SlideShare a Scribd company logo
Jet Energy Corrections with
DNN Regression
Daniel Holmberg
CMS ML Forum 08.09.2021
Introduction
Dataset
ML models
Training
Results
Summary
Extra material
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 2
Introduction
• The physical detector causes the jet transverse momentum
pT to be different from the true particle-level jet
• Corrected such that it agrees on average with the pT of
the particle level jet
• Determined by using basic kinematic quantities of the jet
• Possible to include more information and get better
corrections using machine learning
• Has been done successfully for b-jets using a deep
feed-forward neural network
• However, this study is about generically applicable
DNN-based corrections
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 3
Dataset
• QCD HT -binned samples, 2016 configuration
• /QCD HT* TuneCUETP8M1 13TeV-
madgraphMLM-pythia8/
RunIISummer16MiniAODv3*/MINIAODSIM
• Custom ML JEC dataset by A. Popov (ULB)
• Forked and added SV angles for initial coordinates in
ParticleNet
• Use 10M jets for training set, 2M jets for validation set
and 2M jets for test set
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 4
Data distribution
• Same shape for all jet flavours
• Flat in (pT , η) at low pT
• Steeply falling in pT at high pT
• Proportions of b, c, uds, and g jets fixed as 1 : 1 : 2 : 2
0 30 100 300 1000 3000
pgen
T
0
1
2
3
4
5
|
gen
|
100
101
102
103
104
u d s c b g unknown
0
1
2
3
4
Number
of
jets
1e6
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 5
Training features
• Event level
• pT , log pT , η, φ, ρ, mass, area
• multiplicity, pT D, σ2, num pv
• Charged PF candidates
• pT , η, φ, ∆pT , ∆η, ∆φ
• dxy, dz, dxy significance, normalized χ2
• num hits, num pixel hits, lost hits
• particle id, pv association quality
• Neutral PF candidates
• pT , η, φ, ∆pT , ∆η, ∆φ
• particle id, hcal energy fraction
• Secondary vertices
• pT , η, φ, ∆pT , ∆η, ∆φ, mass
• flight distance, significance, num tracks
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 6
Feature engineering
0 10 20 30 40
Multiplicity
0.00
0.02
0.04
0.06
0.08
fraction
of
jets/bin
80<pgen
T <100 GeV, 0<| gen|<1.3
quark
gluon
Create event-level
features: multiplicity,
pT D, σ2 that helps with
quark gluon discrimation
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
pTD
0.00
0.02
0.04
0.06
0.08
0.10
0.12
fraction
of
jets/bin
80<pgen
T <100 GeV, 0<| gen|<1.3
quark
gluon
0.00 0.05 0.10 0.15 0.20
2
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
fraction
of
jets/bin
80<pgen
T <100 GeV, 0<| gen|<1.3
quark
gluon
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 7
Feature engineering
• Relative features for all constituents
• ∆pT,i = ppf
T,i /pjet
T
• ∆ηi = sgn(ηjet)(ηpf
i − ηjet)
• ∆φi = (φpf
i − φjet + π)mod(2π) − π
• One hot encode categorical features
• particle id and primary vertex association quality
• e.g. neutral pid:
[1, 2, 22, 130] -> [
[1, 0, 0, 0], [0, 1, 0, 0],
[0, 0, 1, 0], [0, 0, 0, 1]
]
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 8
Target and loss
• Regression target ŷ = log(pgen
T /pT )
• Correction factor is thus ey
where y is the NN output
• MAE loss function L = 1
N
PN
i=1 |yi − ŷi |I|ŷi |<1
• The last factor rejects 0.8% of jets where the target is
way off
1.5 1.0 0.5 0.0 0.5 1.0 1.5
log(pgen
T /pT)
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
fraction
of
jets/bin
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 9
Choice of ML models
• For every jet there are global features as well as
constituents
• Jet constituents form a permutation invariant set
• Number of constituents varies from jet to jet
• Order doesn’t matter
• ⇒ Requires special treatment to use it for ML
• Deep Sets and Dynamic Graph CNN are examples of NN
architectures allowing for unordered sets to be consumed
• They have been used for jet tagging in Energy Flow
Networks and ParticleNet respectively
• Modified versions of Deep Sets and ParticleNet are used
to include all available information, both global features
and constituents!
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 10
Deep Sets
• Used a JEC study with Deep Sets from 2020 as baseline
• Procedure
• An MLP F : xi → yi is applied to every constituent xi
• Weights of the MLP are shared among all constituents
• The learned parameters are aggregated using a
permutation invariant operation
• Here the sum over all constituents
P
i yi is chosen
• This is based on the theorem that any function G({xi })
invariant under permutations of its inputs can be
represented in the form
P
i F(xi )
• Concatenate with global features and feed into MLP
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 11
Deep Sets architecture
Deep Sets Block
n = (64, 128, 256)
Fully Connected
512, ReLu
Fully Connected
256, ReLu
Fully Connected
128, ReLu
Fully Connected
64, ReLu
charged
constituents
global features
Fully Connected
1
Deep Sets Block
n = (64, 128, 256)
neutral
constituents
Deep Sets Block
n = (32, 64, 128)
secondary
vertices
Fully Connected
1024, ReLu
(a) Complete network
Aggregation
constituents
Dense
ReLu
Dense
ReLu
Dense
ReLu
applied
elementwise
BatchNorm
BatchNorm
BatchNorm
(b) Deep Sets block
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 12
ParticleNet
• Started from H. Qu’s Keras version of ParticleNet
• Edge convolution
• Begin with coordinates in pseudorapidity-azimuth space
• Calculate k-nearest neighboring particles for each particle
using the coordinates
• “Edge features” are constructed from the constituent
features using the indices of k-nearest neighboring
particles
• Feed into shared MLP to update each particle in the
graph (in practice using convolution layers)
• Perform permutation invariant aggregation, selected
mean which is used in the ParticleNet paper
• Subsequent EdgeConv blocks use the learned feature
vectors as coordinates (hence dynamic)
• Concatenate with global features and feed into MLP
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 13
ParticleNet architecture
coordinates
neutral
constituents
EdgeConv Block
k = 16, c = (64, 64, 64)
EdgeConv Block
k = 16, c = (128, 128, 128)
EdgeConv Block
k = 16, c = (256, 256, 256)
Global Average Pooling
Fully Connected
512, ReLu
global features
Fully Connected
256, ReLu
Fully Connected
128, ReLu
Fully Connected
64, ReLu
Fully Connected
1
coordinates
charged
constituents
EdgeConv Block
k = 16, c = (64, 64, 64)
EdgeConv Block
k = 16, c = (128, 128, 128)
EdgeConv Block
k = 16, c = (256, 256, 256)
Global Average Pooling
coordinates
secondary
vertices
EdgeConv Block
k = 8, c = (32, 32, 32)
EdgeConv Block
k = 8, c = (64, 64, 64)
EdgeConv Block
k = 8, c = (128, 128, 128)
Global Average Pooling
(a) Complete network
coordinates constituents
k-NN
edge features
k-NN indices
Dense
ReLu
Dense
ReLu
Dense
ReLu
Aggregation
ReLu
BatchNorm
BatchNorm
BatchNorm
(b) EdgeConv block
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 14
Training
• Two models are trained
• Deep Sets with 1.47M parameters
• ParticleNet with 1.20M parameters
• Using TensorFlow 2.4.1
• MirroredStrategy on two Nvidia GeForce RTX 3090 cards
• Adam optimizer
• Batch size 1024
• Learning rate 2 × 10−3, reduced by a factor of 5 when
validation loss plateaus
• Regularization through early stopping callback
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 15
Effective data pipeline
Figure: Naive and parallel data handling in TensorFlow.
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 16
Loss
• Deep Sets
• min training loss 0.0784
• min validation loss 0.0792
• ParticleNet
• min training loss 0.0776
• min validation loss 0.0785
(a) Deep Sets loss (b) ParticleNet loss
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 17
Results
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 18
all jet response
102 103
pgen
T
0.99
1.00
1.01
1.02
1.03
1.04
Median
response
0<| gen|<2.5
Standard
Deep Sets
ParticleNet
0.00
0.05
0.10
0.15
0.20
0.25
0.30
IQR
/
median
for
response
0<| gen|<2.5
Standard
Deep Sets
ParticleNet
102 103
pgen
T
0.9
1.0
Ratio
102 103
pgen
T
0.97
0.98
0.99
1.00
1.01
1.02
1.03
Median
response
2.5<| gen|<5
Standard
Deep Sets
ParticleNet
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
IQR
/
median
for
response
2.5<| gen|<5
Standard
Deep Sets
ParticleNet
102 103
pgen
T
0.8
0.9
1.0
Ratio
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 19
uds jet response
102 103
pgen
T
0.98
1.00
1.02
1.04
1.06
Median
response
uds, 0<| gen|<2.5
Standard
Deep Sets
ParticleNet
0.00
0.05
0.10
0.15
0.20
0.25
IQR
/
median
for
response
uds, 0<| gen|<2.5
Standard
Deep Sets
ParticleNet
102 103
pgen
T
0.9
1.0
Ratio
102
pgen
T
0.96
0.98
1.00
1.02
1.04
1.06
Median
response
uds, 2.5<| gen|<5
Standard
Deep Sets
ParticleNet
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
IQR
/
median
for
response
uds, 2.5<| gen|<5
Standard
Deep Sets
ParticleNet
102 103
pgen
T
0.8
0.9
1.0
Ratio
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 20
gluon jet response
102 103
pgen
T
0.985
0.990
0.995
1.000
1.005
1.010
1.015
1.020
Median
response
g, 0<| gen|<2.5
Standard
Deep Sets
ParticleNet
0.00
0.05
0.10
0.15
0.20
0.25
0.30
IQR
/
median
for
response
g, 0<| gen|<2.5
Standard
Deep Sets
ParticleNet
102 103
pgen
T
0.9
1.0
Ratio
102
pgen
T
0.96
0.97
0.98
0.99
1.00
1.01
1.02
Median
response
g, 2.5<| gen|<5
Standard
Deep Sets
ParticleNet
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
IQR
/
median
for
response
g, 2.5<| gen|<5
Standard
Deep Sets
ParticleNet
102 103
pgen
T
0.8
0.9
1.0
Ratio
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 21
b jet response
102 103
pgen
T
0.985
0.990
0.995
1.000
1.005
1.010
1.015
1.020
Median
response
b, 0<| gen|<2.5
Standard
Deep Sets
ParticleNet
0.00
0.05
0.10
0.15
0.20
0.25
0.30
IQR
/
median
for
response
b, 0<| gen|<2.5
Standard
Deep Sets
ParticleNet
102 103
pgen
T
0.9
1.0
Ratio
102
pgen
T
0.96
0.98
1.00
1.02
1.04
1.06
1.08
Median
response
b, 2.5<| gen|<5
Standard
Deep Sets
ParticleNet
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
IQR
/
median
for
response
b, 2.5<| gen|<5
Standard
Deep Sets
ParticleNet
102 103
pgen
T
0.8
0.9
1.0
Ratio
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 22
c jet response
102 103
pgen
T
0.99
1.00
1.01
1.02
1.03
Median
response
c, 0<| gen|<2.5
Standard
Deep Sets
ParticleNet
0.00
0.05
0.10
0.15
0.20
0.25
0.30
IQR
/
median
for
response
c, 0<| gen|<2.5
Standard
Deep Sets
ParticleNet
102 103
pgen
T
0.9
1.0
Ratio
102 103
pgen
T
0.97
0.98
0.99
1.00
1.01
1.02
1.03
1.04
Median
response
c, 2.5<| gen|<5
Standard
Deep Sets
ParticleNet
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
IQR
/
median
for
response
c, 2.5<| gen|<5
Standard
Deep Sets
ParticleNet
102 103
pgen
T
0.8
0.9
1.0
Ratio
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 23
flavour difference
g u d s c b
0.990
0.995
1.000
1.005
1.010
1.015
Median
response
pgen
T >30 GeV, 0<| gen|<2.5
Standard
Deep Sets
ParticleNet
g u d s c b
0.97
0.98
0.99
1.00
1.01
1.02
1.03
Median
response
pgen
T >30 GeV, 2.5<| gen|<5
Standard
Deep Sets
ParticleNet
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 24
Summary
• Improved pT resolution w.r.t standard corrections
• 10-15% for uds jets, 10% for b & c jets and around 8%
for g jets in the central region
• 10-20% for uds jets and 5-20% for the rest of the jets in
the forward region
• Reduced flavour differences
• Factor of 3 improvement in central region and 30% in
forward region
• ParticleNet vs Deep Sets
• 270k less parameters in my ParticleNet model
• Despite this ParticleNet achieves slightly better
resolution, especially for jets with higher pT
• ParticleNet also has slightly less flavour difference for the
response
• However, Deep Sets has fewer GPU intense operations
and is faster to train
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 25
Extra material
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 26
Residual response
102 103
pgen
T
0.01
0.00
0.01
0.02
0.03
0.04
0.05
0.06
R
uds
R
b
0<| gen|<2.5
Standard
Deep Sets
ParticleNet
102
pgen
T
0.100
0.075
0.050
0.025
0.000
0.025
0.050
0.075
0.100
R
uds
R
b
2.5<| gen|<5
Standard
Deep Sets
ParticleNet
102 103
pgen
T
0.01
0.00
0.01
0.02
0.03
0.04
R
uds
R
c
0<| gen|<2.5
Standard
Deep Sets
ParticleNet
102
pgen
T
0.02
0.00
0.02
0.04
0.06
R
uds
R
c
2.5<| gen|<5
Standard
Deep Sets
ParticleNet
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 27
Residual response
102 103
pgen
T
0.01
0.00
0.01
0.02
0.03
0.04
0.05
0.06
R
uds
R
g
0<| gen|<2.5
Standard
Deep Sets
ParticleNet
102
pgen
T
0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08
R
uds
R
g
2.5<| gen|<5
Standard
Deep Sets
ParticleNet
102 103
pgen
T
0.015
0.010
0.005
0.000
0.005
0.010
0.015
R
b
R
g
0<| gen|<2.5
Standard
Deep Sets
ParticleNet
102
pgen
T
0.02
0.00
0.02
0.04
0.06
R
b
R
g
2.5<| gen|<5
Standard
Deep Sets
ParticleNet
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 28
Residual response
102 103
pgen
T
0.000
0.005
0.010
0.015
0.020
0.025
R
c
R
g
0<| gen|<2.5
Standard
Deep Sets
ParticleNet
102
pgen
T
0.01
0.00
0.01
0.02
0.03
0.04
0.05
R
c
R
g
2.5<| gen|<5
Standard
Deep Sets
ParticleNet
102 103
pgen
T
0.005
0.000
0.005
0.010
0.015
0.020
0.025
R
c
R
b
0<| gen|<2.5
Standard
Deep Sets
ParticleNet
102
pgen
T
0.00
0.02
0.04
0.06
R
c
R
b
2.5<| gen|<5
Standard
Deep Sets
ParticleNet
CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 29
home.cern

More Related Content

PDF
Early Application experiences on Summit
PDF
Targeting GPUs using OpenMP Directives on Summit with GenASiS: A Simple and...
PDF
Nvidia GTC 2014 Talk
PDF
DOE Efficiency Enhancing Solar Downconverting Phosphor Layer
PPT
Per domain power analysis
PPTX
A Hybrid Method of CART and Artificial Neural Network for Short Term Load For...
PPT
Benchmark Analysis of Multi-core Processor Memory Contention April 2009
PDF
XeMPUPiL: Towards Performance-aware Power Capping Orchestrator for the Xen Hy...
Early Application experiences on Summit
Targeting GPUs using OpenMP Directives on Summit with GenASiS: A Simple and...
Nvidia GTC 2014 Talk
DOE Efficiency Enhancing Solar Downconverting Phosphor Layer
Per domain power analysis
A Hybrid Method of CART and Artificial Neural Network for Short Term Load For...
Benchmark Analysis of Multi-core Processor Memory Contention April 2009
XeMPUPiL: Towards Performance-aware Power Capping Orchestrator for the Xen Hy...

What's hot (20)

PDF
Quantum Computation for Predicting Electron and Phonon Properties of Solids
PDF
IIBMP2019 講演資料「オープンソースで始める深層学習」
PDF
CoolDC'16: Seeing into a Public Cloud: Monitoring the Massachusetts Open Cloud
PDF
A performance-aware power capping orchestrator for the Xen hypervisor
PDF
An Enhanced Inherited Crossover GA for the Reliability Constrained UC Problem
PDF
Performance Optimization of HPC Applications: From Hardware to Source Code
PPTX
spie_poster_v4
PDF
Low Power High-Performance Computing on the BeagleBoard Platform
PDF
Multi-phase-field simulations with OpenPhase
PDF
"Approaches for Energy Efficient Implementation of Deep Neural Networks," a P...
PDF
NVIDIA 深度學習教育機構 (DLI): Image segmentation with tensorflow
PDF
Detection focal loss 딥러닝 논문읽기 모임 발표자료
PPT
A Hybrid Approach to Standard Cell Power Characterization based on PVT Indepe...
PPTX
"Building and running the cloud GPU vacuum cleaner"
PDF
kanimozhi2019.pdf
PDF
Continuous Conversion of CT Kernel using Switchable CycleGAN with AdaIN
PDF
Delle monache luca
PDF
JAWS-UG HPC #17 - Supercomputing'19 参加報告 - PFN 福田圭祐
PDF
PFN Summer Internship 2019 / Kenshin Abe: Extension of Chainer-Chemistry for ...
PDF
Dear - 딥러닝 논문읽기 모임 김창연님
Quantum Computation for Predicting Electron and Phonon Properties of Solids
IIBMP2019 講演資料「オープンソースで始める深層学習」
CoolDC'16: Seeing into a Public Cloud: Monitoring the Massachusetts Open Cloud
A performance-aware power capping orchestrator for the Xen hypervisor
An Enhanced Inherited Crossover GA for the Reliability Constrained UC Problem
Performance Optimization of HPC Applications: From Hardware to Source Code
spie_poster_v4
Low Power High-Performance Computing on the BeagleBoard Platform
Multi-phase-field simulations with OpenPhase
"Approaches for Energy Efficient Implementation of Deep Neural Networks," a P...
NVIDIA 深度學習教育機構 (DLI): Image segmentation with tensorflow
Detection focal loss 딥러닝 논문읽기 모임 발표자료
A Hybrid Approach to Standard Cell Power Characterization based on PVT Indepe...
"Building and running the cloud GPU vacuum cleaner"
kanimozhi2019.pdf
Continuous Conversion of CT Kernel using Switchable CycleGAN with AdaIN
Delle monache luca
JAWS-UG HPC #17 - Supercomputing'19 参加報告 - PFN 福田圭祐
PFN Summer Internship 2019 / Kenshin Abe: Extension of Chainer-Chemistry for ...
Dear - 딥러닝 논문읽기 모임 김창연님
Ad

Similar to Jet Energy Corrections with Deep Neural Network Regression (20)

PDF
Recent Progress in SCCS on GPU Simulation of Biomedical and Hydrodynamic Prob...
PDF
Run-time power management in cloud and containerized environments
PDF
Efficient_DNN_pruning_System_for_machine_learning.pdf
PDF
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
PDF
[2020 CVPR Efficient DET paper review]
PDF
34 8951 suseela g suseela paper8 (edit)new
PDF
33 8951 suseela g suseela paper8 (edit)new2
PDF
33 8951 suseela g suseela paper8 (edit)new2
PDF
PPTX
Architectural Optimizations for High Performance and Energy Efficient Smith-W...
PPTX
2022-01-17-Rethinking_Bisenet.pptx
PDF
Lightweight DNN Processor Design (based on NVDLA)
PDF
Performance Analysis and Optimizations of CAE Applications (Case Study: STAR_...
PDF
Performance Optimization of CGYRO for Multiscale Turbulence Simulations
PDF
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
PPTX
prescalers and dual modulus prescalers
PDF
Applying Tiny Machine Learning on FOC for PMSMs
PDF
ECP Application Development
PPTX
Test different neural networks models for forecasting of wind,solar and energ...
PDF
Modified approximate 8-point multiplier less DCT like transform
Recent Progress in SCCS on GPU Simulation of Biomedical and Hydrodynamic Prob...
Run-time power management in cloud and containerized environments
Efficient_DNN_pruning_System_for_machine_learning.pdf
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
[2020 CVPR Efficient DET paper review]
34 8951 suseela g suseela paper8 (edit)new
33 8951 suseela g suseela paper8 (edit)new2
33 8951 suseela g suseela paper8 (edit)new2
Architectural Optimizations for High Performance and Energy Efficient Smith-W...
2022-01-17-Rethinking_Bisenet.pptx
Lightweight DNN Processor Design (based on NVDLA)
Performance Analysis and Optimizations of CAE Applications (Case Study: STAR_...
Performance Optimization of CGYRO for Multiscale Turbulence Simulations
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
prescalers and dual modulus prescalers
Applying Tiny Machine Learning on FOC for PMSMs
ECP Application Development
Test different neural networks models for forecasting of wind,solar and energ...
Modified approximate 8-point multiplier less DCT like transform
Ad

Recently uploaded (20)

PPTX
Fluid dynamics vivavoce presentation of prakash
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PPTX
famous lake in india and its disturibution and importance
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PDF
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
PPTX
Pharmacology of Autonomic nervous system
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PDF
Sciences of Europe No 170 (2025)
PDF
lecture 2026 of Sjogren's syndrome l .pdf
PPTX
TOTAL hIP ARTHROPLASTY Presentation.pptx
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PPTX
Introduction to Cardiovascular system_structure and functions-1
PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
PPTX
2Systematics of Living Organisms t-.pptx
PDF
. Radiology Case Scenariosssssssssssssss
PPTX
Science Quipper for lesson in grade 8 Matatag Curriculum
PPTX
2. Earth - The Living Planet Module 2ELS
PDF
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
Fluid dynamics vivavoce presentation of prakash
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
Biophysics 2.pdffffffffffffffffffffffffff
famous lake in india and its disturibution and importance
Phytochemical Investigation of Miliusa longipes.pdf
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
Pharmacology of Autonomic nervous system
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
7. General Toxicologyfor clinical phrmacy.pptx
Sciences of Europe No 170 (2025)
lecture 2026 of Sjogren's syndrome l .pdf
TOTAL hIP ARTHROPLASTY Presentation.pptx
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
Introduction to Cardiovascular system_structure and functions-1
POSITIONING IN OPERATION THEATRE ROOM.ppt
2Systematics of Living Organisms t-.pptx
. Radiology Case Scenariosssssssssssssss
Science Quipper for lesson in grade 8 Matatag Curriculum
2. Earth - The Living Planet Module 2ELS
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf

Jet Energy Corrections with Deep Neural Network Regression

  • 1. Jet Energy Corrections with DNN Regression Daniel Holmberg CMS ML Forum 08.09.2021
  • 2. Introduction Dataset ML models Training Results Summary Extra material CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 2
  • 3. Introduction • The physical detector causes the jet transverse momentum pT to be different from the true particle-level jet • Corrected such that it agrees on average with the pT of the particle level jet • Determined by using basic kinematic quantities of the jet • Possible to include more information and get better corrections using machine learning • Has been done successfully for b-jets using a deep feed-forward neural network • However, this study is about generically applicable DNN-based corrections CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 3
  • 4. Dataset • QCD HT -binned samples, 2016 configuration • /QCD HT* TuneCUETP8M1 13TeV- madgraphMLM-pythia8/ RunIISummer16MiniAODv3*/MINIAODSIM • Custom ML JEC dataset by A. Popov (ULB) • Forked and added SV angles for initial coordinates in ParticleNet • Use 10M jets for training set, 2M jets for validation set and 2M jets for test set CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 4
  • 5. Data distribution • Same shape for all jet flavours • Flat in (pT , η) at low pT • Steeply falling in pT at high pT • Proportions of b, c, uds, and g jets fixed as 1 : 1 : 2 : 2 0 30 100 300 1000 3000 pgen T 0 1 2 3 4 5 | gen | 100 101 102 103 104 u d s c b g unknown 0 1 2 3 4 Number of jets 1e6 CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 5
  • 6. Training features • Event level • pT , log pT , η, φ, ρ, mass, area • multiplicity, pT D, σ2, num pv • Charged PF candidates • pT , η, φ, ∆pT , ∆η, ∆φ • dxy, dz, dxy significance, normalized χ2 • num hits, num pixel hits, lost hits • particle id, pv association quality • Neutral PF candidates • pT , η, φ, ∆pT , ∆η, ∆φ • particle id, hcal energy fraction • Secondary vertices • pT , η, φ, ∆pT , ∆η, ∆φ, mass • flight distance, significance, num tracks CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 6
  • 7. Feature engineering 0 10 20 30 40 Multiplicity 0.00 0.02 0.04 0.06 0.08 fraction of jets/bin 80<pgen T <100 GeV, 0<| gen|<1.3 quark gluon Create event-level features: multiplicity, pT D, σ2 that helps with quark gluon discrimation 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 pTD 0.00 0.02 0.04 0.06 0.08 0.10 0.12 fraction of jets/bin 80<pgen T <100 GeV, 0<| gen|<1.3 quark gluon 0.00 0.05 0.10 0.15 0.20 2 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 fraction of jets/bin 80<pgen T <100 GeV, 0<| gen|<1.3 quark gluon CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 7
  • 8. Feature engineering • Relative features for all constituents • ∆pT,i = ppf T,i /pjet T • ∆ηi = sgn(ηjet)(ηpf i − ηjet) • ∆φi = (φpf i − φjet + π)mod(2π) − π • One hot encode categorical features • particle id and primary vertex association quality • e.g. neutral pid: [1, 2, 22, 130] -> [ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ] CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 8
  • 9. Target and loss • Regression target ŷ = log(pgen T /pT ) • Correction factor is thus ey where y is the NN output • MAE loss function L = 1 N PN i=1 |yi − ŷi |I|ŷi |<1 • The last factor rejects 0.8% of jets where the target is way off 1.5 1.0 0.5 0.0 0.5 1.0 1.5 log(pgen T /pT) 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 fraction of jets/bin CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 9
  • 10. Choice of ML models • For every jet there are global features as well as constituents • Jet constituents form a permutation invariant set • Number of constituents varies from jet to jet • Order doesn’t matter • ⇒ Requires special treatment to use it for ML • Deep Sets and Dynamic Graph CNN are examples of NN architectures allowing for unordered sets to be consumed • They have been used for jet tagging in Energy Flow Networks and ParticleNet respectively • Modified versions of Deep Sets and ParticleNet are used to include all available information, both global features and constituents! CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 10
  • 11. Deep Sets • Used a JEC study with Deep Sets from 2020 as baseline • Procedure • An MLP F : xi → yi is applied to every constituent xi • Weights of the MLP are shared among all constituents • The learned parameters are aggregated using a permutation invariant operation • Here the sum over all constituents P i yi is chosen • This is based on the theorem that any function G({xi }) invariant under permutations of its inputs can be represented in the form P i F(xi ) • Concatenate with global features and feed into MLP CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 11
  • 12. Deep Sets architecture Deep Sets Block n = (64, 128, 256) Fully Connected 512, ReLu Fully Connected 256, ReLu Fully Connected 128, ReLu Fully Connected 64, ReLu charged constituents global features Fully Connected 1 Deep Sets Block n = (64, 128, 256) neutral constituents Deep Sets Block n = (32, 64, 128) secondary vertices Fully Connected 1024, ReLu (a) Complete network Aggregation constituents Dense ReLu Dense ReLu Dense ReLu applied elementwise BatchNorm BatchNorm BatchNorm (b) Deep Sets block CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 12
  • 13. ParticleNet • Started from H. Qu’s Keras version of ParticleNet • Edge convolution • Begin with coordinates in pseudorapidity-azimuth space • Calculate k-nearest neighboring particles for each particle using the coordinates • “Edge features” are constructed from the constituent features using the indices of k-nearest neighboring particles • Feed into shared MLP to update each particle in the graph (in practice using convolution layers) • Perform permutation invariant aggregation, selected mean which is used in the ParticleNet paper • Subsequent EdgeConv blocks use the learned feature vectors as coordinates (hence dynamic) • Concatenate with global features and feed into MLP CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 13
  • 14. ParticleNet architecture coordinates neutral constituents EdgeConv Block k = 16, c = (64, 64, 64) EdgeConv Block k = 16, c = (128, 128, 128) EdgeConv Block k = 16, c = (256, 256, 256) Global Average Pooling Fully Connected 512, ReLu global features Fully Connected 256, ReLu Fully Connected 128, ReLu Fully Connected 64, ReLu Fully Connected 1 coordinates charged constituents EdgeConv Block k = 16, c = (64, 64, 64) EdgeConv Block k = 16, c = (128, 128, 128) EdgeConv Block k = 16, c = (256, 256, 256) Global Average Pooling coordinates secondary vertices EdgeConv Block k = 8, c = (32, 32, 32) EdgeConv Block k = 8, c = (64, 64, 64) EdgeConv Block k = 8, c = (128, 128, 128) Global Average Pooling (a) Complete network coordinates constituents k-NN edge features k-NN indices Dense ReLu Dense ReLu Dense ReLu Aggregation ReLu BatchNorm BatchNorm BatchNorm (b) EdgeConv block CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 14
  • 15. Training • Two models are trained • Deep Sets with 1.47M parameters • ParticleNet with 1.20M parameters • Using TensorFlow 2.4.1 • MirroredStrategy on two Nvidia GeForce RTX 3090 cards • Adam optimizer • Batch size 1024 • Learning rate 2 × 10−3, reduced by a factor of 5 when validation loss plateaus • Regularization through early stopping callback CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 15
  • 16. Effective data pipeline Figure: Naive and parallel data handling in TensorFlow. CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 16
  • 17. Loss • Deep Sets • min training loss 0.0784 • min validation loss 0.0792 • ParticleNet • min training loss 0.0776 • min validation loss 0.0785 (a) Deep Sets loss (b) ParticleNet loss CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 17
  • 18. Results CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 18
  • 19. all jet response 102 103 pgen T 0.99 1.00 1.01 1.02 1.03 1.04 Median response 0<| gen|<2.5 Standard Deep Sets ParticleNet 0.00 0.05 0.10 0.15 0.20 0.25 0.30 IQR / median for response 0<| gen|<2.5 Standard Deep Sets ParticleNet 102 103 pgen T 0.9 1.0 Ratio 102 103 pgen T 0.97 0.98 0.99 1.00 1.01 1.02 1.03 Median response 2.5<| gen|<5 Standard Deep Sets ParticleNet 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 IQR / median for response 2.5<| gen|<5 Standard Deep Sets ParticleNet 102 103 pgen T 0.8 0.9 1.0 Ratio CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 19
  • 20. uds jet response 102 103 pgen T 0.98 1.00 1.02 1.04 1.06 Median response uds, 0<| gen|<2.5 Standard Deep Sets ParticleNet 0.00 0.05 0.10 0.15 0.20 0.25 IQR / median for response uds, 0<| gen|<2.5 Standard Deep Sets ParticleNet 102 103 pgen T 0.9 1.0 Ratio 102 pgen T 0.96 0.98 1.00 1.02 1.04 1.06 Median response uds, 2.5<| gen|<5 Standard Deep Sets ParticleNet 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 IQR / median for response uds, 2.5<| gen|<5 Standard Deep Sets ParticleNet 102 103 pgen T 0.8 0.9 1.0 Ratio CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 20
  • 21. gluon jet response 102 103 pgen T 0.985 0.990 0.995 1.000 1.005 1.010 1.015 1.020 Median response g, 0<| gen|<2.5 Standard Deep Sets ParticleNet 0.00 0.05 0.10 0.15 0.20 0.25 0.30 IQR / median for response g, 0<| gen|<2.5 Standard Deep Sets ParticleNet 102 103 pgen T 0.9 1.0 Ratio 102 pgen T 0.96 0.97 0.98 0.99 1.00 1.01 1.02 Median response g, 2.5<| gen|<5 Standard Deep Sets ParticleNet 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 IQR / median for response g, 2.5<| gen|<5 Standard Deep Sets ParticleNet 102 103 pgen T 0.8 0.9 1.0 Ratio CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 21
  • 22. b jet response 102 103 pgen T 0.985 0.990 0.995 1.000 1.005 1.010 1.015 1.020 Median response b, 0<| gen|<2.5 Standard Deep Sets ParticleNet 0.00 0.05 0.10 0.15 0.20 0.25 0.30 IQR / median for response b, 0<| gen|<2.5 Standard Deep Sets ParticleNet 102 103 pgen T 0.9 1.0 Ratio 102 pgen T 0.96 0.98 1.00 1.02 1.04 1.06 1.08 Median response b, 2.5<| gen|<5 Standard Deep Sets ParticleNet 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 IQR / median for response b, 2.5<| gen|<5 Standard Deep Sets ParticleNet 102 103 pgen T 0.8 0.9 1.0 Ratio CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 22
  • 23. c jet response 102 103 pgen T 0.99 1.00 1.01 1.02 1.03 Median response c, 0<| gen|<2.5 Standard Deep Sets ParticleNet 0.00 0.05 0.10 0.15 0.20 0.25 0.30 IQR / median for response c, 0<| gen|<2.5 Standard Deep Sets ParticleNet 102 103 pgen T 0.9 1.0 Ratio 102 103 pgen T 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 Median response c, 2.5<| gen|<5 Standard Deep Sets ParticleNet 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 IQR / median for response c, 2.5<| gen|<5 Standard Deep Sets ParticleNet 102 103 pgen T 0.8 0.9 1.0 Ratio CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 23
  • 24. flavour difference g u d s c b 0.990 0.995 1.000 1.005 1.010 1.015 Median response pgen T >30 GeV, 0<| gen|<2.5 Standard Deep Sets ParticleNet g u d s c b 0.97 0.98 0.99 1.00 1.01 1.02 1.03 Median response pgen T >30 GeV, 2.5<| gen|<5 Standard Deep Sets ParticleNet CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 24
  • 25. Summary • Improved pT resolution w.r.t standard corrections • 10-15% for uds jets, 10% for b & c jets and around 8% for g jets in the central region • 10-20% for uds jets and 5-20% for the rest of the jets in the forward region • Reduced flavour differences • Factor of 3 improvement in central region and 30% in forward region • ParticleNet vs Deep Sets • 270k less parameters in my ParticleNet model • Despite this ParticleNet achieves slightly better resolution, especially for jets with higher pT • ParticleNet also has slightly less flavour difference for the response • However, Deep Sets has fewer GPU intense operations and is faster to train CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 25
  • 26. Extra material CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 26
  • 27. Residual response 102 103 pgen T 0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06 R uds R b 0<| gen|<2.5 Standard Deep Sets ParticleNet 102 pgen T 0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100 R uds R b 2.5<| gen|<5 Standard Deep Sets ParticleNet 102 103 pgen T 0.01 0.00 0.01 0.02 0.03 0.04 R uds R c 0<| gen|<2.5 Standard Deep Sets ParticleNet 102 pgen T 0.02 0.00 0.02 0.04 0.06 R uds R c 2.5<| gen|<5 Standard Deep Sets ParticleNet CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 27
  • 28. Residual response 102 103 pgen T 0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06 R uds R g 0<| gen|<2.5 Standard Deep Sets ParticleNet 102 pgen T 0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08 R uds R g 2.5<| gen|<5 Standard Deep Sets ParticleNet 102 103 pgen T 0.015 0.010 0.005 0.000 0.005 0.010 0.015 R b R g 0<| gen|<2.5 Standard Deep Sets ParticleNet 102 pgen T 0.02 0.00 0.02 0.04 0.06 R b R g 2.5<| gen|<5 Standard Deep Sets ParticleNet CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 28
  • 29. Residual response 102 103 pgen T 0.000 0.005 0.010 0.015 0.020 0.025 R c R g 0<| gen|<2.5 Standard Deep Sets ParticleNet 102 pgen T 0.01 0.00 0.01 0.02 0.03 0.04 0.05 R c R g 2.5<| gen|<5 Standard Deep Sets ParticleNet 102 103 pgen T 0.005 0.000 0.005 0.010 0.015 0.020 0.025 R c R b 0<| gen|<2.5 Standard Deep Sets ParticleNet 102 pgen T 0.00 0.02 0.04 0.06 R c R b 2.5<| gen|<5 Standard Deep Sets ParticleNet CMS ML Forum 08.09.2021 Jet Energy Corrections with DNN Regression 29