SlideShare a Scribd company logo
Configuration or Space Diagram Velocity Diagram
Velocity Calculation
Velocity Calculation for Point “ C ”
Ratio Method:
Configuration or Space Diagram
Velocity Diagram
Problem No. 1 Scale Factor : 1: 2
a, d
b
c
𝜐𝑏𝑎 𝜐𝑐𝑏
𝜐𝑐𝑑
Velocity Diagram
Scale Factor : 1 cm = 10 cm/s
Links Velocity
Symbol
Velocity
(cm/s)
Angular
Velocity
Symbol
Angular
Velocity
(rad/s)
AB 𝜐𝑏𝑎
50.24 ω𝑏𝑎
12.56
BC 𝜐𝑐𝑏
15.38
CD 𝜐𝑐𝑑
38.23 ω𝑐𝑑
4.77
TABLE
Configuration or Space Diagram
Velocity Diagram
Problem No. 1
Problem No. 2
Configuration or Space Diagram
E
Velocity Diagram
Scale Factor : 1cm = 100 cm/s
a, e
b
c
𝜐𝑏𝑎 𝜐𝑐𝑏
𝜐𝑐𝑒
𝜐𝑑𝑎
d
𝜐𝑑𝑏
𝜐𝑑𝑐
Velocity Diagram
Problem No. 2
Configuration or Space Diagram
Links Velocity
Symbol
Velocity
(cm/s)
Angular
Velocity
Symbol
Angular
Velocity
(rad/s)
BA 𝜐𝑏𝑎
471.30 ω𝑏𝑎
31.42
CB 𝜐𝑐𝑏
340 ω𝑐𝑏
5.67
DB 𝜐𝑑𝑏
170
CE 𝜐𝑐𝑒
400
Point D 𝜐𝑑𝑎 or 𝜐𝑑𝑒
410
E
Scale Factor : 1cm = 100 cm/s
a, e
b
c
𝜐𝑏𝑎 𝜐𝑐𝑏
𝜐𝑐𝑒
𝜐𝑑𝑎
d
𝜐𝑑𝑏
𝜐𝑑𝑐
Velocity Diagram
TABLE
Problem No. 3
Configuration or Space Diagram
Scale Factor : 1:2
O,02, O1
𝜐𝑎𝑜
Velocity Diagram
𝑂1
𝑂2
Scale Factor : 1cm = 100 mm/s
a
d
𝜐𝑑𝑎
𝜐𝑑02 b
c
𝜐𝑐𝑏
𝜐𝑐𝑜1
𝜐𝑏𝑎
𝜐𝑑𝑏
Links Velocity
Symbol
Velocity
(mm/s)
Angular
Velocity
Symbol
Angular
Velocity
(rad/s)
OA 𝜐𝑎𝑜
867.64 ω𝑎𝑜
18.84
DA 𝜐𝑑𝑎
280 ω𝑑𝑎
1.84
BA 𝜐𝑏𝑎
180 ω𝑏𝑎
1.97
CB 𝜐𝑐𝑏
810 ω𝑐𝑏
8.90
Velocity
at P
𝜐𝑑𝑜2
960
Velocity
at C
𝜐𝑐𝑜1
170
V = 867.079 mm/sec
o
a
b
d
c
172.682
965.953
a
Velocity Diagram
Problem No. 3
Scale Factor : 1cm = 100 cm/s
𝑂1
𝑂2
Problem No. 4
Configuration or Space Diagram
Scale Factor : 1 : 2
b
𝜐𝑎𝑜2
=
Velocity Diagram
ω𝑎𝑜2
× AO2
Scale Factor : 1 cm = 1m/sec
O2,
a
O4,
𝜐𝑏𝑎
𝜐𝑏𝑜4
p
𝜐𝑝𝑎
𝜐𝑝
𝜐𝑎𝑜2
Links Velocity
Symbol
Velocity
(mm/s)
Angular
Velocity
Symbol
Angular
Velocity
(rad/s)
AO2 𝜐𝑎𝑜2
4500 ω𝑎𝑜2
45.00
BA 𝜐𝑏𝑎
4490 ω𝑏𝑎
44.90
BO4 𝜐𝑏𝑜4
6510 ω𝑏𝑜4
73.97
PA 𝜐𝑝𝑎
4490
Velocity at
P
𝜐𝑝𝑜2
6200
Instantaneous Centre Method
Instantaneous Centre Method
Instantaneous Centre Method
Types of Instantaneous Centres
1. Fixed Instantaneous Centres
2. Permanent Instantaneous Centres
3. Neither Fixed nor Permanent Instantaneous Centres
Instantaneous Centre Method
Location of Instantaneous Centres
Instantaneous Centre Method
Problem No. 1
𝜐𝑏𝑎 = ω𝑏𝑎 × BA
1
2
3
4 1 2
3
4
𝐼13
𝜐𝑏𝑎 𝑜𝑟 𝜐𝑏 = ω𝑏𝑎 × BA
𝜐𝑏
𝐵𝐼13
=
𝜐𝑐
𝐶𝐼13
ω𝑐𝑏
=
Instantaneous Centre Method
Problem No. 1
𝜐𝑏𝑎 = ω𝑏𝑎 × BA
3. Fig. shows a pin Joined four bar linkage having the following dimensions : Fixed link AD = 4 m ;
Driving link AB = 1.5 m, Driven link CD = 2.5 m ; Connecting link BC = 3 m Angle BAD = 60°. Link
AB revolves at 25 rpm. Determine: (i) Angular velocity of link CD and (ii) Angular velocity of link
BC.
1
2
3
4
Instantaneous Centre Method
Problem No. 1
𝜐𝑏𝑎 𝑜𝑟 𝜐𝑏 = ω𝑏𝑎 × BA
𝜐𝑏
𝐵𝐼13
=
𝜐𝑐
𝐶𝐼13
ω𝑐𝑏
=
Instantaneous Centre Method
Problem No. 2
𝐼13
1 2
3
4
𝐼24
𝜐𝑎
=
𝜐𝑏
𝐵𝐼13
ω𝑏𝑎
=
𝐴𝐼13
Instantaneous Centre Method
Problem No. 3
𝜐𝑎
=
𝜐𝑏
𝐵𝐼13
𝐴𝐼13
1 2 3 4 5 6
12 23 34 45 56
13 24 35 46
14 25 36
15 26
16
1
𝜐𝑎𝑜 𝑜𝑟 𝜐𝑎 = ω𝑎𝑜 × AO
𝐼34
𝐼45
𝐼14
𝐼56 𝐼16 at infinity
𝐼23
2
3
4
5
6
1
6
1
𝐼15
𝜐𝑏
=
𝜐𝑑
𝐷𝐼14
𝐵𝐼14
𝜐𝑑
=
𝜐𝑒
𝐸𝐼15
𝐷𝐼15
Instantaneous Centre Method
Problem No. 4
1
2
3
4
5
6
1 2 3 4 5 6
12 23 34 45 56
13 24 35 46
14 25 36
15 26
16
1
2
3
4
5
6
1
1
𝐼12
𝐼23
𝐼34
𝐼14
𝐼35
𝐼16 𝐼56
𝐼13
𝐼15
𝜐𝑝𝑜1 𝑜𝑟 𝜐𝑝 = ω𝑝𝑜1 × PO1
𝜐𝑝
=
𝜐𝑞
𝑄𝐼13
𝑃𝐼13
𝜐𝑞
=
𝜐𝑠
𝑆𝐼15
𝑄𝐼15
𝜐𝑠
=
𝜐𝑇
𝑇𝐼16
S𝐼16
𝐼24
Instantaneous Centre Method
Arnold Kennedy Theorem
Relative Acceleration Method
Tangential Component
Radial Component
a’
m
b’
Relative Acceleration Method
Relative Acceleration Method
Relative Acceleration Method
For a Slider : When the slider (point) moves along a straight line, then its radial acceleration will be
zero
Relative Acceleration Method
Problem No. 1
ω
α
Space Diagram
𝑝1
′
x
Scale : 1cm = 10 m/s2
𝑓𝑎𝑝1
𝑟
a’
𝑓𝑎𝑝1
𝑡
𝑓𝑎𝑝1
y 𝑓𝑏𝑎
𝑟
𝑓𝑏𝑎
𝑡
𝑝2
′
z
𝑓𝑏𝑝2
𝑟
𝑓𝑏𝑝2
𝑡
b’
𝑓𝑏𝑝2
𝑓𝑏𝑎
Relative Acceleration Method
Problem No. 1
Links Velocity
Symbol
Velocity
(m/s)
Angular
Velocity
Symbol
Angular
Velocity
(rad/s)
Acc.
Symbol
Radial
Comp.
Acc.
Radial
Comp.
(m/s2)
Acc.
Symbol
Tangential
Comp.
Acc.
Tangential
Comp.
(m/s2)
Angular
Acc.
Symbol and
Value (rad/s2)
TOTAL
Acceleration
Symbol & Value
(m/s2)
AP1 𝜐𝑎𝑝1
03 ω𝑎𝑝1
10 𝑓𝑎𝑝1
𝑟 30 𝑓𝑎𝑝1
𝑡 09 α𝑎𝑝1
= 30 𝑓𝑎𝑝1
= 31.6
BA 𝜐𝑏𝑎
2.1 ω𝑏𝑎
5.86 𝑓𝑏𝑎
𝑟
11.67
𝑓𝑏𝑎
𝑡 13.6 α𝑏𝑎 = 37.78 𝑓𝑏𝑎 = 18
BP2 𝜐𝑏𝑝2
2.25 ω𝑏𝑝2
6.13 𝑓𝑏𝑝2
𝑟 14.06 𝑓𝑏𝑝2
𝑡 28 α𝑏𝑝2
= 77.78 𝑓𝑏𝑝2
= 31.33
TABLE
Relative Acceleration Method
Problem No. 2
Space Diagram
𝑜2
′
x
y
z
𝑜4
′
a’
b’
p’
𝑓𝑎𝑜2
𝑟
𝑓𝑏𝑎
𝑟
𝑓𝑏𝑜4
𝑟
Scale : 1cm = 50 m/s2
𝑓𝑎𝑜2
𝑡
𝑓𝑎𝑜2
𝑓𝑏𝑜4
𝑡
𝑓𝑏𝑎
𝑡
𝑓𝑝𝑎
𝑓𝑏𝑜4
𝑓𝑝𝑜2
𝑓𝑏𝑎
Relative Acceleration Method
Problem No. 2
Links Velocity
Symbol
Velocity
(m/s)
Angular
Velocity
Symbol
Angular
Velocity
(rad/s)
Acc.
Symbol
Radial
Comp.
Acc.
Radial
Comp.
(m/s2)
Acc.
Symbol
Tangential
Comp.
Acc.
Tangential
Comp.
(m/s2)
Angular
Acc.
Symbol and
Value (rad/s2)
TOTAL
Acceleration
Symbol & Value
(m/s2)
AO2 𝜐𝑎𝑜2
4.5 ω𝑎𝑜2
45 𝑓𝑎𝑜2
𝑟 202.5 𝑓𝑎𝑜2
𝑡 30 α𝑎𝑜2
= 300 𝑓𝑎𝑜2
= 204.71
BA 𝜐𝑏𝑎
4.49 ω𝑏𝑎
44.49 𝑓𝑏𝑎
𝑟 201.6 𝑓𝑏𝑎
𝑡 610 α𝑏𝑎 = 6100 𝑓𝑏𝑎 = 635
BO4 𝜐𝑏𝑜4
6.513 ω𝑏𝑜4
73.79 𝑓𝑏𝑜4
𝑟 482.03 𝑓𝑏𝑜4
𝑡 680 α𝑏𝑜4
=
7727.27
𝑓𝑏𝑜4
= 835
PA 𝜐𝑝𝑎
4.49 ω𝑝𝑎
44.49 𝑓𝑝𝑎
𝑟 201.6 𝑓𝑝𝑎 = 640
Velocity
at P
𝜐𝑝𝑜2
6.20 𝑓𝑝𝑜2
= 490
TABLE
Relative Acceleration Method
Problem No. 3
Space Diagram
Scale : 1cm = 100 mm Length
𝜐𝑎𝑜
𝜐𝑐𝑎
𝜐𝑑𝑐
𝜐𝑐𝑞
𝜐𝑑𝑞 𝜐𝑏𝑑
𝜐𝑏𝑔
o, q, g
a
b
c
d
Scale : 1cm = 0.25 m/s
Relative Acceleration Method
Problem No. 3
Space Diagram
Scale : 1cm = 100 mm Length
Acceleration Diagram Scale : 1cm = 2 m/s2
o’
a’
𝑓𝑎𝑜
𝑟
= 𝑓𝑎𝑜
x
𝑓𝑐𝑎
𝑟
𝑓𝑐𝑎
𝑡
q’
𝑓𝑐𝑞
𝑟
y
c’
𝑓𝑐𝑞
𝑓𝑐𝑎
𝑓𝑑𝑞
𝑟
z
𝑓𝑑𝑞
𝑡
d’
𝑓𝑑𝑐
𝑟
m
𝑓𝑑𝑐
𝑡
𝑓𝑑𝑐
𝑓𝑑𝑞
𝑓𝑏𝑑
𝑟
n
𝑓𝑏𝑑
𝑡
g’
b’
𝑓𝑏𝑔
𝑡 = 𝑓𝑏𝑔
𝑓𝑏𝑑
𝑓𝑐𝑞
𝑡
Problem No. 3
Links Velocity
Symbol
Velocity
(m/s)
Angular
Velocity
Symbol
Angular
Velocity
(rad/s)
Acc.
Symbol
Radial
Comp.
Acc.
Radial
Comp.
(m/s2)
Acc.
Symbol
Tangential
Comp.
Acc.
Tangential
Comp.
(m/s2)
Angular
Acc.
Symbol and
Value (rad/s2)
TOTAL
Acceleration
Symbol & Value
(m/s2)
AO 𝜐𝑎𝑜
0.94 ω𝑎𝑜
6.28 𝑓𝑎𝑜
𝑟 5.89 𝑓𝑎𝑜
𝑡 0 α𝑎𝑜= 0 𝑓𝑎𝑜 = 5.89
CA 𝜐𝑐𝑎
1.00 ω𝑐𝑎
1.67 𝑓𝑐𝑎
𝑟 1.67 𝑓𝑐𝑎
𝑡 15 α𝑐𝑎 = 25 𝑓𝑐𝑎 = 15.1
CQ 𝜐𝑐𝑞
1.14 ω𝑐𝑞
7.86 𝑓𝑐𝑞
𝑟 8.96 𝑓𝑐𝑞
𝑡 3.6 α𝑐𝑞 = 24.83 𝑓𝑐𝑞 = 9.65
DC 𝜐𝑑𝑐
1.08 ω𝑑𝑐
8.64 𝑓𝑑𝑐
𝑟 9.33 𝑓𝑑𝑐
𝑡 5 α𝑑𝑐 = 40 𝑓𝑑𝑐 =10.58
DQ 𝜐𝑑𝑞
1.14 ω𝑑𝑞
7.86 𝑓𝑑𝑞
𝑟 8.96 𝑓𝑑𝑞
𝑡 3.6 α𝑑𝑞 = 24.83 𝑓𝑑𝑞 = 9.65
BD 𝜐𝑏𝑑
0.45 ω𝑏𝑑
0.90 𝑓𝑏𝑑
𝑟 0.405 𝑓𝑏𝑑
𝑡 7.21 α𝑏𝑑 = 14.44 𝑓𝑏𝑑 = 7.22
BG 𝜐𝑏𝑔 0.88 *** 𝑓𝑏𝑔
𝑟 0 𝑓𝑏𝑔
𝑡 8.4 α𝑏𝑞 = 21 𝑓𝑏𝑔 = 8.4
TABLE
Klein’s Construction (only for Slider Crank Mechanism)
Problem No. 4
Space Diagram
N
Klein’s Construction (only for Slider Crank Mechanism)
Problem No. 4
Space Diagram Scale : 1cm = 1m/s
Acceleration Diagram Using Relative Acc. Method for comparing with
Klein’s method
𝜐𝑏𝑛
𝜐𝑎𝑜 𝜐𝑏𝑎
o, n b
a
N
Velocity diagram Using Relative Velocity Method for comparing with
Klein’s method
o’, n’
a’
𝑓𝑎𝑜
𝑟
=𝑓𝑎𝑜
𝑓𝑏𝑎
𝑟
x
𝑓𝑏𝑎
𝑡
b’
𝑓𝑏𝑛
𝑡
=𝑓𝑏𝑛
𝑓𝑏𝑎
Scale : 1cm = 50 m/s2
Scale : 1cm = 100 length
Klein’s Construction (only for Slider Crank Mechanism)
Problem No. 4
Velocity Diagram
(Region OAC)
C
N
X
M
P
F
H
Acceleration Diagram
(Region OAHFO)
𝜐𝑎𝑜 𝑜𝑟 𝜐𝑎 = ω𝑎𝑜 × AO x scale factor
𝜐𝑏𝑎 = ω𝑎𝑜 × AC x scale factor
𝜐𝑏𝑛 = ω𝑎𝑜 × OC x scale factor
𝑓𝑏𝑎
=
𝑓𝑎𝑜
𝑟
ω𝑎𝑜
2 × AO x Scale factor
=
𝑓𝑏𝑎
𝑟
ω𝑎𝑜
2 × AH x Scale factor
=
𝑓𝑏𝑎
𝑡
ω𝑎𝑜
2 × HF x Scale factor
=
𝑓𝑏𝑛
𝑡
ω𝑎𝑜
2 × OF x Scale factor
= ω𝑎𝑜
2 × AF x Scale factor
Problem No. 4
Links Velocity
Symbol
Velocity
(m/s)
Angular
Velocity
Symbol
Angular
Velocity
(rad/s)
Acc.
Symbol
Radial
Comp.
Acc.
Radial
Comp.
(m/s2)
Acc.
Symbol
Tangential
Comp.
Acc.
Tangential
Comp.
(m/s2)
Angular
Acc.
Symbol and
Value (rad/s2)
TOTAL
Acceleration
Symbol & Value
(m/s2)
AO 𝜐𝑎𝑜
4.189 ω𝑎𝑜
41.89 𝑓𝑎𝑜
𝑟 175.75 𝑓𝑎𝑜
𝑡 0 α𝑎𝑜= 0 𝑓𝑎𝑜 =175.75
BA 𝜐𝑏𝑎
2.80 ω𝑏𝑎
5.61 𝑓𝑏𝑎
𝑟 15.68 𝑓𝑏𝑎
𝑡 95 α𝑏𝑎 = 190 𝑓𝑏𝑎 = 96.28
BN 𝜐𝑏𝑛
3.10 **** **** 𝑓𝑏𝑛
𝑟 0 𝑓𝑏𝑛
𝑡 165 ∗∗∗∗ 𝑓𝑏𝑛 = 165
TABLE
Klein’s Construction (only for Slider Crank Mechanism)
Problem No. 4
Y
Y1
Klein’s Construction (only for Slider Crank Mechanism)
Problem No. 4

More Related Content

PPTX
Coriolis Component numerical
PPTX
MODULE 2.2.pptxyxrxydxyexyrxyr yr yr yr urx
PPTX
Vector analysis Mechanics Engineering Dynamics .pptx
PDF
Ge 105 lecture 1 (LEAST SQUARES ADJUSTMENT) by: Broddett B. Abatayo
PDF
Design of a Lift Mechanism for Disabled People
PPT
Mba admission in india
PPT
Dynamics pulley porblems chpter 5
PPTX
Velocityofmechasnismbygraphical 130217105814-phpapp02
Coriolis Component numerical
MODULE 2.2.pptxyxrxydxyexyrxyr yr yr yr urx
Vector analysis Mechanics Engineering Dynamics .pptx
Ge 105 lecture 1 (LEAST SQUARES ADJUSTMENT) by: Broddett B. Abatayo
Design of a Lift Mechanism for Disabled People
Mba admission in india
Dynamics pulley porblems chpter 5
Velocityofmechasnismbygraphical 130217105814-phpapp02

Similar to KOM Slides_02D_Velocity and 03C_Acceleration Analysis.pdf (20)

PPTX
Velocityofmechasnismbygraphical 130217105814-phpapp02 (1)
PDF
Project report. fin
PDF
Velo & accel dia by relative velo & accl method
PDF
Tarea 5 hidraulica iii-cabrera arias roberto alejandro
PPT
GEODETIC Least Square with fx 991-es plus
PDF
Coordinate geometry fundamentals 2012
PDF
Sjhddhdjdkdkkdkdkfjdjdksksnsnsh hdhd.pdf
PDF
Lecture 2( Moment distribution method with sway)
PDF
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
PPTX
Kleins construction _step by step
PDF
Quick return mechanism
PPT
Diseño y construccion de una maquina en coordenadas normales y tangenciales s...
PDF
Site Surveying Traversing
PPT
PDF
Ijmet 06 10_013
DOC
Chapter#3 Met 305 2-_velocity_relative
PDF
problemas resueltas estatica 2parte
PDF
Cap 03
PDF
Sol cap 03 edicion 8
PPT
Top schools in delhi ncr
Velocityofmechasnismbygraphical 130217105814-phpapp02 (1)
Project report. fin
Velo & accel dia by relative velo & accl method
Tarea 5 hidraulica iii-cabrera arias roberto alejandro
GEODETIC Least Square with fx 991-es plus
Coordinate geometry fundamentals 2012
Sjhddhdjdkdkkdkdkfjdjdksksnsnsh hdhd.pdf
Lecture 2( Moment distribution method with sway)
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
Kleins construction _step by step
Quick return mechanism
Diseño y construccion de una maquina en coordenadas normales y tangenciales s...
Site Surveying Traversing
Ijmet 06 10_013
Chapter#3 Met 305 2-_velocity_relative
problemas resueltas estatica 2parte
Cap 03
Sol cap 03 edicion 8
Top schools in delhi ncr
Ad

More from happycocoman (20)

PPTX
gas turbine cycles.pptx .
PPT
RECIPROCATING_AIR_COMPRESSOR.ppt .
PPTX
SURFACE TEXTURE 2022.pptx .
PPT
Numericals on Raciprocating air compressor.ppt
PPTX
Vapor_power cycles KM.pptx ..
PPTX
Vapor power cycles by Anupama.pptx .
PPT
Performance and Testing of Internal Combustion Engines.ppt
PPTX
ICenginesNumericals (1).pptx .
PPTX
Air standard cycles_PPT KM1.pptx .
PPTX
Pressure Measurement ppt.pptx .
PPTX
Measurements & Measurement .Systems.pptx
PPTX
Strain Measurement (NEW).pptx .
PPTX
Force and torque measurements.pptx .
PPTX
FLOW(NEW).pptx .
PDF
Chapter 11 - SCREW THREADS sllides.pdf .
PPTX
Measurement of form errors.pptx .
PDF
9. Surface Texture - PPT.pdf .
PDF
10. Screw Threads - PPT.pdf .
PDF
Measurement of Form errors complete slides.pdf
PDF
Limits Fits and Tolerances ppt.pdf .
gas turbine cycles.pptx .
RECIPROCATING_AIR_COMPRESSOR.ppt .
SURFACE TEXTURE 2022.pptx .
Numericals on Raciprocating air compressor.ppt
Vapor_power cycles KM.pptx ..
Vapor power cycles by Anupama.pptx .
Performance and Testing of Internal Combustion Engines.ppt
ICenginesNumericals (1).pptx .
Air standard cycles_PPT KM1.pptx .
Pressure Measurement ppt.pptx .
Measurements & Measurement .Systems.pptx
Strain Measurement (NEW).pptx .
Force and torque measurements.pptx .
FLOW(NEW).pptx .
Chapter 11 - SCREW THREADS sllides.pdf .
Measurement of form errors.pptx .
9. Surface Texture - PPT.pdf .
10. Screw Threads - PPT.pdf .
Measurement of Form errors complete slides.pdf
Limits Fits and Tolerances ppt.pdf .
Ad

Recently uploaded (20)

PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PPTX
OOP with Java - Java Introduction (Basics)
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
Geodesy 1.pptx...............................................
PPT
Project quality management in manufacturing
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
DOCX
573137875-Attendance-Management-System-original
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Model Code of Practice - Construction Work - 21102022 .pdf
R24 SURVEYING LAB MANUAL for civil enggi
Automation-in-Manufacturing-Chapter-Introduction.pdf
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
OOP with Java - Java Introduction (Basics)
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
CYBER-CRIMES AND SECURITY A guide to understanding
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Geodesy 1.pptx...............................................
Project quality management in manufacturing
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
573137875-Attendance-Management-System-original
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...

KOM Slides_02D_Velocity and 03C_Acceleration Analysis.pdf

  • 1. Configuration or Space Diagram Velocity Diagram Velocity Calculation Velocity Calculation for Point “ C ” Ratio Method:
  • 2. Configuration or Space Diagram Velocity Diagram Problem No. 1 Scale Factor : 1: 2 a, d b c 𝜐𝑏𝑎 𝜐𝑐𝑏 𝜐𝑐𝑑 Velocity Diagram Scale Factor : 1 cm = 10 cm/s
  • 3. Links Velocity Symbol Velocity (cm/s) Angular Velocity Symbol Angular Velocity (rad/s) AB 𝜐𝑏𝑎 50.24 ω𝑏𝑎 12.56 BC 𝜐𝑐𝑏 15.38 CD 𝜐𝑐𝑑 38.23 ω𝑐𝑑 4.77 TABLE Configuration or Space Diagram Velocity Diagram Problem No. 1
  • 4. Problem No. 2 Configuration or Space Diagram E Velocity Diagram Scale Factor : 1cm = 100 cm/s a, e b c 𝜐𝑏𝑎 𝜐𝑐𝑏 𝜐𝑐𝑒 𝜐𝑑𝑎 d 𝜐𝑑𝑏 𝜐𝑑𝑐 Velocity Diagram
  • 5. Problem No. 2 Configuration or Space Diagram Links Velocity Symbol Velocity (cm/s) Angular Velocity Symbol Angular Velocity (rad/s) BA 𝜐𝑏𝑎 471.30 ω𝑏𝑎 31.42 CB 𝜐𝑐𝑏 340 ω𝑐𝑏 5.67 DB 𝜐𝑑𝑏 170 CE 𝜐𝑐𝑒 400 Point D 𝜐𝑑𝑎 or 𝜐𝑑𝑒 410 E Scale Factor : 1cm = 100 cm/s a, e b c 𝜐𝑏𝑎 𝜐𝑐𝑏 𝜐𝑐𝑒 𝜐𝑑𝑎 d 𝜐𝑑𝑏 𝜐𝑑𝑐 Velocity Diagram TABLE
  • 6. Problem No. 3 Configuration or Space Diagram Scale Factor : 1:2 O,02, O1 𝜐𝑎𝑜 Velocity Diagram 𝑂1 𝑂2 Scale Factor : 1cm = 100 mm/s a d 𝜐𝑑𝑎 𝜐𝑑02 b c 𝜐𝑐𝑏 𝜐𝑐𝑜1 𝜐𝑏𝑎 𝜐𝑑𝑏 Links Velocity Symbol Velocity (mm/s) Angular Velocity Symbol Angular Velocity (rad/s) OA 𝜐𝑎𝑜 867.64 ω𝑎𝑜 18.84 DA 𝜐𝑑𝑎 280 ω𝑑𝑎 1.84 BA 𝜐𝑏𝑎 180 ω𝑏𝑎 1.97 CB 𝜐𝑐𝑏 810 ω𝑐𝑏 8.90 Velocity at P 𝜐𝑑𝑜2 960 Velocity at C 𝜐𝑐𝑜1 170 V = 867.079 mm/sec o a b d c 172.682 965.953 a Velocity Diagram
  • 7. Problem No. 3 Scale Factor : 1cm = 100 cm/s 𝑂1 𝑂2
  • 8. Problem No. 4 Configuration or Space Diagram Scale Factor : 1 : 2 b 𝜐𝑎𝑜2 = Velocity Diagram ω𝑎𝑜2 × AO2 Scale Factor : 1 cm = 1m/sec O2, a O4, 𝜐𝑏𝑎 𝜐𝑏𝑜4 p 𝜐𝑝𝑎 𝜐𝑝 𝜐𝑎𝑜2 Links Velocity Symbol Velocity (mm/s) Angular Velocity Symbol Angular Velocity (rad/s) AO2 𝜐𝑎𝑜2 4500 ω𝑎𝑜2 45.00 BA 𝜐𝑏𝑎 4490 ω𝑏𝑎 44.90 BO4 𝜐𝑏𝑜4 6510 ω𝑏𝑜4 73.97 PA 𝜐𝑝𝑎 4490 Velocity at P 𝜐𝑝𝑜2 6200
  • 11. Instantaneous Centre Method Types of Instantaneous Centres 1. Fixed Instantaneous Centres 2. Permanent Instantaneous Centres 3. Neither Fixed nor Permanent Instantaneous Centres
  • 12. Instantaneous Centre Method Location of Instantaneous Centres
  • 13. Instantaneous Centre Method Problem No. 1 𝜐𝑏𝑎 = ω𝑏𝑎 × BA 1 2 3 4 1 2 3 4 𝐼13 𝜐𝑏𝑎 𝑜𝑟 𝜐𝑏 = ω𝑏𝑎 × BA 𝜐𝑏 𝐵𝐼13 = 𝜐𝑐 𝐶𝐼13 ω𝑐𝑏 =
  • 14. Instantaneous Centre Method Problem No. 1 𝜐𝑏𝑎 = ω𝑏𝑎 × BA 3. Fig. shows a pin Joined four bar linkage having the following dimensions : Fixed link AD = 4 m ; Driving link AB = 1.5 m, Driven link CD = 2.5 m ; Connecting link BC = 3 m Angle BAD = 60°. Link AB revolves at 25 rpm. Determine: (i) Angular velocity of link CD and (ii) Angular velocity of link BC. 1 2 3 4
  • 15. Instantaneous Centre Method Problem No. 1 𝜐𝑏𝑎 𝑜𝑟 𝜐𝑏 = ω𝑏𝑎 × BA 𝜐𝑏 𝐵𝐼13 = 𝜐𝑐 𝐶𝐼13 ω𝑐𝑏 =
  • 16. Instantaneous Centre Method Problem No. 2 𝐼13 1 2 3 4 𝐼24 𝜐𝑎 = 𝜐𝑏 𝐵𝐼13 ω𝑏𝑎 = 𝐴𝐼13
  • 17. Instantaneous Centre Method Problem No. 3 𝜐𝑎 = 𝜐𝑏 𝐵𝐼13 𝐴𝐼13 1 2 3 4 5 6 12 23 34 45 56 13 24 35 46 14 25 36 15 26 16 1 𝜐𝑎𝑜 𝑜𝑟 𝜐𝑎 = ω𝑎𝑜 × AO 𝐼34 𝐼45 𝐼14 𝐼56 𝐼16 at infinity 𝐼23 2 3 4 5 6 1 6 1 𝐼15 𝜐𝑏 = 𝜐𝑑 𝐷𝐼14 𝐵𝐼14 𝜐𝑑 = 𝜐𝑒 𝐸𝐼15 𝐷𝐼15
  • 18. Instantaneous Centre Method Problem No. 4 1 2 3 4 5 6 1 2 3 4 5 6 12 23 34 45 56 13 24 35 46 14 25 36 15 26 16 1 2 3 4 5 6 1 1 𝐼12 𝐼23 𝐼34 𝐼14 𝐼35 𝐼16 𝐼56 𝐼13 𝐼15 𝜐𝑝𝑜1 𝑜𝑟 𝜐𝑝 = ω𝑝𝑜1 × PO1 𝜐𝑝 = 𝜐𝑞 𝑄𝐼13 𝑃𝐼13 𝜐𝑞 = 𝜐𝑠 𝑆𝐼15 𝑄𝐼15 𝜐𝑠 = 𝜐𝑇 𝑇𝐼16 S𝐼16 𝐼24
  • 20. Relative Acceleration Method Tangential Component Radial Component a’ m b’
  • 23. Relative Acceleration Method For a Slider : When the slider (point) moves along a straight line, then its radial acceleration will be zero
  • 24. Relative Acceleration Method Problem No. 1 ω α Space Diagram 𝑝1 ′ x Scale : 1cm = 10 m/s2 𝑓𝑎𝑝1 𝑟 a’ 𝑓𝑎𝑝1 𝑡 𝑓𝑎𝑝1 y 𝑓𝑏𝑎 𝑟 𝑓𝑏𝑎 𝑡 𝑝2 ′ z 𝑓𝑏𝑝2 𝑟 𝑓𝑏𝑝2 𝑡 b’ 𝑓𝑏𝑝2 𝑓𝑏𝑎
  • 25. Relative Acceleration Method Problem No. 1 Links Velocity Symbol Velocity (m/s) Angular Velocity Symbol Angular Velocity (rad/s) Acc. Symbol Radial Comp. Acc. Radial Comp. (m/s2) Acc. Symbol Tangential Comp. Acc. Tangential Comp. (m/s2) Angular Acc. Symbol and Value (rad/s2) TOTAL Acceleration Symbol & Value (m/s2) AP1 𝜐𝑎𝑝1 03 ω𝑎𝑝1 10 𝑓𝑎𝑝1 𝑟 30 𝑓𝑎𝑝1 𝑡 09 α𝑎𝑝1 = 30 𝑓𝑎𝑝1 = 31.6 BA 𝜐𝑏𝑎 2.1 ω𝑏𝑎 5.86 𝑓𝑏𝑎 𝑟 11.67 𝑓𝑏𝑎 𝑡 13.6 α𝑏𝑎 = 37.78 𝑓𝑏𝑎 = 18 BP2 𝜐𝑏𝑝2 2.25 ω𝑏𝑝2 6.13 𝑓𝑏𝑝2 𝑟 14.06 𝑓𝑏𝑝2 𝑡 28 α𝑏𝑝2 = 77.78 𝑓𝑏𝑝2 = 31.33 TABLE
  • 26. Relative Acceleration Method Problem No. 2 Space Diagram 𝑜2 ′ x y z 𝑜4 ′ a’ b’ p’ 𝑓𝑎𝑜2 𝑟 𝑓𝑏𝑎 𝑟 𝑓𝑏𝑜4 𝑟 Scale : 1cm = 50 m/s2 𝑓𝑎𝑜2 𝑡 𝑓𝑎𝑜2 𝑓𝑏𝑜4 𝑡 𝑓𝑏𝑎 𝑡 𝑓𝑝𝑎 𝑓𝑏𝑜4 𝑓𝑝𝑜2 𝑓𝑏𝑎
  • 27. Relative Acceleration Method Problem No. 2 Links Velocity Symbol Velocity (m/s) Angular Velocity Symbol Angular Velocity (rad/s) Acc. Symbol Radial Comp. Acc. Radial Comp. (m/s2) Acc. Symbol Tangential Comp. Acc. Tangential Comp. (m/s2) Angular Acc. Symbol and Value (rad/s2) TOTAL Acceleration Symbol & Value (m/s2) AO2 𝜐𝑎𝑜2 4.5 ω𝑎𝑜2 45 𝑓𝑎𝑜2 𝑟 202.5 𝑓𝑎𝑜2 𝑡 30 α𝑎𝑜2 = 300 𝑓𝑎𝑜2 = 204.71 BA 𝜐𝑏𝑎 4.49 ω𝑏𝑎 44.49 𝑓𝑏𝑎 𝑟 201.6 𝑓𝑏𝑎 𝑡 610 α𝑏𝑎 = 6100 𝑓𝑏𝑎 = 635 BO4 𝜐𝑏𝑜4 6.513 ω𝑏𝑜4 73.79 𝑓𝑏𝑜4 𝑟 482.03 𝑓𝑏𝑜4 𝑡 680 α𝑏𝑜4 = 7727.27 𝑓𝑏𝑜4 = 835 PA 𝜐𝑝𝑎 4.49 ω𝑝𝑎 44.49 𝑓𝑝𝑎 𝑟 201.6 𝑓𝑝𝑎 = 640 Velocity at P 𝜐𝑝𝑜2 6.20 𝑓𝑝𝑜2 = 490 TABLE
  • 28. Relative Acceleration Method Problem No. 3 Space Diagram Scale : 1cm = 100 mm Length 𝜐𝑎𝑜 𝜐𝑐𝑎 𝜐𝑑𝑐 𝜐𝑐𝑞 𝜐𝑑𝑞 𝜐𝑏𝑑 𝜐𝑏𝑔 o, q, g a b c d Scale : 1cm = 0.25 m/s
  • 29. Relative Acceleration Method Problem No. 3 Space Diagram Scale : 1cm = 100 mm Length Acceleration Diagram Scale : 1cm = 2 m/s2 o’ a’ 𝑓𝑎𝑜 𝑟 = 𝑓𝑎𝑜 x 𝑓𝑐𝑎 𝑟 𝑓𝑐𝑎 𝑡 q’ 𝑓𝑐𝑞 𝑟 y c’ 𝑓𝑐𝑞 𝑓𝑐𝑎 𝑓𝑑𝑞 𝑟 z 𝑓𝑑𝑞 𝑡 d’ 𝑓𝑑𝑐 𝑟 m 𝑓𝑑𝑐 𝑡 𝑓𝑑𝑐 𝑓𝑑𝑞 𝑓𝑏𝑑 𝑟 n 𝑓𝑏𝑑 𝑡 g’ b’ 𝑓𝑏𝑔 𝑡 = 𝑓𝑏𝑔 𝑓𝑏𝑑 𝑓𝑐𝑞 𝑡
  • 30. Problem No. 3 Links Velocity Symbol Velocity (m/s) Angular Velocity Symbol Angular Velocity (rad/s) Acc. Symbol Radial Comp. Acc. Radial Comp. (m/s2) Acc. Symbol Tangential Comp. Acc. Tangential Comp. (m/s2) Angular Acc. Symbol and Value (rad/s2) TOTAL Acceleration Symbol & Value (m/s2) AO 𝜐𝑎𝑜 0.94 ω𝑎𝑜 6.28 𝑓𝑎𝑜 𝑟 5.89 𝑓𝑎𝑜 𝑡 0 α𝑎𝑜= 0 𝑓𝑎𝑜 = 5.89 CA 𝜐𝑐𝑎 1.00 ω𝑐𝑎 1.67 𝑓𝑐𝑎 𝑟 1.67 𝑓𝑐𝑎 𝑡 15 α𝑐𝑎 = 25 𝑓𝑐𝑎 = 15.1 CQ 𝜐𝑐𝑞 1.14 ω𝑐𝑞 7.86 𝑓𝑐𝑞 𝑟 8.96 𝑓𝑐𝑞 𝑡 3.6 α𝑐𝑞 = 24.83 𝑓𝑐𝑞 = 9.65 DC 𝜐𝑑𝑐 1.08 ω𝑑𝑐 8.64 𝑓𝑑𝑐 𝑟 9.33 𝑓𝑑𝑐 𝑡 5 α𝑑𝑐 = 40 𝑓𝑑𝑐 =10.58 DQ 𝜐𝑑𝑞 1.14 ω𝑑𝑞 7.86 𝑓𝑑𝑞 𝑟 8.96 𝑓𝑑𝑞 𝑡 3.6 α𝑑𝑞 = 24.83 𝑓𝑑𝑞 = 9.65 BD 𝜐𝑏𝑑 0.45 ω𝑏𝑑 0.90 𝑓𝑏𝑑 𝑟 0.405 𝑓𝑏𝑑 𝑡 7.21 α𝑏𝑑 = 14.44 𝑓𝑏𝑑 = 7.22 BG 𝜐𝑏𝑔 0.88 *** 𝑓𝑏𝑔 𝑟 0 𝑓𝑏𝑔 𝑡 8.4 α𝑏𝑞 = 21 𝑓𝑏𝑔 = 8.4 TABLE
  • 31. Klein’s Construction (only for Slider Crank Mechanism) Problem No. 4 Space Diagram N
  • 32. Klein’s Construction (only for Slider Crank Mechanism) Problem No. 4 Space Diagram Scale : 1cm = 1m/s Acceleration Diagram Using Relative Acc. Method for comparing with Klein’s method 𝜐𝑏𝑛 𝜐𝑎𝑜 𝜐𝑏𝑎 o, n b a N Velocity diagram Using Relative Velocity Method for comparing with Klein’s method o’, n’ a’ 𝑓𝑎𝑜 𝑟 =𝑓𝑎𝑜 𝑓𝑏𝑎 𝑟 x 𝑓𝑏𝑎 𝑡 b’ 𝑓𝑏𝑛 𝑡 =𝑓𝑏𝑛 𝑓𝑏𝑎 Scale : 1cm = 50 m/s2 Scale : 1cm = 100 length
  • 33. Klein’s Construction (only for Slider Crank Mechanism) Problem No. 4 Velocity Diagram (Region OAC) C N X M P F H Acceleration Diagram (Region OAHFO) 𝜐𝑎𝑜 𝑜𝑟 𝜐𝑎 = ω𝑎𝑜 × AO x scale factor 𝜐𝑏𝑎 = ω𝑎𝑜 × AC x scale factor 𝜐𝑏𝑛 = ω𝑎𝑜 × OC x scale factor 𝑓𝑏𝑎 = 𝑓𝑎𝑜 𝑟 ω𝑎𝑜 2 × AO x Scale factor = 𝑓𝑏𝑎 𝑟 ω𝑎𝑜 2 × AH x Scale factor = 𝑓𝑏𝑎 𝑡 ω𝑎𝑜 2 × HF x Scale factor = 𝑓𝑏𝑛 𝑡 ω𝑎𝑜 2 × OF x Scale factor = ω𝑎𝑜 2 × AF x Scale factor
  • 34. Problem No. 4 Links Velocity Symbol Velocity (m/s) Angular Velocity Symbol Angular Velocity (rad/s) Acc. Symbol Radial Comp. Acc. Radial Comp. (m/s2) Acc. Symbol Tangential Comp. Acc. Tangential Comp. (m/s2) Angular Acc. Symbol and Value (rad/s2) TOTAL Acceleration Symbol & Value (m/s2) AO 𝜐𝑎𝑜 4.189 ω𝑎𝑜 41.89 𝑓𝑎𝑜 𝑟 175.75 𝑓𝑎𝑜 𝑡 0 α𝑎𝑜= 0 𝑓𝑎𝑜 =175.75 BA 𝜐𝑏𝑎 2.80 ω𝑏𝑎 5.61 𝑓𝑏𝑎 𝑟 15.68 𝑓𝑏𝑎 𝑡 95 α𝑏𝑎 = 190 𝑓𝑏𝑎 = 96.28 BN 𝜐𝑏𝑛 3.10 **** **** 𝑓𝑏𝑛 𝑟 0 𝑓𝑏𝑛 𝑡 165 ∗∗∗∗ 𝑓𝑏𝑛 = 165 TABLE
  • 35. Klein’s Construction (only for Slider Crank Mechanism) Problem No. 4 Y Y1
  • 36. Klein’s Construction (only for Slider Crank Mechanism) Problem No. 4