SlideShare a Scribd company logo
0/1 KNAPSACK PROBLEM
DYNAMIC PROGRAMMING
APPROACH
Dr. P. Subathra
Prof/ IT
KAMARAJ College of Engg. & Tech
(AUTONOMOUS)
Madurai
Tamil Nadu
India
0/1 KNAPSACK PROBLEM
2
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
0/1 KNAPSACK PROBLEM
Dynamic Programming
3
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
0/1 KNAPSACK PROBLEM
Dynamic Programming – Bottom Up
4
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0
12 2 1
10 1 2
20 3 3
15 2 4
5
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1
10 1 2
20 3 3
15 2 4
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
6
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0
10 1 2 0
20 3 3 0
15 2 4 0
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
7
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 2/12 2/12 2/12 2/12
10 1 2 0
20 3 3 0
15 2 4 0
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
8
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 2/12 2/12 2/12 2/12
10 1 2 0 1/10 2/12 3/22 3/22 3/22
20 3 3 0
15 2 4 0
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
9
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 2/12 2/12 2/12 2/12
10 1 2 0 1/10 2/12 3/22 3/22 3/22
20 3 3 0 1/10 2/12 3/22 4/30 5/32
15 2 4 0
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
10
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 2/12 2/12 2/12 2/12
10 1 2 0 1/10 2/12 3/22 3/22 3/22
20 3 3 0 1/10 2/12 3/22 4/30 5/32
15 2 4 0 1/10 2/15 3/25 4/30 4/37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
11
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 2/12 2/12 2/12 2/12
10 1 2 0 1/10 2/12 3/22 3/22 3/22
20 3 3 0 1/10 2/12 3/22 4/30 5/32
15 2 4 0 1/10 2/15 3/25 4/30 4/37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
12
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
13
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
14
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
15
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
16
Trace back to (5-2)=3 rd column
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
17
Trace back to (5-2)=3 rd column
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
18
Trace back to (5-2)=3 rd column
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
19
Trace back to (5-2)=3 rd column
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
20
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
21
X
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
22
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
23
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
24
Trace back to (3-1)=2 nd column
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
25
Trace back to (3-1)=2 nd column
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
26
Trace back to (3-1)=2 nd column
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
27
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
28
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
29
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
30
Trace back to (2-2)=0 th column
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
31
Trace back to (2-2)=0 th column
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
32
Trace back to (2-2)=0 th column
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
33
Trace back to (2-2)=0 th column
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
34
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
35
Items Selected : 1, 2 & 4
Total Cost = 12+10+15
= 37
v
v
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
END….!!!

More Related Content

PDF
Heuristic Algorithm for Finding Sensitivity Analysis in Interval Solid Transp...
PDF
A kernel-free particle method: Smile Problem Resolved
PDF
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
PDF
Analyzing Soft Cut-off in Twitter
PPTX
3.1 Trees ( Introduction, Binary Trees & Binary Search Trees)
PPTX
2.2 stack applications Infix to Postfix & Evaluation of Post Fix
Heuristic Algorithm for Finding Sensitivity Analysis in Interval Solid Transp...
A kernel-free particle method: Smile Problem Resolved
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
Analyzing Soft Cut-off in Twitter
3.1 Trees ( Introduction, Binary Trees & Binary Search Trees)
2.2 stack applications Infix to Postfix & Evaluation of Post Fix

More from P. Subathra Kishore, KAMARAJ College of Engineering and Technology, Madurai (20)

PPTX
PDF
PDF
The stable marriage problem iterative improvement method
PDF
Maximum matching in bipartite graphs iterative improvement method
PDF
Knapsack dynamic programming formula top down (1)
PDF
Multiplication of integers & strassens matrix multiplication subi notes
PDF
Multiplication of large integers problem subi notes
The stable marriage problem iterative improvement method
Maximum matching in bipartite graphs iterative improvement method
Knapsack dynamic programming formula top down (1)
Multiplication of integers & strassens matrix multiplication subi notes
Multiplication of large integers problem subi notes
Ad

Recently uploaded (20)

PPT
Project quality management in manufacturing
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
Geodesy 1.pptx...............................................
PPTX
Lecture Notes Electrical Wiring System Components
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
Construction Project Organization Group 2.pptx
PDF
composite construction of structures.pdf
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPT
Mechanical Engineering MATERIALS Selection
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
Project quality management in manufacturing
Automation-in-Manufacturing-Chapter-Introduction.pdf
Geodesy 1.pptx...............................................
Lecture Notes Electrical Wiring System Components
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Construction Project Organization Group 2.pptx
composite construction of structures.pdf
CYBER-CRIMES AND SECURITY A guide to understanding
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
R24 SURVEYING LAB MANUAL for civil enggi
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Mechanical Engineering MATERIALS Selection
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
Ad

Knapsack dynamic programming formula bottom up

  • 1. 0/1 KNAPSACK PROBLEM DYNAMIC PROGRAMMING APPROACH Dr. P. Subathra Prof/ IT KAMARAJ College of Engg. & Tech (AUTONOMOUS) Madurai Tamil Nadu India
  • 2. 0/1 KNAPSACK PROBLEM 2 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 3. 0/1 KNAPSACK PROBLEM Dynamic Programming 3 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 4. 0/1 KNAPSACK PROBLEM Dynamic Programming – Bottom Up 4 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 5. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 12 2 1 10 1 2 20 3 3 15 2 4 5 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 6. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 10 1 2 20 3 3 15 2 4 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 6 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 7. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 10 1 2 0 20 3 3 0 15 2 4 0 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 7 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 8. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 2/12 2/12 2/12 2/12 10 1 2 0 20 3 3 0 15 2 4 0 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 8 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 9. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 2/12 2/12 2/12 2/12 10 1 2 0 1/10 2/12 3/22 3/22 3/22 20 3 3 0 15 2 4 0 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 9 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 10. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 2/12 2/12 2/12 2/12 10 1 2 0 1/10 2/12 3/22 3/22 3/22 20 3 3 0 1/10 2/12 3/22 4/30 5/32 15 2 4 0 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 10 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 11. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 2/12 2/12 2/12 2/12 10 1 2 0 1/10 2/12 3/22 3/22 3/22 20 3 3 0 1/10 2/12 3/22 4/30 5/32 15 2 4 0 1/10 2/15 3/25 4/30 4/37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 11 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 12. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 2/12 2/12 2/12 2/12 10 1 2 0 1/10 2/12 3/22 3/22 3/22 20 3 3 0 1/10 2/12 3/22 4/30 5/32 15 2 4 0 1/10 2/15 3/25 4/30 4/37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 12 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 13. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 13 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 14. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 14 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 15. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 15 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 16. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 16 Trace back to (5-2)=3 rd column Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 17. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 17 Trace back to (5-2)=3 rd column Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 18. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 18 Trace back to (5-2)=3 rd column Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 19. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 19 Trace back to (5-2)=3 rd column Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 20. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 20 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 21. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 21 X Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 22. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 22 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 23. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 23 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 24. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 24 Trace back to (3-1)=2 nd column Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 25. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 25 Trace back to (3-1)=2 nd column Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 26. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 26 Trace back to (3-1)=2 nd column Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 27. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 27 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 28. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 28 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 29. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 29 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 30. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 30 Trace back to (2-2)=0 th column Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 31. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 31 Trace back to (2-2)=0 th column Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 32. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 32 Trace back to (2-2)=0 th column Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 33. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 33 Trace back to (2-2)=0 th column Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 34. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 34 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 35. KNAPSACK PROBLEM – Dynamic – Bottom Up 35 Items Selected : 1, 2 & 4 Total Cost = 12+10+15 = 37 v v Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India