f•< ? $L 7E)24(!*#•< ? $*#$< 1 -=.
L 7L2 'RANS)&8%((*YSD8%($@K•< ? $
•< ? $= 'L<0B#?8)BL2 '$M <L#.BN B
G(•<0B#B.0<3| <%*%(%4*" <0B#%G ,-
: ! :<= )X! K.
)24(
5-2-6Eddy-Viscosity
Y &&o 1 =•E< 3%N WJ%? @*$<%)y B**
..>3(*<! :]22[.
1-=% &01( '%13
2-=% &4( '%14
3-=% &$( '%15
=% &01( '%"; $$L2 ')%.o 1•E_ - 3)$ BN W
% J0<.=% &4( '%4•( 'Q = :<@3 30<"=% &
$( '%N B$PDEQ< &.
13
Zero equation model
14
One equation model
15
Two equation model
ijS
1
2
ji
ij
j i
uu
S
x x
= +
2 2
2
3 3
k
i j t ij ij ij
k
u
u u S k
x
µ=
µtµ
tµ µ
oµ
µ
t oµ=µ +µ
i j9u u
i ju utµ
t oµ µ µ= +
vQ $.† &=K<0B#$%NFKB./<=3
=% &K<:
4 @*#•(J! < &.
$$* @ &f! nL$ 0<K ?
* @.W
L ?)N )WRAM$CPU9 <
* @*%*= :'.
1-68-(#)6%::; <#(
•= >>[<-;: "%L<)B LŒ$L$ L ".$ 4
L• 2%N ?8B$%-"f%3L.*
; $P*.3=L V( :<<0B#$@history effectsL<0B#-
J)v Q * '" <83=L VL B 8<TPB. 2*$%*. 3 F ,
G ,.(E:Q"!<L2 '*.#(%*•<0B#z01( '%
‚) :&!<L2 'kL#B*#. V$H<.)* ?$! n'Q
*.3E:)$_ -F K &"*<.B0<== >>[<-)
=% &01( '%(.<%)B<L#& B! & -.‡-2+ f; B
%60<B" BND%0<3=" &.2%K &B$w <K &y B
<%'?<& -.$[0<I$01( '%"_ -F K &#ND
& < ,%N b9 DB.
L HF@( Kf$X?(
L HN?B•)
9 D• ($3 T#
2b.3=F &#F P$*n 0<%K<0B#!.:
ml
µ
%rN ?8F2B16
)LP0%,• /Y$ €$',8
$(...
= :<L DcL 01*$* J
L$8- f17
$>&%! n&%+ ,:Ly4 [B$X)<(*#3 '
N?8B"6& /.
2-6-( >#
=% &4( '%"?$9 :!L" <0B#'**9 :L<0B#$
= >9 :L<0B#$)*#"$0<4•( '( :<.#2 '3n%
8)<0B#.%*#4•( '( :<0<B.)2$#%.4•( '= :<
./(•( '! DL H"*F P$*n 0$>•( 'KX*
B(.
=Spalart-Allmaras4=4( '%4•( '=y B= :<%.* $#
ND.=@%&%&-eFB.$3 + &w <-%2&%%%
c '* J89 ?'18
W"F..3 + &34 "==%&%
. 3 B.
N?B1" -=Spalart-Allmaras(V%(3 F ,' Jy 0<
V3=$DV <. @(N-• 2%$D8)(3 F ,(B.
&fD(3 F ,$! B$.D2 ()‡-2D$(
. DW ! F<%= 33 ':<& -B.-& @%P%"3=
*%'W(%4 @-@" BX@ P* <L VD
•< ? $2%4 @F%3=N-.3lB.3"=3 <@J
16
Rapidly developing flows
17
Recirculating flows
18
Adversed pressure gradient
ml
k
tµ
tµ
%*ND&%-19
$%G./($20
B)<)(%'WL )O W**
<0B#-$ Q%)$Y &*4<$) :*<0B#.(.
=% &4( '%)=( Spalart-Allmaras> /FO $*-L HX
:%( >21
&:<W<B.3L HB‡-2L HJL$
22
LB#)&• /4.'$*$E'& <& <
&%0(& 8! F.>E:FN-*L V()[jNF <DNF
JF P#$&$%(=& )%%..
3-6-(#
=% &$( '%*%%L : :k(%L" <0B#‡-2* (
-W< J.3=% &NK<0B#)3. W&%"2%L2 '^<)
%@B(=% &$( '%< &" #ND$•( '= :<Jl3 '* B•[:<
9 :.K<0B#23
$9 := >K<0B#24
B.
3 <Y[<-3=% &( ' $%$=% &Eddy-Viscosity*#.=% &$( '%
=% &B'#*%G ,_ -4*<0B#*$& J#)W<-*
$• &*0<.? ( D!&L2 '01( '%$!&L2 '4( '%"= >
F :$%3 'y" #3<N)W! n*$N?B*#B$3(%
L<0B#N)WND#+ ,.•E:T#=% &Eddy-Viscosity$( '%0<
6 :4$•( '= :<%n%8)K<0B#B./<H<$/($
L 8 ,%%3/<FB..
"L W7<W%*$.WN W= )W%o >' $L" <0B#3=4=)P%
L<' 1$(%= :<L D..
19
Crude simulation
20
Coarse mesh
21
Length scales
22
Wall bounded flows
23 Turbulent velocity scale
24 Turbulent length scale
k
=3 < $ '=$( '%Bf!*#* #$0<*#B.
=% &*<0B#6 D$H<*B.
1-n%8)*•<0B#25
2-r=[ Q? $n%8)•<0B#26
( 8) %n<0B# * %L ) "; < 8) %n z P .$
<0B# 8) %n;G $ N?B H r . 2 ^ B % &<0B# % &
0<!.. = ' % ' L ) N %
0(d% &N?B H r
)25(
& G $
)26(
L 7)M(.
<0B# * = * ( N?B H r @P0(d 4 $ ; < 0(d 4"* (% &
M)27(&.
)27(
25
Turbulent kinetic energy
26
Viscous dissipation rate of Turbulent kinetic energy
k-L
k-L
k-L
k(t)2 2 21
K= (U +V +W )
2
2 2 21
k= (u +v +w )
2
11 12 13
21 22 23
31 32 33
ij
e e e
e e e e
e e e
=
11 12 13
21 22 23
31 32 33
ij
ij ij ije =E +e
1 1
( ) ( )
2 2
j ji i
ij ij ij
j i j i
U uU u
e E e
x x x x
= + = + + +
?&% , @A), B # # 0 C + -(
; < 8) %n % ( ' 40(d * Q *( ( '0(d $( '
0(d $= '$# . ".< X M,% ) L % : $ !& w( ' * 8 *
3 KL 7 * ! D ; < 8) %n)28(..
)28(
% H( L 7; < 8) %n % "!.
= :<G ;% &@(
= :<8 ;+
= :<( G ;+
K<0B# (+
r=[ Q-
== :<F P ;+H r
= :< L )""M n‡/8B$ 4 !& # & . < $ B
! & W.%$ @( G L V! : G/ $B:L )= :< "L ) $ @( G E
"=[ Q< 8) %n @(;G N B L ) $% &(< &L V ) % "
K<0B#B.L )<0B# = :<G ;% &L ) $ (‡( - G& K<0B# (
G ( ; N?B H E% &(B.*2 ( % &K<0B# L ) "$
L ) <J @ - 8 &$B.
K
KxUy
VzW
( )
( U) ( U 2 U ) 2 . .
u U u
ij i j ij ij i j ij
iiiii iv v vi vii
i
K
div K div p E Uu u E E u u E
t
u U u
v V v
w W w
µ µ+ = +
= +
= +
= +
= +
K
K
K
K
K
KK
iiiivvdiv
KivKvi
Ki j9u u
vKviiK
v
viiiviv
- @A), B # # 0 C + -(
0(d M < $ L2 ' & Q% &> .)0(d ( ' Q ^[j
T $(3 ? B w < & X $L2 ' %$ N($ N1 D ( ' $ * ! $
8) %n ( ' -E ")3-29(P <&.
)29(
! <0B# 8) %n % % H( L 7.
= :<G ;% &@(
= :<8 ;+
= :<( G ;+
(K<0B#+
=[ Q r-
== :<F P ;+H r
( '% &)28($)29(< & !& )B - f.L H ( ' $ & . . L
K<0B# 8) %nG $ ; <8 B! D K<0B# % &B.L )' $ &% (
< & o </ . [ ($ %$ :.L ) S(( ' .)j 6 4( L ) 4 $ &
* 8&.( '$ 0 L ) = DŒ[ < ; < * 8) %n 3 ".
%n N ) Q L 7 w < 3* <0B# %n ; < 8).@( =[ Q L )'
)30(
r X z P eD N ( 0 6 4% &N?B HE ")29(&.=[ Q
% B P N ( <0B# 8) %nG %$ <?f % &% &P @(B.r=[ QD $
*# D $m2
/s3
L 7 $ ! K<0B# 4 L '( E .)31(o 'B.
k
x
u
k
( ) 1
( U) ( u 2 u . ) 2 . .
2
u U u
ij i i j ij i j ijij
iiiii iv viivivi
k
div K div p E u u u e e u u E
t
u U u
v V v
w W w
µ µ+ = +
= +
= +
= +
= +
k
k
k
k
kk
vii
viik
K
vi
11 22 33 12 13 232 . 2 ( 2 2 2 )ij ij
e e e e e e e eµ µ= + + + + +
ije
)31(
&L ) 8 J @ ) $ <0B# 8) %n ( ' Y[ 1 L ) 4
($ B1 N W @J &B.B 2 ( <W$ M?'(@( = :< L ) "( ')29(
<0B# = :< L ) : 8 &4f -B.
. & % 8 = :< L2 ' ' * ?r N B K<0B# % &=[ Q@(B$
.O W ( '' N B = D "N W T $ = P L ) %% JB.=$ <
= ( '% ? "% ? $& H< 3 L H 6) ) % & # Œ 3 < %$
B " B.
$. 9 : o ' %= > 9 : $0<L 7 !)3-32(p @ 9 : Y '
K<0B#27
B.
)32(
G , . 3? ( RH< 0< )< "9 : o ' %B.3 P P
- 2 ( ! < &% *#%n ; < * p @ % &= :< r O E ^ : W J
% %n% &4 < $ 4f..9 : e' %n ) 3 f J% &K<0B#*$ .
B . $G& $. 0 3 NX W $ <o '! 0<.
*4@ ( #'%* 8•< ? $•<0B#*= >9 :%&%p @*<0B#
;).-.
)33(
*#$6.9 :$= >9 :3 <J @%&**<0B#B.
SK%L2 ')32(*$•( ')33(•P <!.
27
Large scale turbulance
2 .ij ije e=
iv
vi
k-L
L
Lk-L
kL
Lkl
3/2
k
k
l
=
=
Ll
lL
t C lµ =
l
)34(
46 QP.:#2 '09/0J.
== :< L2 ' " <)35($)36(%$0< B ?.
)35(
)36(
% H( L 7 L2 'B
= :<b 0 ;
( r+
r=[ Q-
== :<F P ;+H r
L2 '! N W . V w , N B""""< &.< =:)37(%
. V* X $ $ 4 F &$ <0B# % &? " B.
)37(
" <0B# N< , =B $<0B# ."b 0 . W$% . @(k.
<0B# 8 %n Y[ $ (k K ? &=[ Q r B( ? Fp @
. p @ " B.( ' =)36(%c*# k L ) Y[ $ ($ ( L ) 6 <
( ' Y[)35(..l 2 D 3 f b /J BB ^ '"$ B ^ ' !&
G&B < <0B# 8) %n 0 : G& ^ '.6 QL )
Y[ $ (( ' % ' L 7 L ) 3Z[1.
G ) %= ( % &4 B ; E)38(. B 0<.
2
t
k
C l Cµµ = =
µC
k-LLk
( )
( U) ( ) 2 .t
t ij ij
k
k
div k div grad k E E
t
µ
µ
!
+ = +
2
1 2
( )
( U) ( ) 2 .t
t ij ijdiv div grad C E E C
t k k
µ
µ
!
+ = +
kL
kL
kL
kLkL
µCkNLN1LC2LCk-L
1
2
0.09
1.0
1.30
1.44
1.92
k
C
C
C
µ
!
!
=
=
=
=
=
kNLNkLtµ
Lk
L
kkL
kL/k
L
k-L
)38(
S, ! * 4E =$ . W < $ ! J)38(v Q I - ;& J ! &
G% &! X !F W)'3"2"1=i? ( Di=jB(K< , 0< "01 : 3 !
* & * f " < &
)39(
!F W % 8 z P . 3B$!PD D $ <0B# 8) %n 0 : $
B._ 7<- !F W G 0(d & : 3 4# z P ! & * 8 " B&
: ? @1B.G % 4 ,$ $@ c 3 .B( !F W % &$ B% &
* 8 P* <D &O W T % ' $ % &B.
6--(6E #!#FG# 1 !Fluent
=<= :< L2 ' ")40($)41(%$@ B ?Fluent0<-
.
)40(
)41(
! N W . V w , N B L2 '"""": < &J b N)W G/ *#$
(n%8)( <0B#J N. ; < . *.
(n%8)( <0B#N$%..
2 2
2
3 3
k
i j t ij ij ij
k
ij ij
u
u u S k
x
S E
µ=
=
2 2 2 0i
t ij t t
j
u
S divu
x
µ µ µ= = =
2 2 2
-9(u +v +w )-29k
kL
k-LLk
( ) ( ) ( )t
i k b
i j k j
k
k ku G G
t x x x
µ
µ
!
+ = + + +
2
1 3 2( ) ( ) ( ) ( )t
i k b
i j j
u C G C G C
t x x x k k
µ
µ
!
+ = + + +
µCkNLN1LC2LC
kG=
bG=
K •( '* @(n%8)K<0B#28
BG3; < *29
$**
<0B#B$$ &*#^ D[E1(B<0J$ B@K(-Y[B
*( Kf*y*30
B.
; $v 131
%L 7)42(B.
)42(
W*•E)38()•E4(N-)42(! & -
)43(
$. G r.
7-6I-06J(
I$< JB== >>[<-)8 ,B;N< ,("B$< $&$
L+ ," &S(< E*#.•< ? $•<0B#)%:%. D<0B#W
&? >N:<W&BE:'%** 8
)44(
%vQ $%."9 :B*#B..'%
*.8J•%'%3.K<0B#f<;< ? $=[ QJ.
3.D[E1^*9 :K<0B#32
<0JB.P#$B"S(
&?B•< ? $<0B#0<$<-" B.%N?B)45(B.
28
Turbulent kinetic energy production
29
Mean flow
30
Turbulent flux of fluctuating density
31
Exact relation
32
Turbulent time scale
kG
bG
kG
i
k i j
j
u
G u u
x
=
2
k tG Sµ=
ij ijS= 2S Sij ijS =E
t*
[ ] [ ][ ]
[ ] [ ] [ ]
2
t
t
Velocity Length
or
Velocity Time
=
=
k2 2 21
k= (u +v +w )
2
k
L
[ ] [ ]
2
k = Velocity[ ]
k
= Time
L
kL
)45(
. V@0<_ -• 2%( '.& -#.:$@0<L2 ' ND
( :<3 'B.
7-1-4!# E0 "
• D< K(k4*<0B#0<•E< K(* 8B
)46(
c. V*G3D)c* f:4 @B(
)47(
c= ''Q33
*.0J
)48(
*#r(n%8)K<0B#)D $(%4• 2%)$&*ByK(
•E)49(.#.
)49(
Jf>B"3? (3J%B4*
B"%•)N W$3J%!F W@•)N WB.
?B"$c)46("** 8
)50(
>
33
Local equilibrium
[ ]
2 2
.t
k k
cons Cµ= × =
µCkL
µC
u u
y y%
&
=
2w
u v u&
= =
( )k
p =
( )k u
p u v
y
=
j i
ij i k
k k
u u
p -u u -
x x
j ku u=
u
y
uv
t
u
-9u v µ
y
=
t u y% &
=
)51(
0<c)48(*EU < <
)52(
N-• 2< K(cB< ,<-%. VB3ccG. V
/ &
)3-53(
?B"$@•E)52(E *U < <
)54(
= D*0<w <P• D< K("& 8B.L )" K
:.#B.3:)L 1"P.#.(
=<0<B.#>B%3 ':*.)<=
<L'%"L%G?GO >$L%(3 F ,
,.
L 0 1"o'Q=<PB• B
3 fNz <..K ?$F(* + &=<NF$
.
1-#>B%3 ':6 Q2N 70*" BP#)%L )
)%* W< K(W<B".S(U -• D* W< K(<‚ P3#
<>B$:6 Q3 'J.
2-* W< K(<3 ':N $ ,.( 'X%• 01./
0<B..3y.#)(%3; B)<'.$%; B
3
( ) 2k u u u
p u v u
y y y% %
& &
&
= = =
( )
2
4 4
4
t t
u vu y u
u
y
%
%
& &
&
× = = ' = =
u v
P
.
u v
Cons
%
=
2
t µ
k
* =C
L
2
u v u v
C Cµ µ
% %
= ' =
u v
- 0.3
P
(
µC =0.09
k-LµC
k-L
k-L
k-L
µC
µC
µC
µC =0.09
3-$•E:"= '[j? @k :G*$k := 7P"*$> :
Y%*%$L 01./" $[j%@,% &"*K
:.#%)<')< $% $ ,.T( 'XyZ[1B
%3 f0<.
4-P#* W< K(%y $*<0B#FB".S()%0<B
.* $#6F Q•( '<)%*<0B#.$S(=< "4 @
"*#B"6F Q'-L[?8%$ $".K?#%
Z[1y B=L V#**4 @*#W< J".0<
B.
5-D*%X3 f?88 ,"0<4•( '%'3$[
KL2 'B"? >:&E:N-*6 D& H<%*
3 'J.'$[$•( '( :<%$*4•( '( :<?%3 '
X*$**0<"'4( ' =%!
8-J LM!# &#
=<<W$•EBoussinesq Eddy-Viscosity?" B%o >' $NF
<)N?8/.%FN B,$ $@ T%B*$@L V( ' T" < &3
=.&& -D%034
".':;3=G ,
" BD%p @& -.
* '4•P <!363"=*.0J3=NG ,F $ ,
8%LSwirling$@• DRecirculating<&LG<.JB.
3"=G ,< &% &8N ?8B$%Z E%"! [w <E T<B..
<- B* Bk :o'Q$L W=%F &$%3=$)F3 "=
L 1< J..G/%3"Lr(%n8)K<0B#<r=[ Q
..
34
Over diffusive
µC
k-Lk-L
k-L
µC
µC
kL
µC
k-L
k-L
tµ
k-L
Y[-%% < :=<3=%%* f% WL lT
7..-K3J‡ :)
% (2% &Bo 'Q
% (L8+ ,
L% 8p @X $
2% &%$$% &J $
L$8- f$
*V% (N >X> :J T.
L['<% (X> :J T.
Z[13"B[%%$%Z[1=( ' $%L 1. J€
N&%%=$@(=% &PB.?( 3! & -.- ,.
9-O! P0 Q
'%&%o </=<$Y &&4)F%= 3G ,
_ -*..?= ( 3Œ N WBH $. # *#
)
= :< ( ' 4%
= 4) %$?<M2
SK .%= 3> / 3. 3e' = 3WQ@4I 8H *
Q . J( KW 3.L D[Qk. $ = 3
SK%. B b = 3.
%?QLŒ = 3SK . $ !%*#!( ' .4
! N W T * 4 %G(! ) =.
35
Realizable k-L Model
k-L
k-L
k-L
k-L
k-L
k-L
L
ji
i j t ij
j i
uu 2
-9u u µ - 9kE
x x 3
= +
)55(
' 0<o& -.B !.
)56(
E &( ' ƒf . !)56(&84. .)j .)(.($. +#
( ' .!K &: B p @ G0K /.'K &
)57(
B.G K#& = (8B .)j40 .^ B & -QM 2 L
/ &.+ &3$ XW 3%M # B36
)(@B & / W K.S(4
ND%?XW 3Œ N W 4)realizable(B <B0< !H<..3
=. B P J Œ N W.' L 7_ -M2 *'"H $N?B
. B P ; < * *.= 3%W.&%$= .)*# . <
? ) *= 3
f< & G.
< & G- f f.
V .J(%< & 9 ?' 8
%%8- f $< &
B.
9-1-! E #O! P0 Q
= :< ( ' $ = 3)58(%$ND.
36
Schwarz inequality
2 2
2
3
t
U
u k
x
=
2
t µ
k
µ =C 9
L
2
2 2
2
3
k U
u k C
x
µ=
2
u
1
3.7
3
k U
x Cµ
=
( )
2 2 2
S T S Tu u u u)
µC
k-LµCkL
k-L
k-L
kL
)58(
L2 ')58($=' <oB.Q $= 6)59(#..
)59(
.B= :< ( 'H($ . ?Q= *# 6L$ 0< <
B.
<?%N WŒ[ < K). . 3(B&0 E: K+%.'
& L ) U /<D B & 01 K+: J4.F@B 4f $.( D= ?
$ . ' <0 k : " U /B <B $.=%'
%< = .) $ . B ND NF^ 1 7-%< Bw
<%. * 8.
9-2--A& R%S! $ %0!%4 -
$ )?M2 <==. <L$ 0 34
' ? & / . V"$ . $ G r $%B)60(. B b.
( ) ( )
( ) ( ) 2
1 2 1 3
1 max 0.43, 2
5
j t
k b
j j t j
j t
b
kj j j
ij ij
u kk k
G G
t x x x
u k
C S C C G C
t x x x k
k
C S S S S
µ
µ
!
µ
µ
!
*
*
*
+ = + + +
+ = + + + +
+
+ ,
= = =- .
+/ 0
kGbGk-L
1
2
1.44
0.9
1
1.2
k
C
C
!
!
=
=
=
=
kk-L
k
krealizable-k-L
k-L
realizable-k-L
tµrealizable-k-Lk-LµC
kL
)60(
$ ; < G- f r$ .%B.$)61()B.
)61(
% ; B
= L2 '$< & % e.". % e * L2 ' )B # <% ; B U <D
.
% $ $:X$B '
% L$ :< $ -:$
% &:K< ( I$
2
0
1
2
t
s
ij ij ij ij
ij ij ijk k
ij ij ijk k
k
C
C
kU
A A
U S S
µ
µ
µ
1
1
&
&
=
=
+
= + 2 2
2 = 2
2 = 2
ijUkV0AsA
( )
0
1
3
4.04
6 cos
1
cos 6
3
1
2
s
ij jk ki
ij ij
ji
ij
j i
A
A
W
S S S
W
S
S S S
uu
S
x x
=
=
=
=
=
= +
kL
kL
0
k
n
=0
n
=
. 3? D > L )L [> "* = . % ; B L F@ kB ) 9 <.
<' 1 * J 0<CFDL% &$<-.: * $ O > " 3 . 8 ,
$XP3 % $ $ X 3 N ( w < . D P < $ B$.. < [> † & J
B )6 : "% &k % $ $ X % -$*% &-K<0B# L B *7/8 4 $
$# . = ' = >.
10-SU2V 0 !#
=X $ $ )<' K<0B# =B.< J P ) = 3%*2 % &
P G- f $ Œ B. V ! <D 4 *$ "% &<B % K 8f . : " B =
..* % | "= % & ?G *# &% &. - " % <8 . & ( B.
' $ $ N B z Q 3*!& <' 1 % & &* 8 *# . R 3 B
&.
. : $% &< = "* % ;:N - 7 T % &.9B @J
2 % = 3o 'Q B % &)2 $ ( ) $k / % &(?3 ' $ G/ % $ <B -
*N ' 0< ;: L[?8 ) T % $ . =[ Q r < - <0B# 8) %n ( r &
. V' " = % &cL 1 "J.
* [?8 3 + & = 3* $ 8- f % &G & % &Q $ X "p @ % &)^[j
2% &9 W %J $ % & J SJ $(L V N B = 3 * f ". K<0B# - * k E-.
*&%V=T % &G 2 > %% &. D ! T % (@ #
G o 'Q ? N ( *% &%= "G ,.N ( %$ .) = 3 -2
. 9 D X f f G- f.
kL
kL
kL
k-L
k-L
k-L
11-6(%) ! 3)4 -(
+ ,( G ( ' = K<0B# 4 [ = 337
(RSM)) = .$38
@B.
= % XG , ? K & "*PD % &$ + , G * % &% K 8f
.$ ".8 ; B 3 .E ; </ ( 0 % &* 4%n J <D B
B ) ) .W <0B# 8).O W ( G = :< ( ' " K Y >< L V % *
0< ( G *.
G ,3=% &K<0B#B0<•EEddy-Viscosity*0(% &G
(J%.**; <;).=RSM%•)&4%G
(4•( '( :<4< JB.+ fG(%4•('%" B
'8%(:<<%4•('%ND" B6B"3%3 'O W
X8%(4•('%6•( '( :<B.? ( D4•('%"+ f
! & /(=$( '%0<"! FL 736G(= P)62(
*3R E$G>O W)$:L 1TO W)B..
)62(
PW &##RSM
=% &Eddy-ViscosityL• 2%7<39
"? F40(G(
. &-".-&.3 f"=Eddy-Viscosity'%•0(6( TG
()3zL6 T(B.+ f*.( D 3yQY,
$Z[E1+ ," JKc0<Eddy-Viscosity)8%(J%
37
Reynolds stess model
38
Second order model
39
Attached boundary layer flows
k-L
k-L
2
2ij
ij i j
u u v u w
R u u v u v v w
w u w v w w
= = =
2
u
.**k ; <.( 1B$S(K*)<=% &Eddy-Viscosity
=..
•'=% &0RSM<=1968$/* ( $40
K80 <$$%)
. &(%8%(T#B.3=.3 $K%* + &Second Order Closure$
Second Moment Closure$Second Order Modeling<- BB.*#*'ŒŒ
=% &Eddy-Viscosity<B SJB$c0(&%= PG(‚ :<NDL2 '= :<
0)#8%(& H<%< $B(.#.E &)63(* 8" B
G4 (* :<41
B$3*. '.( D$'%ND3•( '= :<$
.( D'%ND6•( '= :<%3 'XG(*$**B.
)63(
G(%4*$'%G(%4*'%
<)(&!&%3 '= >9 :!&.( D$'%$!&.( D'%"$[S L2 '
ND4•( 'QK@B.S(=RSM=% &wEddy-Viscosity+ ,B"3? (
$J + ,3"=3=&6(Bfo 16<: W%K<0B#F
$$%o >X $$<L)<'B.3=%L Vy + ,
L.' )>$" J*#*L%k E-
$L%G- f42
$* $43
$LF P#44
L.45
B3=
(%#. W--..
40
Donaldson
41
Symetric
42
Swirl flows
43
Rotational flows
44
Free convection flows
45
Buoyant flows
2
2
ij
ij i j
u u v
R u u
v u v
= = =
2
2ij
ij i j
u u v u w
R u u v u v v w
w u w v w w
= = =
<?%P<*B*#.6 TL<0B#L BN?B213
$Tˆ$ $@
214
" B'$[? #:8%1""o( /01: " B4413
8%1<0B#K ?L$ 0N WD[%.** 8B• D< K(
*•<0B#$'%$%4• 01./)*3*•<0B#N W7(:8%1<0B#
L 164B.
)64(
3Y[<-B3y8%(* 8&<D4*•<0B#4 [)'
*• 2%<0B#$%4y./("0<=% &Eddy-Viscosity=% &( ' $%>
$ <$" T[† &J.WN W)‡-2L'%(= )& /
.B.30<=% &Eddy-Viscosity? F &LL BT4 ,$ $@46
$"!
LL B8- f47
$LB • VG48
^[11B.
12--0&!.(( E #X 8# 0!% 43)4(%) !
•( '( :<v 1%G(L )! PD$3= DyQ.#.
3c2( Kf. V$!)E &"!L%<%
y $&"4 xVS,%K<0B#$L2 'k*#!S,%*!B(
K&$%PD)$M ((B.‚ P&%prime$overbar%G•0(
$; <<%<0B#0<! F'
)65(
12-1-.(&% /
•( '(%
)66(
46
Anisotropic
47
Highly swirling flows
48
Stress diriven secondary flows
2
u2
vww
2 2
1 , 0.4 , 0.6u k v k w w k= = =
k-Lk-V
iB
u u u= +
0k
k
u
x
=
•( '; <
)67(
O 0$•( '66$67K ?
)68(
D[& B$.; <$; B!S,%… Q.
12-2-.(1% )2
•( '(%
)69(
•( '; <
)70(
6%•( ' y B<
)71(
,KO<8%B.
O 0•( ' $K ?
)a(
'•Mij& - 8 L 1.B !.
)b(
= D+ fL )N ?8"! &•( '( :<%8%(=RSM.#.
0k
k
u
x
=
0k
k
u
x
=
2
1i i i
k i
k i k k
u u p u
u B
t x x x x
+ = + +
2
1i i i i
ik k
k k i k k
u u u p u
u u B
t x x x x x
+ + = + +
1i i
ii k
i k k
Du p u
u u B
Dt x x x
+ = + +
D
Dt
2
1ii i i i i
ik k k k
k k k k i k k
u u u u u p u
u u u u B
t x x x x x x x
+ + + = + +
2
1j j j ji i
jk k k k
k k k k i k k
u u uu u u p
u u u u B
t x x x x x x x
+ + + = + +
j iu a+u b
)72(
H( L 1%'
( r
= :<b 0 ;+
=[ Q r-
= :<K<0B# G 8 N :< L V E+
=rH+= :<F P ;
( '72( ' GB0@ N* 8&'%G GB & = :<N:< (4
. 2 ( '.)(
12-3-E #3)4(%) !
)73(
*#
F PK<0B#•E $*; <49
(K<0B#•E $G; <50
(K<0B#•E $$%PD51
K< ) &38$G<0B#52
=[ QK<0B#53
49 Advection ( By Mean Flow )
50 Production ( By Mean Strain )
51 Production ( By Body Force )
52 Pressure-Strain Correlation
53 Dissipation
( )
( ) ( )
( ) ( )
j i i ji j i j k
k i j j k
k k k k
i j j ji i
i jk j ik i j j i
k k j i j i
u u uu u u u u u
u u u u u
t x x x x
u u u up p u u
u u u B u B
x x x x x x
+ + + + =
+ + + + + +
ij i jR u u=
ij i jR u u=
ij i jR u u=
ij i jR u u=
ij i jR u u=ij i jR u u=
2 2 2
1 2 3 1 2 2 1 1 3 3 1 2 3 3 2u ,u ,u ,u u =u u ,u u =u u ,u u =u u
( ) ijk
i j ij ij ij ij
i
dD
u u P G
Dt x
= + + + 3
i j i j i j
k
k
D u u u u u u
u
Dt t x
= +
j i
ij i k j k
k k
u u
P u u u u
x x
= +
i j j iu B u B+
2ji
ij ij
j i
uup p
S
x x
3 = =
ji
j i
uu
x x
*n 0G/,K<0B#54
JE73<0B# 8) %n % = :< O W ( '35" B :G L2 ' ? @
& € (BG k ) L )8..
12-4-.(E #B #@A),
P#•En%8)K<0B#L 1B"& K•E73* <& 8
c*M$ji$.! :*L2 '$*•( '( :<n%
8)K<0B#...
)74(
*#:
(n%8)K<0B#•E $G; <55
(n%8)K<0B#•E $$%PD56
=[ Qn%8)K<0B#57
*n 0G/,n%8)K<0B#
54 Diffusion
55
Production ( By Mean Strain )
56
Production ( By Body Force )
57
Dissipation
( )( )
i j
ijk i jk j ik i j k
k
turbulent diffusion molecular diffusion
u up
d u u u u u
x
= + + +
ijW
i j
1
k= u u
2
k
( )
( ) ( )
k
k k
i
i
Dk d
P G
Dt x
= + +
( )k
i
i j
j
u
P u u
x
=
( )k
i iG u B=
2
i
j
u
x
=
( ) 1
2
k
i
i j j i
i
k p u
d u u u
x
=
13-X Y%4,Z,#!-06>#J 4%,%!.(E #3)4(%) !
13-1-[ I0 ,-0.7&#,?&%
)75(
E75F P59
G(* 8&.L )K3KrH= >;-*
60
B.F L"3K-.."*#8%(;**; <P
J.
13-2-(%4-0.7&#3?&%
)76(
E)76(K(K<0B#B"L )K3Kr(;* J.
; <$GB.)* J."; <•E $!&G8%" (?3 <N
$y $#K<0B#**B(.. &$G:•<* J.; <$
* #K<0B#*"*&fJ%**; <<$<: W=" BK<0B#
PB$**•<0B#><: W=B.$ &.(%L V$‡-2
J%B4 @"(%J%B•< &*2% &>[<-61
(%
J%B$ •< &4$*.. &<B$$%. 1$!:w <
K<0B#VN WSK.(K<0B#"N W$3= Dv 162
B$S(%
(%.?N 2. :$W%=RSM$3N-•( '= :<8%
(B
58
Advection ( By Mean Flow )
59
Convection
60
Stream line
61
Mixing layer
62
Exact
i j i j i j
k
k
Du u u u u u
u
Dt t x
= +
iu uj
j i
ij i k j k
k k
u u
P u u u u
x x
= +
iu uj
.
13-3-B%3/
)77(
3*yr= :<F e•E $. ( 'LK<0B#63
"L*864
$*n 0
( ?(65
..
+ f.W" B*3L 1G?BG(0(
.. J.L )" KK$ $ F P*66
% 8(0<
L B 8<T*.<0B#" B3? (P#$L 1 *< J9 :L
K<0B#".3lB.#rL 1*n 00! F.
& K*E.BE $* JXG" (
4•< ? $" ( ?(*n 0$#.&<BB!&z* JX4
.? @*$***N <,$N. D%*#.? @)f9 :
4f**n 0$f9 :p @*$*(J.
13-4-A260! @G3-
)78(
•0 €$3K< ) &38$G<0B#@-" BXP67
:n%8)K<0B#
*0(&%.0<L*8B.•E $Xn%$#
&40(% &G(*0(" &•0 €$K3"= :<K<0B#4*
63
Turbulent fluctuation
64
Pressure fluctuation
65
Molecular diffusion
66
Advection
67
Redistribution
( )( )
i j
ijk i jk j ik i j k
k
turbulent diffusion molecular diffusion
u up
d u u u u u
x
= + + +
i ju u
i j ku u ui ju u
kui j ku u u
( )i j
k
u u
*
x
2ji
ij ij
j i
up u p
S
x x
3 = =
Tˆ$@ $@68
.ˆ$@ $@69
BL )K3"n%%p @<-
%4fW&.
K%*<%xB)'*LK1
J(L 7N-• 2B$#$%"P#B"3
(" B3*. '30(.)0(&%G(<J @B.XP
8/n%G<-$W&.
Pb<?2.
1-*•%*<%x"& 8BB.
3?N 2$T * #,$ $@L<0B#B.N 2'<K%
$T l,$ $@L<0B#" B•3N 2*$J%
.; <% &o </Lo </•E $$&$%$ B%$"2% &
>[<-L ".$" J$% &"6 1L8$8?O >"" <D
L" VL$"* < $$)D * B$L VN :<$%*= D
)D$TB3 &NlBT ',$ $@*<0B#.
2-G:=[ Q? $70
=[ Q%n8)K<0B#$G&:*#.01BO)>
o '8) %n" K<0B#P#" B<W$$&4
0(% &%GK<0B#.01" $'?#
)79(
3lYSDPT,$ $@*J.
68
Anisotropic
69
Isotropic
70
Viscous dissipation
i ju u
i ju u
0
u u
y z
= =
2
u
2
u2
w2
v
2 2 2
u w v
2 2 2
u w v4 4
2 2 21
k (u v w )
2
= + +k 05
2
2
2
0
0
0
u
v
w
5
5
5
3-8&*$ 8f% f<N.$8&4
6 Wx*$**<0B#l… :(<$. D*4.? @. T
*$ x( <#**J.
13-5-;R2Y#
)80(
3"K=[ QU@()? $(B.L )K3K=[ Q r•E $V
< ? $( ?B..W!<) 1 P•< ? $<0B#" B?G:=[ Q
( ? •< ? $B.>1[-*E*=[ QU@(:%4f)
D%* J.p @$%&ˆ$ $@$<B(r&.
14-(!% 43)4(%) !
T$($P( '= :<G" (%K' l4< ) & %71
B<6 D% <'$= P3 'JK<L2 '<J.
1-1 4B%
Xo </.D[E1^*n 0" ? $*n 08$*n 0K<0B#B.
(•<0B#"2!*n 0? $= :<4fB.(<0B#L 1E
81o '! F.
)81(
S((2$F &3".**n 0? $!8fB ,f J$
**#% (% &%?8$$#.
71
Correlation
ji
j i
uu
x x
i ju u
i ju u
1/2
3/2
Re t t
t
t
t
u l
u k
l k
=
L [>X*n 0% 8$"f% J! :<3.‚) :T3?..
3 /y*n 0% 80<% B$T! :<* ?S,".'% JK$
k )*yKy*n 0% 8.33<.B% E-% J
K%$yF*n 0% 8VN WD[%<BB.+#L 8 #o </
* 83.6 TL"3^<)T!$S(‚& J**#!8fB ,
.
( &$(72
3 ($0*n 0<0B#0<•"= :<* J73
=
= :<* J€*n 04.? @6 <* JF e74
* &..)E82(.
E8246 QP$:*#'222/0".3:0<%
% xB...)K*9 :•7/8%% &%n N DB.=% &% K%
*n 0<0B#@$K &:( & =$+ , ($$@(^F% <:
3=.
)82(
2-1 4Z %4I
(%(%XPK8UMIST%L(FB".
)%&%2$* ? &$@% &J* )–2W<B$%?BL 183B.
)83(
*#
72
Harlow, Daly
73
Gradiant transport hypothesis
74
Spatial gradiant
sC
k
L
i j
i j s k lk
l
u uk
u u u C u u
x
=
(1) (2) ( )w
ij ij ij ij3 = 3 + 3 + 3
)84(
:<6F Q)
)58(
1B.G:%$* J,$@ $@$T YSD,$@ $@*
Xn%8)8%p @(*8%<?f yB.
D[E1^.8J,$ $@75
$@D[E1^ˆ$ $@%(76
<0JB.
? @"•E $4 @* B4 @"*N,$@ $@<877
J$3 &$
?*"v 778
3QJ.D[E1^"9 ?'79
-
.9 ?'%* >3<Z Ev 1T,$@ $@$‘0D*#Z E*..
3-1 4;R2Y#
3)%3.: :DB.•< ? $( ?()$•< ? $<0B#(n%8)
<0B#=$%L DM2$9 :4f80
JN ).2 '3L D*
75
Return to isotropy
76
Isotropisation of production
77
Over ridden
78
Wall correction
79
Wall reflection term
80
High frequency and small scale motion
( ) ( )
(1)
1
(2)
2
( )
(2)
1 2
3/2
3
2
3
1
3
3 3
2 2
ij i j ij
ij ij kk ij
w
ij kl k l ij ik j k jk i k
w w
ij i j ij
n
k
C u u k
C P P
n n n n n n
k
C u u C
k
C y
3 =
3 =
3 = 3 3 3 6
3 = + 3
6 =
( ) ( )
1 2 1 2 31.8 0.6 0.5 0.3 2.5w w
C C C C C= = = = =
ny(1)
ijW(2)
ijW
(1)
ijW(2)
ijW
(w)
ijW(w)
ijW
ˆ$ $@c.3*. 'r=[ Q0(% &G(*rN
=[ Q81
'L;).-.
)86(
E #RSM1 !!#FG#Fluent
1 = :< ( '( % 8 = :< % v@FluentL 187B.
)87(
( ) ( ) ( ) ( )
( ) ( ) 2 ( )(
ij ij
ij ij
i j k i j i j k kj i ik j i j
k k k k
C D
j ji i i
i k j k
k k k k k
P
u u u u u u u u p u u u u
t x x x x
u uu u u
u u u u p
x x x x x
µ
µ
3
+ = + + +
+ + + )
ij
i
k
u
x
*#
P$1 4<D *$ v* = UB
0( ? *n$1 4<D *$ v* = UB
(K<0B#•E $G; <$1 4<D *$ v* = UB
0K<0B# *n<D L2 ' 3< $* = UB
ij= 3=K< ) &38$G<0B#<D L2 ' 3< $* = UB
ij===[ QK<0B#<D L2 ' 3< $* = UB
* $# . %( ' ND N W L 187r " b 0 % ) % F (=[ QG 3 k ) $
! U <D . . 8.282
? & $G)1975(% $ $83
)1980(L F@= 6 T% &
F.f 6 E J %=% &<8 O > 3 # .% &
CFDPP . B 0< !& %! $#.L F@ W <D ( 3($ " B% # * <-
. * ? ( & @ 1 $ . * # *.
81
Total dissipation rate
82
Launder
83
Rodi
2
3
ij ij=
ijC=
,l ijD=
ijP=
,T ijD=
b 0 L )" B ( G % J 6 < b 0 ; ( G = :< r ? c-
J = *.% PCFD6 T3E N?B.
)88(
= . VB.
=[ Q r% * . N:< c= B 4 < % &B.K! %B
G %$ ;:% ( % &(i=j)3 %$ $ VO > *89$# ..
)89(
r=[ Q%n" <0B# 8)?$ % <(B.
G N '( M? 6–8N?8 "* @ &( ' L ) 387.W *# 3 < $. =.*# V
G %$N ? @ @ < # $ ( % &:L $ K ? % $ - N ( 8 L
N ( 8:E % 4 -%o </ ; < . *.G L ) V–! : % " 8
%n P"G( % % &( )G G& $ <8 * . N:<B % &
(( )B.
? @ V . 2 D[1G L ) %$-D 8.X L D[1 3 . &
=[ Q= ! - #( : *$ . 2 $*
B ? "; <.% J* 8 &G & V &% &0< % (
. L * 4 <% &G @G : $ &% &G& ( B&.
J$ 2 ; . < J L V 3 & ' =* )84
)1975(. B F.3 + & #=% &
$e' )% &CFDF % P.
)90(
Q70 N)W . W *# LNJ.
<0B# 8) %n$ . 2 ; $% G * X 0< # *
$# . K &.< % ( ' GBr k = ( ' & ( G = :=[ Q= 3
84
Launder and Gibson
T,ijD
,
i jt
T ij
m k m
u u
D
x x
µ
!
=
kN =0.82
ijLijL
2
3
ij ij=
ijLijE
i=j
i j4
k-L
(1) (2) ( )w
ij ij ij ij3 = 3 + 3 + 3
k
ijL
NDB.= = ' N?B<%" J > /% &% PCFD. B 0<.
* % ( ' % ; B% &= :< L2 ' . 2 % eD ( G) B N:
% $ $:X$$. '.
* : $ $ -:$
:X
% $ $ X ) : : " % $ $ L [> 4 & TK<0B# L B *TI= > $
$ 7/8B c ; $ 0<ˆ91$# ..
)91(
c % $ $ % ; B * ' "G # *$ ) "w < . D N ( ).%
= 8 - X z % ; B 2 ( L )k-e".0< *.
G :@ ( % &4E)BJ..
0<B$%%$%"$ P"** 8B$%4• 01./.
)92(
3 &Y[<-38%(%4*yBN ?8B$%4• 01./* 8
&..=% &. B < S, E ($ " < & + , ^ <) ( G3= z
G $ ; < * _ - & v 8 W B% &(B.( G =(RSM)† &
= *. W N ( $ "< J D ^2 ' L ) * JL ) % .' 1 %
*&0<B.= 3 ) $ '= ' - : : 4 &B.v 1 N?B %
k-LL
ij i jR =u uLk
0
n
=0
i ju u
n
=
2
3
3 2
4
2
1
2 2
2 3
1.5( )
1
2
0 ( )
ref
i j
k U TI
k
C
l
u k
u u k
u u i j
µ
=
=
=
= =
= 4
i j iju u =c kijc
2 2 2
1.098 0.248 0.654 0.255
u v w u v
k k k k
= = = =
k-L
= 6W % & @ ./ * # . &3=% &0< % <0B#-
4 @ # .' 1 * J.

More Related Content

PDF
Lesson 7 world_history_medieval_period_new_
PDF
علم الحاسوب للصف الخامس الاعدادي
PDF
Requirements specification desingyourown_v2
PDF
Venice17
PDF
2013 JCP Year End Summary
PDF
मदीना की फज़ीलत और उसकी ज़ियारत एंव निवास के आदाब
PDF
Genro de Pedro Corrêa é preso em nova fase da Lava Jato
PDF
zthere construction
Lesson 7 world_history_medieval_period_new_
علم الحاسوب للصف الخامس الاعدادي
Requirements specification desingyourown_v2
Venice17
2013 JCP Year End Summary
मदीना की फज़ीलत और उसकी ज़ियारत एंव निवास के आदाब
Genro de Pedro Corrêa é preso em nova fase da Lava Jato
zthere construction

What's hot (19)

PDF
South Amboy of 1920s Is Theme of Fundraiser (The Suburban)
PDF
2008-12-04 - Roller Rink Marks 50 Years
PDF
Employee Health Benefits Overview
PDF
Xarxes socials
PDF
2009-08-27 - East Brunswick Resident Needs Stem Cells
PDF
New BYOB Law for Sayreville (The Suburban)
PDF
NETWORK REBRAND - pitch presentation (short version)
PDF
Instructivo manual de requisitos de inscripcion de informacion leagl, tecnica...
PDF
South Amboy Lays Out Plans for 2009 (The Suburban)
PDF
القيادة وقت الازمات
PDF
Historiografía de la educación comie selección
PDF
CCNxCon2012: Session 2: DASH over CCN: A CCN Use-Case for a SocialMedia Base...
PDF
English
PDF
Hudson City Youth Dept Assessment 03312012
PDF
Google In China Case Competition Written Report
PDF
Prca debate-on-the-future-of-the-agency
PDF
Cocina para impostores
PDF
Virtues some surahs of the noble qura'n - imaam al-albaanee
PDF
Robert Murdock Band Brings 60s back to S.A. (The Suburban)
South Amboy of 1920s Is Theme of Fundraiser (The Suburban)
2008-12-04 - Roller Rink Marks 50 Years
Employee Health Benefits Overview
Xarxes socials
2009-08-27 - East Brunswick Resident Needs Stem Cells
New BYOB Law for Sayreville (The Suburban)
NETWORK REBRAND - pitch presentation (short version)
Instructivo manual de requisitos de inscripcion de informacion leagl, tecnica...
South Amboy Lays Out Plans for 2009 (The Suburban)
القيادة وقت الازمات
Historiografía de la educación comie selección
CCNxCon2012: Session 2: DASH over CCN: A CCN Use-Case for a SocialMedia Base...
English
Hudson City Youth Dept Assessment 03312012
Google In China Case Competition Written Report
Prca debate-on-the-future-of-the-agency
Cocina para impostores
Virtues some surahs of the noble qura'n - imaam al-albaanee
Robert Murdock Band Brings 60s back to S.A. (The Suburban)
Ad

Viewers also liked (17)

PDF
Fall2016_highres
DOC
格安ラルフローレンのシャツ個々のソリューションの保護
DOCX
HPH profile - PM
PPT
Mentoring_Brussels_2015
PPTX
Slideshow
PDF
Understanding how is that adaptive cursor sharing (acs) produces multiple opt...
PPT
Bab 3-substansi-genetika-perbaikan
PDF
ESF1 Piling Vibrator - Operating instructions
DOCX
Con cuál me quedo
PDF
AFS Acceptance: Got Culture?
PDF
C12 Replikasi DNA
PPTX
Sintesis protein
PPT
Dn aand rna1
PPSX
Types and methods of physiotherapy
PDF
Six Sigma by PresentationLoad
PPT
Mikroskop, lupa i durbin
PPTX
Company core-values - english templates
Fall2016_highres
格安ラルフローレンのシャツ個々のソリューションの保護
HPH profile - PM
Mentoring_Brussels_2015
Slideshow
Understanding how is that adaptive cursor sharing (acs) produces multiple opt...
Bab 3-substansi-genetika-perbaikan
ESF1 Piling Vibrator - Operating instructions
Con cuál me quedo
AFS Acceptance: Got Culture?
C12 Replikasi DNA
Sintesis protein
Dn aand rna1
Types and methods of physiotherapy
Six Sigma by PresentationLoad
Mikroskop, lupa i durbin
Company core-values - english templates
Ad

Similar to jadiditurbulencemodeling (20)

PDF
أيقظ المارد الكامن
PDF
المساجد والاماكن الاثريه بالمدينه المنوره
PDF
3rdchapter
PDF
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4
PDF
كيف تصبح نجما لامعا فى العمل
PDF
Social Bullseye Services Overview
PDF
คำคม แปะไว้
PDF
Representing the curriculum symposium
PDF
كيف تصبح نجما لامعا في العمل
PDF
كيف تصبح نجم لامع في العمل
PDF
Religion 6th-primary-2nd-term- (4)
PDF
الجزء الثانى أسئلة تنفيذية مهندس محمد زكى إسماعيل
PDF
النظريات التفسيرية للعلاقات الدولية بين التكيف و النغير في ظل تحولات العالم م...
PDF
20thchapter
PDF
D9عنا البحريني التفاصيل كاملة
PDF
(Guia para elaborar,_estrutura
PDF
Основные правила подбора КФ от Яндекса
PDF
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 2
PDF
Km การดูแลผู้ป่วยได้รับยาละลายลิ่มเลือดในผู้ป่วยผ่าตัดลิ้นหัวใจ
أيقظ المارد الكامن
المساجد والاماكن الاثريه بالمدينه المنوره
3rdchapter
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4
كيف تصبح نجما لامعا فى العمل
Social Bullseye Services Overview
คำคม แปะไว้
Representing the curriculum symposium
كيف تصبح نجما لامعا في العمل
كيف تصبح نجم لامع في العمل
Religion 6th-primary-2nd-term- (4)
الجزء الثانى أسئلة تنفيذية مهندس محمد زكى إسماعيل
النظريات التفسيرية للعلاقات الدولية بين التكيف و النغير في ظل تحولات العالم م...
20thchapter
D9عنا البحريني التفاصيل كاملة
(Guia para elaborar,_estrutura
Основные правила подбора КФ от Яндекса
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 2
Km การดูแลผู้ป่วยได้รับยาละลายลิ่มเลือดในผู้ป่วยผ่าตัดลิ้นหัวใจ

More from Mohammad Jadidi (20)

PDF
Turbulence near the wall.pdf
PDF
Introduction to CFD- Chapter 1
PDF
Dr jadidi fluent-basic-m010-homework
PDF
Dr jadidi fluent-basic-m09
PDF
Dr jadidi fluent-basic-m08
PDF
Dr jadidi fluent-basic-m07
PDF
Dr jadidi fluent-basic-m06
PDF
Dr jadidi fluent-basic-m05
PDF
Dr jadidi fluent-basic-m04
PDF
Dr jadidi fluent-basic-m03
PDF
Dr jadidi fluent-basic-m02
PDF
Dr jadidi fluent-basic-m01-b
PDF
Dr jadidi fluent-basic-m01
PDF
04 reactive flows - eddy disipation model
PPTX
01 reactive flows - governing equations favre averaging
PDF
00 reactive flows - governing equations
PDF
01 reactive flows - finite-rate formulation for reaction modeling
PDF
00 reactive flows - species transport
PDF
01 multiphase flows- fundamental definitions
PDF
00 multiphase flows - intorduction
Turbulence near the wall.pdf
Introduction to CFD- Chapter 1
Dr jadidi fluent-basic-m010-homework
Dr jadidi fluent-basic-m09
Dr jadidi fluent-basic-m08
Dr jadidi fluent-basic-m07
Dr jadidi fluent-basic-m06
Dr jadidi fluent-basic-m05
Dr jadidi fluent-basic-m04
Dr jadidi fluent-basic-m03
Dr jadidi fluent-basic-m02
Dr jadidi fluent-basic-m01-b
Dr jadidi fluent-basic-m01
04 reactive flows - eddy disipation model
01 reactive flows - governing equations favre averaging
00 reactive flows - governing equations
01 reactive flows - finite-rate formulation for reaction modeling
00 reactive flows - species transport
01 multiphase flows- fundamental definitions
00 multiphase flows - intorduction

jadiditurbulencemodeling

  • 1. »« !" #$ !"# $ %&' # ' () #* +, -. ,/ 0, 1 2 1+ 3 $4 5 & , 6 * 78 9 :. http://CFD.iut.ac.ir
  • 2. 1- ! " #$ % &% '( ) "* " &% & + , - $ ./ 01 $ ( ( % 23 ' ( 4 % ')$"6 7/89 : $ . % &$ ; < * = >. ? . @((, 2B.( . # * 3 ,.& 8 2 (<0B# * B7 .( D 4 ? E " B 8 $ . ? F . DG/ *$ < , >H * .) * % &I < J- . $ $ K< , L2 '–M <*ND L 1.*% &+ , I$ % O > *% &CFD6 : 0< *$ $ $ !PD I$ND Q % &. . ! % R ;: <0B# * :E S( " < & <0B# . & % 6 T.L2 9 U <D<0B# L V K W @KB.: N7 3*# * = $ K<0B# 4 @ % CFDF&. 2- * 1 7/8 X K P<0B# % &!.%$ .) * 4 ( %$. @(&.G #!< %$ % &3 , ( . B & 8 = % & 2 $ Y 1 * Z[E1K ? %$ = !& % &@H(.* ? H * % ; B J . F.3# * :EB. 0 ] D % 4 2 ( :* < % L H 6) ^ < < B.F T ^[ . D . V % ; B <D $ B ! $ 7 * < .B.. ! $ 7 L 7 * _ - $H.<0B# * D :E 3B.4 . B % J*N?B1D[. 1 Turbulence UL UL
  • 3. N?B1-E: .%I 8H * $ L ) X <0B# * 7 .' )>= L b & . D NB.c* F ; < : G/ $ .0(d $X *#! : " B. )1( * <D. F &H e ' $ 4 ;: & 8 $ ; < % &<0B# L &< %< & % '.* & 8 "3 $[% 8- f * <- 4 <0B# % &2 <0B# <0J9 : = > ' $ $ B3 * 8&. 1 < = L bB < J % % &"% 8- f % < D&J 4 @ ! . D $ "L D P <H % Vd L 1.* E: 4 i 4 = j % 3 * < . . B W <0B#$.Vd * B k / 3 fb 0 : G @ l D $ . D "LB. J G8 ( <J @ <0B# %4 $ < J %n B&.* J eD% & * ; < .B % &8- f <0B# % 6) "B.8 ) E * < % " B% W E <?f % &o 'Q ; < * ; $ B 8 <J @ % ;B.3 % p @ % 8) %nN:< <?f $ 4f % &%n 8# *# B5 J. 2 Eddy 3 Length scale 4 Vortex stretching 5 Energy cascade Uu (t) ( )u U u t= +
  • 4. . D 9 : 3 <?fB . @( ; & r <0B# *B.( % 3 <?f# 7/8 . 9 &7/8 = > $( )..9 : 3&)( >1/0 01/0M $ <&$ D10@ &*<0B# % &(. ! . @( L V.N : G NL 1 @( % &" J. D B X %n ? E3 % % &D %n $ $ N ) -B. % * <-3K & ^[ <J @ % &).(< $ ; < * # 3 % W G $ E $ . *B.4f 9 : N @( b 0 N% "3 & GB , * ". N:<% & < & 3K & <0B# * <?f. 3-! "#–$ % &# L & 8 3 Y[<-% . D eD <0B# $ # %= > 9 : ' $ $ & . <0B# *.4* *1/0<1/0N B "2 ( <0B# * 4 < %&3 %10100?)B U <D " B < $ ?%109 1012 = ! < ! E: 9 :! & v Q = > % &.w < 3 <')10L 1 @ &* . 2 S( " J $ D % W100$ ?! ! : V.)B%# * ! :<( ( ( <0B500000% x & -10x ' ( <' ) *CrayB. % . D % K , . ;: ) * $* % &< J ? % &L ) B $ L2 ' ! :< ND %* % * < $ M <N?8 2 ( <0B# ^[ % & @ ./ I < J < $ .&. = L [> < ) % B$ 3 1 3<0B# % & .G , 3 ($* % & L V.0< </)B -* JCFD[> 6 T 3 K EX W * _ -B). ^[jG $ ; < % & 8 $ ; < % &; < % &(3 ; < * _ - %$ <0B# L B 8<T eD L V G/!. ) ) *
  • 5. 4-(%) ! ; < <* . 1 - kL 7E)3-2(o '!. )2( *#:#p @/<B%:<J @H%y= K<@ & 88.L )KN:<*/<y B.. [K.; <B. * . 1 -$ . * < $F ; < 0(d z P L 7 # *H< 0(d $ *. 01 *# ; < :. J.P <* < $ G/ ' 3 $^ 1$ !YSD3 "!!L 3 K' O)>o 01.#. )3( * 8/ * k L [>X ; < S6 # . L. )4( < S0(d : X ;. % &| $ . &# f " - %4 # * $<0B# L . 9 D)} ! w .7 (. J ? <?( 4 $.%n 8))D $(E K<0B# k)3-5(3 'B. )5( K<0B# L B8) %n$X ; < * .L 7E)6(;)B. )6( 6 Root mean square (RMS) 7 Hot wire 0 1 ( ) t t dt t = 5t5t ( )t( ) ( )t t= + t= + 0 1 ( ) 0 t t dt t = = ( ) 0.5 22 0 1 ( ) t rms dt t = = k 2 2 21 ( ) 2 k u v w= + + TIrefU 0.5 0.5 2 2 21 2 ( ) 3 3 ref ref u v w k TI U U + + = =
  • 6. V G %<0B# L; < * %$$ $ K< , L2 ' "-* % * @ & M < !. V . @( S,!.1 % 8/ 3< *$ + , ; $ % D 3- .L 7</ = ' O)>3 @! J. 4-1-+!,- = D! & -L2 '. DL<0B#W! &.I$<" P NF@N W0<B. <L2 '%<%(%'<%; <y$[<%!.K#3 > &( '; <J%N! $#.<)(33<3<?+ f$%% L2 '(%W" B3$%%; <*#%•7/8*@W& -. .L2 '%? F<%; <& €J. 4-2-.(&% /# 0,- 0•( 'K< ,)7(B. )7( ( ')7(%:(%*<0B#@W..+ f; <% J•( ')7(•( ' ! F 1 DL 1E)8(# & -. )8( SK%<%(%:; <y$[:"$@0<3 W; <% J ("! & - )9( %4*!S,P#B•( ')9(L 1& -#. )10( ( ) 0i i u t x + = ( ) 0i i u t x + = ( ) ( ) 0i i i i u u t x x + + = 9 =0 0i i u x =
  • 7. 3-4-3-.(1% )2# 0,- * &>!L2 '<%4*!S,•< ? $. VL 1)11(B. )11( ( ')11(!&%L#$!&%L<0B#)<'B.3? (%4*" <0B#& H<% < $%.$8‚< $*B. = D! & -•( '<6 D<%; <*! F.W*)12( )12( •( ')11(! & - )13( %•( ')13($@=; <% J3 >3( '! & - )14( .ƒf•( ')14(2 '= ?Bo </*J.•( 'K< ,! LS, B.3 )15( Q$!*$%01B3 >•( ')15(.#%$ " <P# )16( •( '<%*<0B#L 1*J 2 ( )i i i j i j i j j u u p u u B t x x x x µ+ = + i i i p p p u u u = + = + 2 ( ) ( ) ( ) ( ) ( )i i i i i i j j i j i j j u u u u p p u u u u B t x x x x µ + + + + + + = + 2 i i i i j j i j j i j j u u u p u u u B t x x x x x µ+ + = + 0 j j u x = j i i j i j j j j u u u u u u x x x + = j i j u u x j i i j i j j j j u u u u u u x x x + =
  • 8. )17( 0L$•( '<)17(•( '<<%(%"Q* B-#..' •( ' B3 "D[E1^GK<0B#G(. L$ 0L2 '*#<0B#@;:eD3 &B.>3"„ (? @ 4GB? "KV= ))<(B"I! ?3..•( '< )? F%$!(.ƒfN:<B..38$3M< B. .( D"L2 '… :! D*L2<0B#)':%" <$n%(L 7*- B. :%< :% :%n% < ,*y. &L D..36)3N?B0<Bn%8)K<0B# G"! &)<B< J8. L2 'D[E1^L2 '8 RANS$3 Q2 'v 1$† &Q.* #$ ^ D%#8..3? ($3L2 'N ?84K<<9 &.)''L2 PG 'L2 '.(•ETE-*3"L2 'M,; < #J%"$•< ) &10 Z EB- .. 8 Reynolds Average Novier Stockes 9 Closed set 10 Correlation i i i j i i j j i j j u u p u u B u u t x x x x µ+ = + i j9u u i i i j i i i j j i j j u u p u u B x u u t x x x x µ+ = + 0j j u x = ( ) ( )p j p j j j j T T T C u C u T t x x x + = Ak
  • 9. K< ) &3L. K< ) &3L.$ K= :<<<%$M?'(..3D[E1^G(11 <0J- B.K= :<x( <#)n = :<%(<%$M?'(..3D[E1^D B <0B#12 <0JB. G(* '4G$%=N$‡/8yV<%K<0B#$% **; <B. %D"*8%K<0B#$& B%K<0B#<J @:*#B$ S(:*#::<0B#*!8fB ,.Y &(%L" <0B# 3 'FN )WG("B<0B#$D B<0B#0<k )*:<% @<%*; <$‡-2* J&%*; <B. %LyB6GBP<*.; <•0(kK<0B#•E)18( w<& -B. )18( @• D• 2U@()• D$ P(• :D"y8%(<J @8% U@(B. Q G L )E)19(B ‡/8 # <- . B <B N e0.Q G GB # B P <B G $ !F W GB. 11 Reynolds stress tensor 12 Turbulent Heat flux i ju u ju T i ju uix p j9C u Tix minla ar turbulent du u v dy µ= + = 9u v du µ dy
  • 10. )19( G 3<0B# Q % &G "( % &B.*G <0B# % &% % & & 01 o( / 8 &. L X N B * f " <B8% B )20( 0(d 3 ; $ ;;) K ? . o </ % &B.G = D% &01 o( / <0B# B G : ^2 ' $ B< & p @ - <0B# * 4 U@( % &. k : 3 <8"$. ? @#; < . % J P# " * 8&. K<0B# (.I@H( k B X > . L $ . D = D- B.ˆ$ $@ 4 @ K<0B#( # * f " B0(d ^$#.N?B2 & 8L $SP ; < j D : 3 BB. N?B2-K<0B# _ - $ ; < . X%2%$%J ./ 0101 8 * u v u w v w 2 2 2 xx yy zzD =-9u D =-9v D =-9w xy xy xz z x yz yz u v u w v w = = = = = = 2 u2 v2 w 2 u
  • 11. <W$ "./ 01 %$ % 28/0<8" BN 01 . K<0B# _ -. X ; < S :)rms(^ ) : P % < kB* 8 "* <- & ˆ$ $@ ^[ $ 1 K<0B#B. 4-4-3)40!,- K<0B#,%*.•E $8%B)J%.(P" Jf &G B< W" BK<0B#*@B& -.3 'GB%L<0B#D$3 = DJ)+ ,B">*$3<BE%%GB*3<BM 2 &$%$4* ("=X.*$*.$#.GBL 1)21( *J. )21( %3 'yG(L 1v 1$.I$8 ,;) B* y3G<0B#*.; <B. B$%0 </%.* $#GBL<0B#FB.v 8&4 ! & -.- ,. 5-(,-6 *& 1=2FB&4%! n&%_ -$<DD%_ - **)<'$O W" BY &F=% &2"•)yGk :o </ *B. 5-1-.70#!& &#Boussinesq Eddy-Viscosity •E4• ,3N1B.0(&%8%(6 <J%. ; <" B' )22( y/E ijD min ( ) i j ij ijla ar ijturbulent i j j i u u u u x x µ= + = + i j9u u i j9u u 2 2 3 i j t ij iju u S kµ=
  • 12. *#rG$ ; <;•Eo 'B <)(<.B•E)22(N?B!S,•( '4".3? (N?BN3( ' N BL V!S,%*BL 1)23(& -. )23( Y[-( ?( < ? $4. 1 -=.E%! :<$K< $B%* @ K<0B#*$*.$S(< '*$. 'W.("2$G/ %*.. + f•< ? $L 7E)24(!*#•< ? $*#$< 1 -=. L 7L2 'RANS)&8%((*YSD8%($@K•< ? $ •< ? $= 'L<0B#?8)BL2 '$M <L#.BN B G(•<0B#B.0<3| <%*%(%4*" <0B#%G ,- : ! :<= )X! K. )24( 5-2-6Eddy-Viscosity Y &&o 1 =•E< 3%N WJ%? @*$<%)y B** ..>3(*<! :]22[. 1-=% &01( '%13 2-=% &4( '%14 3-=% &$( '%15 =% &01( '%"; $$L2 ')%.o 1•E_ - 3)$ BN W % J0<.=% &4( '%4•( 'Q = :<@3 30<"=% & $( '%N B$PDEQ< &. 13 Zero equation model 14 One equation model 15 Two equation model ijS 1 2 ji ij j i uu S x x = + 2 2 2 3 3 k i j t ij ij ij k u u u S k x µ= µtµ tµ µ oµ µ t oµ=µ +µ i j9u u i ju utµ t oµ µ µ= +
  • 13. vQ $.† &=K<0B#$%NFKB./<=3 =% &K<: 4 @*#•(J! < &. $$* @ &f! nL$ 0<K ? * @.W L ?)N )WRAM$CPU9 < * @*%*= :'. 1-68-(#)6%::; <#( •= >>[<-;: "%L<)B LŒ$L$ L ".$ 4 L• 2%N ?8B$%-"f%3L.* ; $P*.3=L V( :<<0B#$@history effectsL<0B#- J)v Q * '" <83=L VL B 8<TPB. 2*$%*. 3 F , G ,.(E:Q"!<L2 '*.#(%*•<0B#z01( '% ‚) :&!<L2 'kL#B*#. V$H<.)* ?$! n'Q *.3E:)$_ -F K &"*<.B0<== >>[<-) =% &01( '%(.<%)B<L#& B! & -.‡-2+ f; B %60<B" BND%0<3=" &.2%K &B$w <K &y B <%'?<& -.$[0<I$01( '%"_ -F K &#ND & < ,%N b9 DB. L HF@( Kf$X?( L HN?B•) 9 D• ($3 T# 2b.3=F &#F P$*n 0<%K<0B#!.: ml µ
  • 14. %rN ?8F2B16 )LP0%,• /Y$ €$',8 $(... = :<L DcL 01*$* J L$8- f17 $>&%! n&%+ ,:Ly4 [B$X)<(*#3 ' N?8B"6& /. 2-6-( ># =% &4( '%"?$9 :!L" <0B#'**9 :L<0B#$ = >9 :L<0B#$)*#"$0<4•( '( :<.#2 '3n% 8)<0B#.%*#4•( '( :<0<B.)2$#%.4•( '= :< ./(•( '! DL H"*F P$*n 0$>•( 'KX* B(. =Spalart-Allmaras4=4( '%4•( '=y B= :<%.* $# ND.=@%&%&-eFB.$3 + &w <-%2&%%% c '* J89 ?'18 W"F..3 + &34 "==%&% . 3 B. N?B1" -=Spalart-Allmaras(V%(3 F ,' Jy 0< V3=$DV <. @(N-• 2%$D8)(3 F ,(B. &fD(3 F ,$! B$.D2 ()‡-2D$( . DW ! F<%= 33 ':<& -B.-& @%P%"3= *%'W(%4 @-@" BX@ P* <L VD •< ? $2%4 @F%3=N-.3lB.3"=3 <@J 16 Rapidly developing flows 17 Recirculating flows 18 Adversed pressure gradient ml k tµ tµ
  • 15. %*ND&%-19 $%G./($20 B)<)(%'WL )O W** <0B#-$ Q%)$Y &*4<$) :*<0B#.(. =% &4( '%)=( Spalart-Allmaras> /FO $*-L HX :%( >21 &:<W<B.3L HB‡-2L HJL$ 22 LB#)&• /4.'$*$E'& <& < &%0(& 8! F.>E:FN-*L V()[jNF <DNF JF P#$&$%(=& )%%.. 3-6-(# =% &$( '%*%%L : :k(%L" <0B#‡-2* ( -W< J.3=% &NK<0B#)3. W&%"2%L2 '^<) %@B(=% &$( '%< &" #ND$•( '= :<Jl3 '* B•[:< 9 :.K<0B#23 $9 := >K<0B#24 B. 3 <Y[<-3=% &( ' $%$=% &Eddy-Viscosity*#.=% &$( '% =% &B'#*%G ,_ -4*<0B#*$& J#)W<-* $• &*0<.? ( D!&L2 '01( '%$!&L2 '4( '%"= > F :$%3 'y" #3<N)W! n*$N?B*#B$3(% L<0B#N)WND#+ ,.•E:T#=% &Eddy-Viscosity$( '%0< 6 :4$•( '= :<%n%8)K<0B#B./<H<$/($ L 8 ,%%3/<FB.. "L W7<W%*$.WN W= )W%o >' $L" <0B#3=4=)P% L<' 1$(%= :<L D.. 19 Crude simulation 20 Coarse mesh 21 Length scales 22 Wall bounded flows 23 Turbulent velocity scale 24 Turbulent length scale k
  • 16. =3 < $ '=$( '%Bf!*#* #$0<*#B. =% &*<0B#6 D$H<*B. 1-n%8)*•<0B#25 2-r=[ Q? $n%8)•<0B#26 ( 8) %n<0B# * %L ) "; < 8) %n z P .$ <0B# 8) %n;G $ N?B H r . 2 ^ B % &<0B# % & 0<!.. = ' % ' L ) N % 0(d% &N?B H r )25( & G $ )26( L 7)M(. <0B# * = * ( N?B H r @P0(d 4 $ ; < 0(d 4"* (% & M)27(&. )27( 25 Turbulent kinetic energy 26 Viscous dissipation rate of Turbulent kinetic energy k-L k-L k-L k(t)2 2 21 K= (U +V +W ) 2 2 2 21 k= (u +v +w ) 2 11 12 13 21 22 23 31 32 33 ij e e e e e e e e e e = 11 12 13 21 22 23 31 32 33 ij ij ij ije =E +e 1 1 ( ) ( ) 2 2 j ji i ij ij ij j i j i U uU u e E e x x x x = + = + + +
  • 17. ?&% , @A), B # # 0 C + -( ; < 8) %n % ( ' 40(d * Q *( ( '0(d $( ' 0(d $= '$# . ".< X M,% ) L % : $ !& w( ' * 8 * 3 KL 7 * ! D ; < 8) %n)28(.. )28( % H( L 7; < 8) %n % "!. = :<G ;% &@( = :<8 ;+ = :<( G ;+ K<0B# (+ r=[ Q- == :<F P ;+H r = :< L )""M n‡/8B$ 4 !& # & . < $ B ! & W.%$ @( G L V! : G/ $B:L )= :< "L ) $ @( G E "=[ Q< 8) %n @(;G N B L ) $% &(< &L V ) % " K<0B#B.L )<0B# = :<G ;% &L ) $ (‡( - G& K<0B# ( G ( ; N?B H E% &(B.*2 ( % &K<0B# L ) "$ L ) <J @ - 8 &$B. K KxUy VzW ( ) ( U) ( U 2 U ) 2 . . u U u ij i j ij ij i j ij iiiii iv v vi vii i K div K div p E Uu u E E u u E t u U u v V v w W w µ µ+ = + = + = + = + = + K K K K K KK iiiivvdiv KivKvi Ki j9u u vKviiK v viiiviv
  • 18. - @A), B # # 0 C + -( 0(d M < $ L2 ' & Q% &> .)0(d ( ' Q ^[j T $(3 ? B w < & X $L2 ' %$ N($ N1 D ( ' $ * ! $ 8) %n ( ' -E ")3-29(P <&. )29( ! <0B# 8) %n % % H( L 7. = :<G ;% &@( = :<8 ;+ = :<( G ;+ (K<0B#+ =[ Q r- == :<F P ;+H r ( '% &)28($)29(< & !& )B - f.L H ( ' $ & . . L K<0B# 8) %nG $ ; <8 B! D K<0B# % &B.L )' $ &% ( < & o </ . [ ($ %$ :.L ) S(( ' .)j 6 4( L ) 4 $ & * 8&.( '$ 0 L ) = DŒ[ < ; < * 8) %n 3 ". %n N ) Q L 7 w < 3* <0B# %n ; < 8).@( =[ Q L )' )30( r X z P eD N ( 0 6 4% &N?B HE ")29(&.=[ Q % B P N ( <0B# 8) %nG %$ <?f % &% &P @(B.r=[ QD $ *# D $m2 /s3 L 7 $ ! K<0B# 4 L '( E .)31(o 'B. k x u k ( ) 1 ( U) ( u 2 u . ) 2 . . 2 u U u ij i i j ij i j ijij iiiii iv viivivi k div K div p E u u u e e u u E t u U u v V v w W w µ µ+ = + = + = + = + = + k k k k kk vii viik K vi 11 22 33 12 13 232 . 2 ( 2 2 2 )ij ij e e e e e e e eµ µ= + + + + + ije
  • 19. )31( &L ) 8 J @ ) $ <0B# 8) %n ( ' Y[ 1 L ) 4 ($ B1 N W @J &B.B 2 ( <W$ M?'(@( = :< L ) "( ')29( <0B# = :< L ) : 8 &4f -B. . & % 8 = :< L2 ' ' * ?r N B K<0B# % &=[ Q@(B$ .O W ( '' N B = D "N W T $ = P L ) %% JB.=$ < = ( '% ? "% ? $& H< 3 L H 6) ) % & # Œ 3 < %$ B " B. $. 9 : o ' %= > 9 : $0<L 7 !)3-32(p @ 9 : Y ' K<0B#27 B. )32( G , . 3? ( RH< 0< )< "9 : o ' %B.3 P P - 2 ( ! < &% *#%n ; < * p @ % &= :< r O E ^ : W J % %n% &4 < $ 4f..9 : e' %n ) 3 f J% &K<0B#*$ . B . $G& $. 0 3 NX W $ <o '! 0<. *4@ ( #'%* 8•< ? $•<0B#*= >9 :%&%p @*<0B# ;).-. )33( *#$6.9 :$= >9 :3 <J @%&**<0B#B. SK%L2 ')32(*$•( ')33(•P <!. 27 Large scale turbulance 2 .ij ije e= iv vi k-L L Lk-L kL Lkl 3/2 k k l = = Ll lL t C lµ = l
  • 20. )34( 46 QP.:#2 '09/0J. == :< L2 ' " <)35($)36(%$0< B ?. )35( )36( % H( L 7 L2 'B = :<b 0 ; ( r+ r=[ Q- == :<F P ;+H r L2 '! N W . V w , N B""""< &.< =:)37(% . V* X $ $ 4 F &$ <0B# % &? " B. )37( " <0B# N< , =B $<0B# ."b 0 . W$% . @(k. <0B# 8 %n Y[ $ (k K ? &=[ Q r B( ? Fp @ . p @ " B.( ' =)36(%c*# k L ) Y[ $ ($ ( L ) 6 < ( ' Y[)35(..l 2 D 3 f b /J BB ^ '"$ B ^ ' !& G&B < <0B# 8) %n 0 : G& ^ '.6 QL ) Y[ $ (( ' % ' L 7 L ) 3Z[1. G ) %= ( % &4 B ; E)38(. B 0<. 2 t k C l Cµµ = = µC k-LLk ( ) ( U) ( ) 2 .t t ij ij k k div k div grad k E E t µ µ ! + = + 2 1 2 ( ) ( U) ( ) 2 .t t ij ijdiv div grad C E E C t k k µ µ ! + = + kL kL kL kLkL µCkNLN1LC2LCk-L 1 2 0.09 1.0 1.30 1.44 1.92 k C C C µ ! ! = = = = = kNLNkLtµ Lk L kkL kL/k L k-L
  • 21. )38( S, ! * 4E =$ . W < $ ! J)38(v Q I - ;& J ! & G% &! X !F W)'3"2"1=i? ( Di=jB(K< , 0< "01 : 3 ! * & * f " < & )39( !F W % 8 z P . 3B$!PD D $ <0B# 8) %n 0 : $ B._ 7<- !F W G 0(d & : 3 4# z P ! & * 8 " B& : ? @1B.G % 4 ,$ $@ c 3 .B( !F W % &$ B% & * 8 P* <D &O W T % ' $ % &B. 6--(6E #!#FG# 1 !Fluent =<= :< L2 ' ")40($)41(%$@ B ?Fluent0<- . )40( )41( ! N W . V w , N B L2 '"""": < &J b N)W G/ *#$ (n%8)( <0B#J N. ; < . *. (n%8)( <0B#N$%.. 2 2 2 3 3 k i j t ij ij ij k ij ij u u u S k x S E µ= = 2 2 2 0i t ij t t j u S divu x µ µ µ= = = 2 2 2 -9(u +v +w )-29k kL k-LLk ( ) ( ) ( )t i k b i j k j k k ku G G t x x x µ µ ! + = + + + 2 1 3 2( ) ( ) ( ) ( )t i k b i j j u C G C G C t x x x k k µ µ ! + = + + + µCkNLN1LC2LC kG= bG=
  • 22. K •( '* @(n%8)K<0B#28 BG3; < *29 $** <0B#B$$ &*#^ D[E1(B<0J$ B@K(-Y[B *( Kf*y*30 B. ; $v 131 %L 7)42(B. )42( W*•E)38()•E4(N-)42(! & - )43( $. G r. 7-6I-06J( I$< JB== >>[<-)8 ,B;N< ,("B$< $&$ L+ ," &S(< E*#.•< ? $•<0B#)%:%. D<0B#W &? >N:<W&BE:'%** 8 )44( %vQ $%."9 :B*#B..'% *.8J•%'%3.K<0B#f<;< ? $=[ QJ. 3.D[E1^*9 :K<0B#32 <0JB.P#$B"S( &?B•< ? $<0B#0<$<-" B.%N?B)45(B. 28 Turbulent kinetic energy production 29 Mean flow 30 Turbulent flux of fluctuating density 31 Exact relation 32 Turbulent time scale kG bG kG i k i j j u G u u x = 2 k tG Sµ= ij ijS= 2S Sij ijS =E t* [ ] [ ][ ] [ ] [ ] [ ] 2 t t Velocity Length or Velocity Time = = k2 2 21 k= (u +v +w ) 2 k L [ ] [ ] 2 k = Velocity[ ] k = Time L kL
  • 23. )45( . V@0<_ -• 2%( '.& -#.:$@0<L2 ' ND ( :<3 'B. 7-1-4!# E0 " • D< K(k4*<0B#0<•E< K(* 8B )46( c. V*G3D)c* f:4 @B( )47( c= ''Q33 *.0J )48( *#r(n%8)K<0B#)D $(%4• 2%)$&*ByK( •E)49(.#. )49( Jf>B"3? (3J%B4* B"%•)N W$3J%!F W@•)N WB. ?B"$c)46("** 8 )50( > 33 Local equilibrium [ ] 2 2 .t k k cons Cµ= × = µCkL µC u u y y% & = 2w u v u& = = ( )k p = ( )k u p u v y = j i ij i k k k u u p -u u - x x j ku u= u y uv t u -9u v µ y = t u y% & =
  • 24. )51( 0<c)48(*EU < < )52( N-• 2< K(cB< ,<-%. VB3ccG. V / & )3-53( ?B"$@•E)52(E *U < < )54( = D*0<w <P• D< K("& 8B.L )" K :.#B.3:)L 1"P.#.( =<0<B.#>B%3 ':*.)<= <L'%"L%G?GO >$L%(3 F , ,. L 0 1"o'Q=<PB• B 3 fNz <..K ?$F(* + &=<NF$ . 1-#>B%3 ':6 Q2N 70*" BP#)%L ) )%* W< K(W<B".S(U -• D* W< K(<‚ P3# <>B$:6 Q3 'J. 2-* W< K(<3 ':N $ ,.( 'X%• 01./ 0<B..3y.#)(%3; B)<'.$%; B 3 ( ) 2k u u u p u v u y y y% % & & & = = = ( ) 2 4 4 4 t t u vu y u u y % % & & & × = = ' = = u v P . u v Cons % = 2 t µ k * =C L 2 u v u v C Cµ µ % % = ' = u v - 0.3 P ( µC =0.09 k-LµC k-L k-L k-L µC µC µC µC =0.09
  • 25. 3-$•E:"= '[j? @k :G*$k := 7P"*$> : Y%*%$L 01./" $[j%@,% &"*K :.#%)<')< $% $ ,.T( 'XyZ[1B %3 f0<. 4-P#* W< K(%y $*<0B#FB".S()%0<B .* $#6F Q•( '<)%*<0B#.$S(=< "4 @ "*#B"6F Q'-L[?8%$ $".K?#% Z[1y B=L V#**4 @*#W< J".0< B. 5-D*%X3 f?88 ,"0<4•( '%'3$[ KL2 'B"? >:&E:N-*6 D& H<%* 3 'J.'$[$•( '( :<%$*4•( '( :<?%3 ' X*$**0<"'4( ' =%! 8-J LM!# &# =<<W$•EBoussinesq Eddy-Viscosity?" B%o >' $NF <)N?8/.%FN B,$ $@ T%B*$@L V( ' T" < &3 =.&& -D%034 ".':;3=G , " BD%p @& -. * '4•P <!363"=*.0J3=NG ,F $ , 8%LSwirling$@• DRecirculating<&LG<.JB. 3"=G ,< &% &8N ?8B$%Z E%"! [w <E T<B.. <- B* Bk :o'Q$L W=%F &$%3=$)F3 "= L 1< J..G/%3"Lr(%n8)K<0B#<r=[ Q .. 34 Over diffusive µC k-Lk-L k-L µC µC kL µC k-L k-L tµ k-L
  • 26. Y[-%% < :=<3=%%* f% WL lT 7..-K3J‡ :) % (2% &Bo 'Q % (L8+ , L% 8p @X $ 2% &%$$% &J $ L$8- f$ *V% (N >X> :J T. L['<% (X> :J T. Z[13"B[%%$%Z[1=( ' $%L 1. J€ N&%%=$@(=% &PB.?( 3! & -.- ,. 9-O! P0 Q '%&%o </=<$Y &&4)F%= 3G , _ -*..?= ( 3Œ N WBH $. # *# ) = :< ( ' 4% = 4) %$?<M2 SK .%= 3> / 3. 3e' = 3WQ@4I 8H * Q . J( KW 3.L D[Qk. $ = 3 SK%. B b = 3. %?QLŒ = 3SK . $ !%*#!( ' .4 ! N W T * 4 %G(! ) =. 35 Realizable k-L Model k-L k-L k-L k-L k-L k-L L ji i j t ij j i uu 2 -9u u µ - 9kE x x 3 = +
  • 27. )55( ' 0<o& -.B !. )56( E &( ' ƒf . !)56(&84. .)j .)(.($. +# ( ' .!K &: B p @ G0K /.'K & )57( B.G K#& = (8B .)j40 .^ B & -QM 2 L / &.+ &3$ XW 3%M # B36 )(@B & / W K.S(4 ND%?XW 3Œ N W 4)realizable(B <B0< !H<..3 =. B P J Œ N W.' L 7_ -M2 *'"H $N?B . B P ; < * *.= 3%W.&%$= .)*# . < ? ) *= 3 f< & G. < & G- f f. V .J(%< & 9 ?' 8 %%8- f $< & B. 9-1-! E #O! P0 Q = :< ( ' $ = 3)58(%$ND. 36 Schwarz inequality 2 2 2 3 t U u k x = 2 t µ k µ =C 9 L 2 2 2 2 3 k U u k C x µ= 2 u 1 3.7 3 k U x Cµ = ( ) 2 2 2 S T S Tu u u u) µC k-LµCkL k-L k-L kL
  • 28. )58( L2 ')58($=' <oB.Q $= 6)59(#.. )59( .B= :< ( 'H($ . ?Q= *# 6L$ 0< < B. <?%N WŒ[ < K). . 3(B&0 E: K+%.' & L ) U /<D B & 01 K+: J4.F@B 4f $.( D= ? $ . ' <0 k : " U /B <B $.=%' %< = .) $ . B ND NF^ 1 7-%< Bw <%. * 8. 9-2--A& R%S! $ %0!%4 - $ )?M2 <==. <L$ 0 34 ' ? & / . V"$ . $ G r $%B)60(. B b. ( ) ( ) ( ) ( ) 2 1 2 1 3 1 max 0.43, 2 5 j t k b j j t j j t b kj j j ij ij u kk k G G t x x x u k C S C C G C t x x x k k C S S S S µ µ ! µ µ ! * * * + = + + + + = + + + + + + , = = =- . +/ 0 kGbGk-L 1 2 1.44 0.9 1 1.2 k C C ! ! = = = = kk-L k krealizable-k-L k-L realizable-k-L tµrealizable-k-Lk-LµC kL
  • 29. )60( $ ; < G- f r$ .%B.$)61()B. )61( % ; B = L2 '$< & % e.". % e * L2 ' )B # <% ; B U <D . % $ $:X$B ' % L$ :< $ -:$ % &:K< ( I$ 2 0 1 2 t s ij ij ij ij ij ij ijk k ij ij ijk k k C C kU A A U S S µ µ µ 1 1 & & = = + = + 2 2 2 = 2 2 = 2 ijUkV0AsA ( ) 0 1 3 4.04 6 cos 1 cos 6 3 1 2 s ij jk ki ij ij ji ij j i A A W S S S W S S S S uu S x x = = = = = = + kL kL 0 k n =0 n =
  • 30. . 3? D > L )L [> "* = . % ; B L F@ kB ) 9 <. <' 1 * J 0<CFDL% &$<-.: * $ O > " 3 . 8 , $XP3 % $ $ X 3 N ( w < . D P < $ B$.. < [> † & J B )6 : "% &k % $ $ X % -$*% &-K<0B# L B *7/8 4 $ $# . = ' = >. 10-SU2V 0 !# =X $ $ )<' K<0B# =B.< J P ) = 3%*2 % & P G- f $ Œ B. V ! <D 4 *$ "% &<B % K 8f . : " B = ..* % | "= % & ?G *# &% &. - " % <8 . & ( B. ' $ $ N B z Q 3*!& <' 1 % & &* 8 *# . R 3 B &. . : $% &< = "* % ;:N - 7 T % &.9B @J 2 % = 3o 'Q B % &)2 $ ( ) $k / % &(?3 ' $ G/ % $ <B - *N ' 0< ;: L[?8 ) T % $ . =[ Q r < - <0B# 8) %n ( r & . V' " = % &cL 1 "J. * [?8 3 + & = 3* $ 8- f % &G & % &Q $ X "p @ % &)^[j 2% &9 W %J $ % & J SJ $(L V N B = 3 * f ". K<0B# - * k E-. *&%V=T % &G 2 > %% &. D ! T % (@ # G o 'Q ? N ( *% &%= "G ,.N ( %$ .) = 3 -2 . 9 D X f f G- f. kL kL kL k-L k-L k-L
  • 31. 11-6(%) ! 3)4 -( + ,( G ( ' = K<0B# 4 [ = 337 (RSM)) = .$38 @B. = % XG , ? K & "*PD % &$ + , G * % &% K 8f .$ ".8 ; B 3 .E ; </ ( 0 % &* 4%n J <D B B ) ) .W <0B# 8).O W ( G = :< ( ' " K Y >< L V % * 0< ( G *. G ,3=% &K<0B#B0<•EEddy-Viscosity*0(% &G (J%.**; <;).=RSM%•)&4%G (4•( '( :<4< JB.+ fG(%4•('%" B '8%(:<<%4•('%ND" B6B"3%3 'O W X8%(4•('%6•( '( :<B.? ( D4•('%"+ f ! & /(=$( '%0<"! FL 736G(= P)62( *3R E$G>O W)$:L 1TO W)B.. )62( PW &##RSM =% &Eddy-ViscosityL• 2%7<39 "? F40(G( . &-".-&.3 f"=Eddy-Viscosity'%•0(6( TG ()3zL6 T(B.+ f*.( D 3yQY, $Z[E1+ ," JKc0<Eddy-Viscosity)8%(J% 37 Reynolds stess model 38 Second order model 39 Attached boundary layer flows k-L k-L 2 2ij ij i j u u v u w R u u v u v v w w u w v w w = = = 2 u
  • 32. .**k ; <.( 1B$S(K*)<=% &Eddy-Viscosity =.. •'=% &0RSM<=1968$/* ( $40 K80 <$$%) . &(%8%(T#B.3=.3 $K%* + &Second Order Closure$ Second Moment Closure$Second Order Modeling<- BB.*#*'ŒŒ =% &Eddy-Viscosity<B SJB$c0(&%= PG(‚ :<NDL2 '= :< 0)#8%(& H<%< $B(.#.E &)63(* 8" B G4 (* :<41 B$3*. '.( D$'%ND3•( '= :<$ .( D'%ND6•( '= :<%3 'XG(*$**B. )63( G(%4*$'%G(%4*'% <)(&!&%3 '= >9 :!&.( D$'%$!&.( D'%"$[S L2 ' ND4•( 'QK@B.S(=RSM=% &wEddy-Viscosity+ ,B"3? ( $J + ,3"=3=&6(Bfo 16<: W%K<0B#F $$%o >X $$<L)<'B.3=%L Vy + , L.' )>$" J*#*L%k E- $L%G- f42 $* $43 $LF P#44 L.45 B3= (%#. W--.. 40 Donaldson 41 Symetric 42 Swirl flows 43 Rotational flows 44 Free convection flows 45 Buoyant flows 2 2 ij ij i j u u v R u u v u v = = = 2 2ij ij i j u u v u w R u u v u v v w w u w v w w = = =
  • 33. <?%P<*B*#.6 TL<0B#L BN?B213 $Tˆ$ $@ 214 " B'$[? #:8%1""o( /01: " B4413 8%1<0B#K ?L$ 0N WD[%.** 8B• D< K( *•<0B#$'%$%4• 01./)*3*•<0B#N W7(:8%1<0B# L 164B. )64( 3Y[<-B3y8%(* 8&<D4*•<0B#4 [)' *• 2%<0B#$%4y./("0<=% &Eddy-Viscosity=% &( ' $%> $ <$" T[† &J.WN W)‡-2L'%(= )& / .B.30<=% &Eddy-Viscosity? F &LL BT4 ,$ $@46 $"! LL B8- f47 $LB • VG48 ^[11B. 12--0&!.(( E #X 8# 0!% 43)4(%) ! •( '( :<v 1%G(L )! PD$3= DyQ.#. 3c2( Kf. V$!)E &"!L%<% y $&"4 xVS,%K<0B#$L2 'k*#!S,%*!B( K&$%PD)$M ((B.‚ P&%prime$overbar%G•0( $; <<%<0B#0<! F' )65( 12-1-.(&% / •( '(% )66( 46 Anisotropic 47 Highly swirling flows 48 Stress diriven secondary flows 2 u2 vww 2 2 1 , 0.4 , 0.6u k v k w w k= = = k-Lk-V iB u u u= + 0k k u x =
  • 34. •( '; < )67( O 0$•( '66$67K ? )68( D[& B$.; <$; B!S,%… Q. 12-2-.(1% )2 •( '(% )69( •( '; < )70( 6%•( ' y B< )71( ,KO<8%B. O 0•( ' $K ? )a( '•Mij& - 8 L 1.B !. )b( = D+ fL )N ?8"! &•( '( :<%8%(=RSM.#. 0k k u x = 0k k u x = 2 1i i i k i k i k k u u p u u B t x x x x + = + + 2 1i i i i ik k k k i k k u u u p u u u B t x x x x x + + = + + 1i i ii k i k k Du p u u u B Dt x x x + = + + D Dt 2 1ii i i i i ik k k k k k k k i k k u u u u u p u u u u u B t x x x x x x x + + + = + + 2 1j j j ji i jk k k k k k k k i k k u u uu u u p u u u u B t x x x x x x x + + + = + + j iu a+u b
  • 35. )72( H( L 1%' ( r = :<b 0 ;+ =[ Q r- = :<K<0B# G 8 N :< L V E+ =rH+= :<F P ; ( '72( ' GB0@ N* 8&'%G GB & = :<N:< (4 . 2 ( '.)( 12-3-E #3)4(%) ! )73( *# F PK<0B#•E $*; <49 (K<0B#•E $G; <50 (K<0B#•E $$%PD51 K< ) &38$G<0B#52 =[ QK<0B#53 49 Advection ( By Mean Flow ) 50 Production ( By Mean Strain ) 51 Production ( By Body Force ) 52 Pressure-Strain Correlation 53 Dissipation ( ) ( ) ( ) ( ) ( ) j i i ji j i j k k i j j k k k k k i j j ji i i jk j ik i j j i k k j i j i u u uu u u u u u u u u u u t x x x x u u u up p u u u u u B u B x x x x x x + + + + = + + + + + + ij i jR u u= ij i jR u u= ij i jR u u= ij i jR u u= ij i jR u u=ij i jR u u= 2 2 2 1 2 3 1 2 2 1 1 3 3 1 2 3 3 2u ,u ,u ,u u =u u ,u u =u u ,u u =u u ( ) ijk i j ij ij ij ij i dD u u P G Dt x = + + + 3 i j i j i j k k D u u u u u u u Dt t x = + j i ij i k j k k k u u P u u u u x x = + i j j iu B u B+ 2ji ij ij j i uup p S x x 3 = = ji j i uu x x
  • 36. *n 0G/,K<0B#54 JE73<0B# 8) %n % = :< O W ( '35" B :G L2 ' ? @ & € (BG k ) L )8.. 12-4-.(E #B #@A), P#•En%8)K<0B#L 1B"& K•E73* <& 8 c*M$ji$.! :*L2 '$*•( '( :<n% 8)K<0B#... )74( *#: (n%8)K<0B#•E $G; <55 (n%8)K<0B#•E $$%PD56 =[ Qn%8)K<0B#57 *n 0G/,n%8)K<0B# 54 Diffusion 55 Production ( By Mean Strain ) 56 Production ( By Body Force ) 57 Dissipation ( )( ) i j ijk i jk j ik i j k k turbulent diffusion molecular diffusion u up d u u u u u x = + + + ijW i j 1 k= u u 2 k ( ) ( ) ( ) k k k i i Dk d P G Dt x = + + ( )k i i j j u P u u x = ( )k i iG u B= 2 i j u x = ( ) 1 2 k i i j j i i k p u d u u u x =
  • 37. 13-X Y%4,Z,#!-06>#J 4%,%!.(E #3)4(%) ! 13-1-[ I0 ,-0.7&#,?&% )75( E75F P59 G(* 8&.L )K3KrH= >;-* 60 B.F L"3K-.."*#8%(;**; <P J. 13-2-(%4-0.7&#3?&% )76( E)76(K(K<0B#B"L )K3Kr(;* J. ; <$GB.)* J."; <•E $!&G8%" (?3 <N $y $#K<0B#**B(.. &$G:•<* J.; <$ * #K<0B#*"*&fJ%**; <<$<: W=" BK<0B# PB$**•<0B#><: W=B.$ &.(%L V$‡-2 J%B4 @"(%J%B•< &*2% &>[<-61 (% J%B$ •< &4$*.. &<B$$%. 1$!:w < K<0B#VN WSK.(K<0B#"N W$3= Dv 162 B$S(% (%.?N 2. :$W%=RSM$3N-•( '= :<8% (B 58 Advection ( By Mean Flow ) 59 Convection 60 Stream line 61 Mixing layer 62 Exact i j i j i j k k Du u u u u u u Dt t x = + iu uj j i ij i k j k k k u u P u u u u x x = + iu uj
  • 38. . 13-3-B%3/ )77( 3*yr= :<F e•E $. ( 'LK<0B#63 "L*864 $*n 0 ( ?(65 .. + f.W" B*3L 1G?BG(0( .. J.L )" KK$ $ F P*66 % 8(0< L B 8<T*.<0B#" B3? (P#$L 1 *< J9 :L K<0B#".3lB.#rL 1*n 00! F. & K*E.BE $* JXG" ( 4•< ? $" ( ?(*n 0$#.&<BB!&z* JX4 .? @*$***N <,$N. D%*#.? @)f9 : 4f**n 0$f9 :p @*$*(J. 13-4-A260! @G3- )78( •0 €$3K< ) &38$G<0B#@-" BXP67 :n%8)K<0B# *0(&%.0<L*8B.•E $Xn%$# &40(% &G(*0(" &•0 €$K3"= :<K<0B#4* 63 Turbulent fluctuation 64 Pressure fluctuation 65 Molecular diffusion 66 Advection 67 Redistribution ( )( ) i j ijk i jk j ik i j k k turbulent diffusion molecular diffusion u up d u u u u u x = + + + i ju u i j ku u ui ju u kui j ku u u ( )i j k u u * x 2ji ij ij j i up u p S x x 3 = =
  • 39. Tˆ$@ $@68 .ˆ$@ $@69 BL )K3"n%%p @<- %4fW&. K%*<%xB)'*LK1 J(L 7N-• 2B$#$%"P#B"3 (" B3*. '30(.)0(&%G(<J @B.XP 8/n%G<-$W&. Pb<?2. 1-*•%*<%x"& 8BB. 3?N 2$T * #,$ $@L<0B#B.N 2'<K% $T l,$ $@L<0B#" B•3N 2*$J% .; <% &o </Lo </•E $$&$%$ B%$"2% & >[<-L ".$" J$% &"6 1L8$8?O >"" <D L" VL$"* < $$)D * B$L VN :<$%*= D )D$TB3 &NlBT ',$ $@*<0B#. 2-G:=[ Q? $70 =[ Q%n8)K<0B#$G&:*#.01BO)> o '8) %n" K<0B#P#" B<W$$&4 0(% &%GK<0B#.01" $'?# )79( 3lYSDPT,$ $@*J. 68 Anisotropic 69 Isotropic 70 Viscous dissipation i ju u i ju u 0 u u y z = = 2 u 2 u2 w2 v 2 2 2 u w v 2 2 2 u w v4 4 2 2 21 k (u v w ) 2 = + +k 05 2 2 2 0 0 0 u v w 5 5 5
  • 40. 3-8&*$ 8f% f<N.$8&4 6 Wx*$**<0B#l… :(<$. D*4.? @. T *$ x( <#**J. 13-5-;R2Y# )80( 3"K=[ QU@()? $(B.L )K3K=[ Q r•E $V < ? $( ?B..W!<) 1 P•< ? $<0B#" B?G:=[ Q ( ? •< ? $B.>1[-*E*=[ QU@(:%4f) D%* J.p @$%&ˆ$ $@$<B(r&. 14-(!% 43)4(%) ! T$($P( '= :<G" (%K' l4< ) & %71 B<6 D% <'$= P3 'JK<L2 '<J. 1-1 4B% Xo </.D[E1^*n 0" ? $*n 08$*n 0K<0B#B. (•<0B#"2!*n 0? $= :<4fB.(<0B#L 1E 81o '! F. )81( S((2$F &3".**n 0? $!8fB ,f J$ **#% (% &%?8$$#. 71 Correlation ji j i uu x x i ju u i ju u 1/2 3/2 Re t t t t t u l u k l k =
  • 41. L [>X*n 0% 8$"f% J! :<3.‚) :T3?.. 3 /y*n 0% 80<% B$T! :<* ?S,".'% JK$ k )*yKy*n 0% 8.33<.B% E-% J K%$yF*n 0% 8VN WD[%<BB.+#L 8 #o </ * 83.6 TL"3^<)T!$S(‚& J**#!8fB , . ( &$(72 3 ($0*n 0<0B#0<•"= :<* J73 = = :<* J€*n 04.? @6 <* JF e74 * &..)E82(. E8246 QP$:*#'222/0".3:0<% % xB...)K*9 :•7/8%% &%n N DB.=% &% K% *n 0<0B#@$K &:( & =$+ , ($$@(^F% <: 3=. )82( 2-1 4Z %4I (%(%XPK8UMIST%L(FB". )%&%2$* ? &$@% &J* )–2W<B$%?BL 183B. )83( *# 72 Harlow, Daly 73 Gradiant transport hypothesis 74 Spatial gradiant sC k L i j i j s k lk l u uk u u u C u u x = (1) (2) ( )w ij ij ij ij3 = 3 + 3 + 3
  • 42. )84( :<6F Q) )58( 1B.G:%$* J,$@ $@$T YSD,$@ $@* Xn%8)8%p @(*8%<?f yB. D[E1^.8J,$ $@75 $@D[E1^ˆ$ $@%(76 <0JB. ? @"•E $4 @* B4 @"*N,$@ $@<877 J$3 &$ ?*"v 778 3QJ.D[E1^"9 ?'79 - .9 ?'%* >3<Z Ev 1T,$@ $@$‘0D*#Z E*.. 3-1 4;R2Y# 3)%3.: :DB.•< ? $( ?()$•< ? $<0B#(n%8) <0B#=$%L DM2$9 :4f80 JN ).2 '3L D* 75 Return to isotropy 76 Isotropisation of production 77 Over ridden 78 Wall correction 79 Wall reflection term 80 High frequency and small scale motion ( ) ( ) (1) 1 (2) 2 ( ) (2) 1 2 3/2 3 2 3 1 3 3 3 2 2 ij i j ij ij ij kk ij w ij kl k l ij ik j k jk i k w w ij i j ij n k C u u k C P P n n n n n n k C u u C k C y 3 = 3 = 3 = 3 3 3 6 3 = + 3 6 = ( ) ( ) 1 2 1 2 31.8 0.6 0.5 0.3 2.5w w C C C C C= = = = = ny(1) ijW(2) ijW (1) ijW(2) ijW (w) ijW(w) ijW
  • 43. ˆ$ $@c.3*. 'r=[ Q0(% &G(*rN =[ Q81 'L;).-. )86( E #RSM1 !!#FG#Fluent 1 = :< ( '( % 8 = :< % v@FluentL 187B. )87( ( ) ( ) ( ) ( ) ( ) ( ) 2 ( )( ij ij ij ij i j k i j i j k kj i ik j i j k k k k C D j ji i i i k j k k k k k k P u u u u u u u u p u u u u t x x x x u uu u u u u u u p x x x x x µ µ 3 + = + + + + + + ) ij i k u x *# P$1 4<D *$ v* = UB 0( ? *n$1 4<D *$ v* = UB (K<0B#•E $G; <$1 4<D *$ v* = UB 0K<0B# *n<D L2 ' 3< $* = UB ij= 3=K< ) &38$G<0B#<D L2 ' 3< $* = UB ij===[ QK<0B#<D L2 ' 3< $* = UB * $# . %( ' ND N W L 187r " b 0 % ) % F (=[ QG 3 k ) $ ! U <D . . 8.282 ? & $G)1975(% $ $83 )1980(L F@= 6 T% & F.f 6 E J %=% &<8 O > 3 # .% & CFDPP . B 0< !& %! $#.L F@ W <D ( 3($ " B% # * <- . * ? ( & @ 1 $ . * # *. 81 Total dissipation rate 82 Launder 83 Rodi 2 3 ij ij= ijC= ,l ijD= ijP= ,T ijD=
  • 44. b 0 L )" B ( G % J 6 < b 0 ; ( G = :< r ? c- J = *.% PCFD6 T3E N?B. )88( = . VB. =[ Q r% * . N:< c= B 4 < % &B.K! %B G %$ ;:% ( % &(i=j)3 %$ $ VO > *89$# .. )89( r=[ Q%n" <0B# 8)?$ % <(B. G N '( M? 6–8N?8 "* @ &( ' L ) 387.W *# 3 < $. =.*# V G %$N ? @ @ < # $ ( % &:L $ K ? % $ - N ( 8 L N ( 8:E % 4 -%o </ ; < . *.G L ) V–! : % " 8 %n P"G( % % &( )G G& $ <8 * . N:<B % & (( )B. ? @ V . 2 D[1G L ) %$-D 8.X L D[1 3 . & =[ Q= ! - #( : *$ . 2 $* B ? "; <.% J* 8 &G & V &% &0< % ( . L * 4 <% &G @G : $ &% &G& ( B&. J$ 2 ; . < J L V 3 & ' =* )84 )1975(. B F.3 + & #=% & $e' )% &CFDF % P. )90( Q70 N)W . W *# LNJ. <0B# 8) %n$ . 2 ; $% G * X 0< # * $# . K &.< % ( ' GBr k = ( ' & ( G = :=[ Q= 3 84 Launder and Gibson T,ijD , i jt T ij m k m u u D x x µ ! = kN =0.82 ijLijL 2 3 ij ij= ijLijE i=j i j4 k-L (1) (2) ( )w ij ij ij ij3 = 3 + 3 + 3 k ijL
  • 45. NDB.= = ' N?B<%" J > /% &% PCFD. B 0<. * % ( ' % ; B% &= :< L2 ' . 2 % eD ( G) B N: % $ $:X$$. '. * : $ $ -:$ :X % $ $ X ) : : " % $ $ L [> 4 & TK<0B# L B *TI= > $ $ 7/8B c ; $ 0<ˆ91$# .. )91( c % $ $ % ; B * ' "G # *$ ) "w < . D N ( ).% = 8 - X z % ; B 2 ( L )k-e".0< *. G :@ ( % &4E)BJ.. 0<B$%%$%"$ P"** 8B$%4• 01./. )92( 3 &Y[<-38%(%4*yBN ?8B$%4• 01./* 8 &..=% &. B < S, E ($ " < & + , ^ <) ( G3= z G $ ; < * _ - & v 8 W B% &(B.( G =(RSM)† & = *. W N ( $ "< J D ^2 ' L ) * JL ) % .' 1 % *&0<B.= 3 ) $ '= ' - : : 4 &B.v 1 N?B % k-LL ij i jR =u uLk 0 n =0 i ju u n = 2 3 3 2 4 2 1 2 2 2 3 1.5( ) 1 2 0 ( ) ref i j k U TI k C l u k u u k u u i j µ = = = = = = 4 i j iju u =c kijc 2 2 2 1.098 0.248 0.654 0.255 u v w u v k k k k = = = = k-L
  • 46. = 6W % & @ ./ * # . &3=% &0< % <0B#- 4 @ # .' 1 * J.